Dermawan, Adi Susetyo and Dr. Ir. Wisnumurti, MT and Ari Wibowo, ST., MT., Ph.D (2022) Perilaku Sambungan Balok-Kolom Eksterior Beton Bertulang Yang Diperbaiki Dengan Carbon Fiber Reinforced Polymers (CFRP). Doktor thesis, Universitas Brawijaya.
Abstract
Sambungan balok-kolom (SBK) memiliki peran yang sangat penting pada keseluruhan struktur, terutama pada mekanisme pemindahan beban-beban dari lantai dan balok ke kolom. Kerusakan SBK karena gempa, kelebihan beban akibat perubahan fungsi, dan kerusakan besi/beton akan berakibat fatal. Pemasangan CFRP berfungsi meningkatkan kekuatan kompresi dari beton, meningkatkan kekuatan geser total beton, meningkatkan kekuatan lentur dari balok beton dan menutup kondisi beton yang retak. Pemasangan CFRP pada SBKyang rusak telah dilakukan oleh banyak peneliti namun model yang ditawarkan belum efektif dalam meretrofit SBK baik dari segi teknik pemasangan, perancangan model dan kemampuan menahan bebannya. Penelitian mempunyai 2 (dua) tujuan pokok yaitu (1) melakukan perancangan model retrofit sambungan balok kolom dengan CFRP plat dan lembaran kain untuk meningkatkan kekuatan sambungan balok kolom setelah mengalami kerusakan (2) menganalisis perilaku SBK eksterior beton bertulang yang diperbaiki dengan CFRP plat dan lembaran kain disertai permodelan secara numerik. Penelitian menggunakan 48 buah benda uji yang telah mengalami kerusakan setelah pembebanan awal. Benda uji terdiri dari SBK ukuran kolom 200 mm x 200 mm x 750 mm dan balok 150 mm x 200 mm x 1000 mm dengan jumlah 9 buah rusak lentur 1 arah tanpa plat tumpu dan 9 buah rusak lentur 1 arah dengan plat tumpu, 9 buah rusak geser tanpa plat tumpu dan 9 buah rusak geser dengan plat tumpu, serta 6 buah rusak lentur 2 arah tanpa plat tumpu dan 6 buah rusak lentur 2 arah dengan plat tumpu. Pengujian SBK dilakukan di laboratorium dengan pengaturan beban sesuai dengan kerusakan awalnya. Hasil penelitian meliputi bahwa: (1) Rancangan retrofit menggunakan 3 (tiga) model yaitu Model 1 dengan perbaikan dengan grouting dan injeksi; Model 2 dengan perbaikan sesuai model 1 dan perkuatan lembaran kain CFRP yang terikat secara eksternal (Externally Bonded with Groove - EB); dan Model 3 dengan perbaikan sesuai model 1 dan perkuatan plat dan lembaran kain CFRP (Near Surface Mounted+Externally Bonded - NSM+EB). (2) a) Retrofit pada benda uji tanpa plat dengan beban lentur 1 arah menunjukkan bahwa Model 2 mampu meningkatkan kekuatan 8,73% dan daktilitas 19,84%. Sedangkan Model 3 mampu meningkatkan kekuatan 19,20% dan daktilitas 28,78%. Model 2 pada benda uji dengan plat mampu meningkatkan kekuatan 6,93% dan daktilitas 4,21%. Sedangkan Model 3 mampu meningkatkan kekuatan 18,43% dan daktilitas 9,27%, b) Retrofit benda uji dengan beban geser tanpa plat menggunakan Model 2 mampu meningkatkan kekuatan 8,58% dan daktilitas 55,53%. Sedangkan Model 3 mampu meningkatkan kekuatan 16,43% dan daktilitas 26,87%. Model 2 mampu meningkatkan kekuatan 28,06% dan daktilitas 59,50%. Retrofit dengan Model 3 mampu meningkatkan kekuatan 14,69% dan daktilitas 20,31% (benda uji dengan plat). c) Retrofit pada benda uji tanpa plat dengan beban lentur 2 arah (siklik) menunjukkan Model 2 mampu meningkatkan kekuatan 1% dan daktilitas 12,86%. Retrofit Model 3 mampu meningkatkan kekuatan 9,11% dan daktilitas 63,05%. Kumulatif Disipasi energi terbesar 902,54 kN.mm pada rasio simpangan 6% pada benda uji S1-2c. Sedangkan retrofit pada benda uji dengan plat menunjukkan Model 2 mampu meningkatkan kekuatan 14,94% dan daktilitas 6,41%, serta menurunkan kekakuan 48,97%. Retrofit Model 3 mampu meningkatkan kekuatan 19,75% dan daktilitas 6,48%. kumulatif disipasi energi terbesar 1005,49 pada simpangan 6%. d) Hasil permodelan dengan software Ansys Non linear mendekati hasil pengujian dilaboratorium dengan variasi 2,94 % - 3,83%.
