Nurdiana, Hanifah Taufika and Ir. Aditya Nugraha Putra, S.P., M.P. (2024) Pemanfaatan Data Spasial Kadar Nitrogen, Fosfor, dan Kalium Tanah Sawah untuk Rekomendasi Dosis Pemupukan Urea, SP-36, dan KCl Tanaman Padi di Kabupaten Malang. Sarjana thesis, Universitas Brawijaya.
Abstract
Isu degradasi kesuburan kimia tanah telah menjadi isu berkepanjangan dan sistemik hingga saat ini. Pengembangan teknologi-teknologi untuk mengatasi permasalahan tersebut sudah banyak dilakukan namun belum optimal. Khususnya efisiensi hara, teknologi terkini berbasis artificial intelligence (AI) belum banyak diimplementasikan untuk menurunkan dosis pupuk di lapangan. Penelitian ini bertujuan untuk memanfaatkan data spasial kadar nitrogen, fosfor dan kalium di tanah sawah hasil pengolahan berbasis machine learning oleh peneliti terdahulu, untuk menghitung pupuk dalam jumlah yang tepat atau presisi. Harapannya, produksi beras akan terus meningkat diikuti dengan penurunan masukan pupuk yang sebelumnya tidak efisien. Data spasial hasil pengolahan nitrogen, fosfor dan kalium dari peneliti sebelumnya menggunakan machine learning kemudian diolah sebagai dasar penentuan rekomendasi dosis pemupukan lahan sawah. Pengolahan data spasial ketersediaan unsur hara nitrogen, fosfor, dan kalium kemudian diproses menggunakan software arcgis untuk memperhitungkan kebutuhan pupuk yang perlu ditambahkan ke lahan sawah. Dosis rekomendasi pemupukan urea, SP-36, dan KCl dapat dihitung berdasarkan rumus menggunakan map algebra. Map algebra dapat membantu memproses data spasial serta memberikan visualisasi dari hasil perhitungan. Hasil perhitungan tersebut kemudian diproses kembali dengan memanfaatkan tools zonal function sehingga data rekomendasi pemupukan urea, SP-36 dan KCl dapat disesuaikan berdasarkan rata rata kebutuhan pupuk setiap petak lahan sawah sehingga dosis rekomendasi dapat lebih mudah nantinya untuk diaplikasikan ke lahan sawah khususnya di Kabupaten Malang. Hasil penelitian menunjukkan bahwa berdasarkan data spasial serapan nitrogen, fosfor dan kalium di tanaman padi di lahan sawah Kabupaten Malang membutuhkan pupuk urea sebanyak 240 kg/ha, pupuk SP-36 sebanyak 49,9 kg/ha, dan pupuk KCl sebanyak 49,9 kg/ha. Data nitrogen, fosfor dan kalium hasil distribusi spasial berbasis machine learning dapat dimanfaatkan untuk merekomendasikan dosis pemupukan per petak lahan sawah karena dapat menghasilkan model rekomendasi yang lebih akurat dan tepat. Dosis rekomendasi pemupukan urea, SP-36, dan KCl di lahan sawah hasil padi Kabupaten Malang tidak terlalu signifikan jika dibandingkan dengan dosis rekomendasi pemupukan berdasarkan Peraturan Menteri Pertanian nomor 13 tahun 2022 tentang penggunaan dosis pupuk nitrogen, fosfor dan kalium karena dosis rekomendasi SP-36 dan KCl tidak jauh berbeda.
English Abstract
The issue of soil fertility degradation has been a persistent and systemic issue up to the present. Despite numerous efforts in developing technologies to address this issue, they have not been fully optimized. Particularly, in terms of nutrient efficiency, current artificial intelligence (AI)-based technologies have not been widely implemented to reduce fertilizer doses in the field. This research aims to utilize spatial data on nitrogen, phosphorus, and potassium levels in cultivated paddy fields processed through machine learning by previous researchers, to calculate precise fertilizer amounts. The hope is that rice production will continue to increase accompanied by a reduction in previously inefficient fertilizer inputs. Spatial data on nitrogen, phosphorus, and potassium processing results from previous researchers using machine learning were then processed as the basis for determining recommended doses of fertilization for paddy fields. The processing of spatial data on the availability of nitrogen, phosphorus, and potassium nutrients was then carried out using ArcGIS software to calculate the fertilizer needs that need to be added to paddy fields. The recommended doses of urea, SP-36, and KCl fertilization can be calculated based on formulas using map algebra. Map algebra can assist in processing spatial data and provide visualization of the calculation results. These calculation results was then further processed using zonal function tools so that the recommended fertilizer data for urea, SP-36, and KCl can be adjusted based on the average fertilizer requirements of each plot of paddy fields, making the recommended doses easier to apply to paddy fields, especially in Malang Regency. Based on spatial data on nitrogen, phosphorus, and potassium uptake in rice plants in Malang Regency's paddy fields, the study's findings indicate that urea fertilizer at 240 kg/ha, SP-36 fertilizer at 49.9 kg/ha, and KCl fertilizer at 49.9 kg/ha, must be applied. Spatial distribution data of nitrogen, phosphorus, and potassium based on machine learning can be utilized to recommend fertilizer doses per plot of paddy fields because it can generate more accurate and precise recommendation models. The recommended doses of urea, SP-36, and KCl fertilization in paddy fields resulting from rice cultivation in Malang Regency was not significantly different compared to the recommended doses based on the Minister of Agriculture Regulation number 13 of 2022 concerning the use of nitrogen, phosphorus, and potassium fertilizer doses because the recommended doses of SP-36 and KCl are not significantly different.
Item Type: | Thesis (Sarjana) |
---|---|
Identification Number: | 0524040216 |
Divisions: | Fakultas Pertanian > Ilmu Tanah |
Depositing User: | Unnamed user with username nova |
Date Deposited: | 15 May 2024 07:58 |
Last Modified: | 15 May 2024 07:58 |
URI: | http://repository.ub.ac.id/id/eprint/218939 |
![]() |
Text (DALAM MASA EMBARGO)
Hanifah Taufika Nurdiana.pdf Restricted to Registered users only Download (5MB) |
Actions (login required)
![]() |
View Item |