Optimasi Gizi Pada Bahan Makanan Balita Menggunakan Algoritme Genetika

Agustin, Vivilia Putri (2017) Optimasi Gizi Pada Bahan Makanan Balita Menggunakan Algoritme Genetika. Sarjana thesis, Universitas Brawijaya.

Abstract

Balita atau anak usia dibawah lima tahun memiliki fase yang penting dalam tumbuh kembang anak. Berdasarkan data Riset Kesehatan Dasar tahun 2013, perkembangan balita di Jawa Timur masih mengalami permasalahan gizi. Penyebab yang pertama, kurangnya pengetahuan orang tua terhadap kebutuhan gizi balita. Penyebab yang kedua, kurangnya memperhatikan harga bahan makanan yang sesuai dengan bahan makanan yang memiliki gizi seimbang. Salah satu upaya yang dilakukan yaitu Dinkes kota Malang melibatkan kader posyandu melakukan penyuluhan terkait pemberian makanan penunjang untuk memperbaiki gizi balita. Namun upaya tersebut masih mengalami kendala berupa jumlah porsi makanan yang diberikan kepada setiap balita belum disesuaikan berdasarkan berat badan dan umur, selain itu kurangnya variasi bahan makanan. Sehingga, diperlukan suatu sistem untuk mengoptimasi hal tersebut. Algoritme genetika merupakan agoritma yang sering digunakan untuk mengatasi permasalahan optimasi. Hasil sistem berupa daftar bahan makanan beserta berat dan harga yang disesuaikan dengan berat dan umur balita. Berdasarkan hasil pengujian didapatkan parameter yang optimal yaitu jumlah populasi yang optimal sebesar 100, jumlah generasi yang optimal sebesar 70 dan kombinasi nilai cr dan nilai mr yang optimal yaitu 0,5 dan 0,5 menghasilkan nilai fitness 50,821.

English Abstract

In the Golden Age (children under five years old) have an important phase in child growth. Based on Basic Health Research in 2013, the development of children in East Java is still experiencing nutritional problems. The first because, lack of knowledge of parents to the nutritional needs of children. The second because, the lack of attention to the price of food in accordance with food ingredients that have balanced nutrition.One efforts of Dinkes Malang was involving Posyandu to do counseling related to improve child nutrition. However, these efforts were still experiencing obstacles in the form of the number of portions of food given to each children has not been adjusted based on weight and age, in addition the children lack variety of foodstuffs. Thus, the reseracher search a system to optimize it. Genetic algorithm was a algorithm that was often used to overcome the problem of optimization. The results of the system in the form of lists of food and weight and price adjusted to the weight and age of children.Based on the test results obtained optimal parameters that the optimal population amount of 100, the optimal generation amount of 70 and the optimal combination of cr value and mr value was 0.5 and 0.5 resulted in a fitness value of 50.821.

Item Type: Thesis (Sarjana)
Identification Number: SKR/FTIK/2017/798/051800347
Uncontrolled Keywords: Balita, Optimasi, Algoritme Genetika
Subjects: 000 Computer science, information and general works > 005 Computer programming, programs, data > 005.1 Programming
Divisions: Fakultas Ilmu Komputer > Teknik Informatika
Depositing User: Yusuf Dwi N.
Date Deposited: 12 Jan 2018 06:31
Last Modified: 26 Oct 2021 05:43
URI: http://repository.ub.ac.id/id/eprint/7957
[thumbnail of BAB I.pdf]
Preview
Text
BAB I.pdf

Download (562kB) | Preview
[thumbnail of BAB IV.pdf]
Preview
Text
BAB IV.pdf

Download (1MB) | Preview
[thumbnail of BAB VI.pdf]
Preview
Text
BAB VI.pdf

Download (719kB) | Preview
[thumbnail of BAB V.pdf]
Preview
Text
BAB V.pdf

Download (888kB) | Preview
[thumbnail of BAB III.pdf]
Preview
Text
BAB III.pdf

Download (566kB) | Preview
[thumbnail of BAB II.pdf]
Preview
Text
BAB II.pdf

Download (924kB) | Preview
[thumbnail of DAFTAR PUSTAKA.pdf]
Preview
Text
DAFTAR PUSTAKA.pdf

Download (539kB) | Preview
[thumbnail of LAMPIRAN.pdf]
Preview
Text
LAMPIRAN.pdf

Download (1MB) | Preview
[thumbnail of BAGIAN DEPAN.pdf]
Preview
Text
BAGIAN DEPAN.pdf

Download (1MB) | Preview
[thumbnail of BAB VII.pdf]
Preview
Text
BAB VII.pdf

Download (536kB) | Preview

Actions (login required)

View Item View Item