Khoiriyah, Irma Lailatul (2017) Peramalan Jumlah Pengunjung Wisata Menggunakan Fuzzy Logical Relationship Dan Algoritme Genetika (Studi Kasus Wisatawan Kabupaten Banyuwangi). Sarjana thesis, Universitas Brawijaya.
Abstract
Pariwisata merupakan salah satu sektor penting di Kabupaten Banyuwangi. Peningkatan yang tidak terduga akan jumlah wisatawan menyebabkan kesulitan bagi para pelaku pariwisata dalam memberikan pelayanan terbaiknya. Dan sebaliknya, jika terjadi penurunan akan jumlah wisatawan maka akan menyebabkan turunnya tingkat hunian serta sektor pariwisata yang ada. Peramalan jumlah wisawatan dibutuhkan untuk mengetahui jumlah wisatawan di masa mendatang, sehingga dapat digunakan sebagai antisipasi solusi sedini mungkin ketika jumlah wisatawan melebihi atau kurang dari yang ditargetkan. Peramalan yang dilakukan pada penelitian ini menggunakan Fuzzy Logical Relationship dan Algoritme Genetika. Fuzzy Logical Relationship digunakan untuk melakukan peramalan jumlah pengunjung wisatawan berdasarkan histori data jumlah wisatawan, kemudian Algoritme Genetika digunakan untuk melakukan optimasi pembagian interval yang akan digunakan pada Fuzzy Logical Relationship. Data yang digunakan sebanyak 144 data histori dari bulan Januari 2005 sampai dengan Desember 2016, data jumlah wisatawan didapatkan dari Dinas Kebudayaan dan Pariwisata Kabupaten Banyuwangi. Hasil pengujian yang dilakukan terhadap peramalan jumlah pengunjung wisata menggunakan FLRGA menghasilkan nilai sebesar 280x10-9 dalam fitness yang artinya selisih rata-rata antara data aktual dengan hasil peramalan sebesar 3572978344 dalam MSE.
English Abstract
Tourism is one of the important sectors in Banyuwangi Regency. An unexpected increase in the number of tourists makes it difficult for tourism department to give their best service. On the contrary, if there is a reduction, it will cause the decrease of the occupancy rate and the tourism sector that already exist. Forecasting the number of tourists is needed to determine the number of visitors in the future, so the solution can be anticipated as early as possible when number of tourists is more or less than the targeted. Forecasting that conducted in this study was using Fuzzy Logical Relationship and Genetic Algorithm. Fuzzy Logical Relationship is used to forecast the number of tourist based on tourist data history, then Genetic Algorithm is used to perform optimization interval distribution that will be used on Fuzzy Logical Relationship. Data that were used as many as 144 historical data from January 2005 to December 2016, number of tourist data was achieved from the Department of Culture and Tourism of Banyuwangi Regency. The results of the tests that was conducted on forecasting the number of visitors using the FLR and GA equations produce 280x10-9 in fitness which means the difference between the average of actual data and the result of forecasting is 3572978344 in MSE.
Item Type: | Thesis (Sarjana) |
---|---|
Identification Number: | SKR/FTIK/2017/443/051707765 |
Uncontrolled Keywords: | Peramalan, Wisatawan, Fuzzy Logical Relationship, Algoritme Genetika, MSE |
Subjects: | 000 Computer science, information and general works > 003 Systems > 003.2 Forecasting and forecasts |
Divisions: | Fakultas Ilmu Komputer > Teknik Informatika |
Depositing User: | Yusuf Dwi N. |
Date Deposited: | 18 Sep 2017 07:24 |
Last Modified: | 28 Sep 2020 09:34 |
URI: | http://repository.ub.ac.id/id/eprint/2651 |
Preview |
Text
Bagian Depan.pdf Download (1MB) | Preview |
Text
BAB I.pdf Restricted to Repository staff only Download (559kB) |
|
Text
BAB II.pdf Restricted to Repository staff only Download (1MB) |
|
Text
BAB III.pdf Restricted to Repository staff only Download (876kB) |
|
Text
BAB IV.pdf Restricted to Repository staff only Download (1MB) |
|
Text
BAB V.pdf Restricted to Repository staff only Download (1MB) |
|
Text
BAB VI.pdf Restricted to Repository staff only Download (857kB) |
|
Text
BAB VII.pdf Restricted to Repository staff only Download (539kB) |
|
Text
Daftar Pustaka.pdf Restricted to Repository staff only Download (548kB) |
Actions (login required)
View Item |