English Abstract
The beam-column joints have a critical role in the whole structure, especially in transferring loads from the floor and beam to the column. The beam-column joints damaged due to earthquake, overload due to changes in function, and damage to steel/concrete will be fatal. Installation of Carbon Fiber Reinforced Polymers (CFRP) serves to increase the concrete's compressive strength, increase the concrete's total shear strength, increase the flexural strength of the concrete beam, and close the cracked concrete condition. Many researchers have installed CFRP on damaged beam-column joints, but the model offered has not been effective in retrofitting SBK both in terms of installation techniques, model design, and ability to withstand loads. The research has 2 (two) main objectives, namely (1) designing a retrofit model of column beam connections with CFRP plates and sheets of cloth to increase the strength of the beam-column connections after experiencing damage (2) analyzing the behaviour of reinforced concrete exterior SBK repaired with CFRP plates and sheets fabric with numerical modelling. The study used 48 specimens that had been damaged after initial loading. The Beam-Column joints with column size 200 mm x 200 mm x 750 mm, and beam dimension 150 mm x 200 mm x 1000 mm with a total of nine (9) pieces of flexural damage without a support plate and nine (9) pieces of flexural damage with a pedestal plate, nine (9) pieces damaged shear without a support plate and nine (9) pieces of shear damage with support plate, and six (6) pieces of 2-way flexural damage without a support plate and six (6) pieces of cyclic damage with a support plate. The beam-column joints were tested with load settings according to the initial damage. The results of the study include that: (1) The retrofit design uses three models, namely Model 1 with repairs by grouting and injection; Model 2 with improvements to model 1 and Externally Bonded with Groove (EB) sheet reinforcement; and Model 3 with improvements to model 1 and reinforcement of CFRP (Near Surface Mounted+Externally Bonded - NSM+EB) fabric plates and sheets. (2) a) Retrofit on specimens without plates with flexural load shows that Model 2 can increase strength by 8.73% and ductility by 19.84%. While Model 3 can increase the strength by 19.20% and ductility by 28.78%. Model 2 on specimens with plates can increase the strength by 6.93% and ductility by 4.21%. While Model 3 can increase the strength by 18.43% and ductility 9.27%, b) Retrofit test specimens with shear loads without plates using Model 2 can increase strength by 8.58% and ductility by 55.53%. While Model 3 can increase the strength by 16.43% and ductility by 26.87%. Model 2 can increase the strength by 28.06% and ductility by 59.50%. Retrofit with Model 3 can increase strength by 14.69% and ductility by 20.31% (test object with plate). c) Retrofit on test specimens without plates with cyclic loads showed that Model 2 increased strength by 1% and ductility by 12.86%. Retrofit Model 3 can increase the strength by 9.11% and ductility by 63.05%. The most significant cumulative energy dissipation is 902.54 kN.mm at a drift ratio of 6% on the specimen S1-2c. At the same time, the retrofit of the specimens with plates showed that Model 2 was able to increase strength by 14.94% and ductility to 6.41% and reduce stiffness by 48.97%. Retrofit Model 3 can increase 19.75% strength and 6.48% ductility. The most significant cumulative energy dissipation is 1005.49 at a 6% drift. d) The modelling results using the Ansys Non-linear software are close to the results of laboratory tests with a variation of 2.94% - 3.83%.
Item Type: | Thesis (Doktor) |
---|---|
Identification Number: | 062207 |
Uncontrolled Keywords: | retrofiting, SBK, CFRP, model 1_2_3-retrofitting, SBK, CFRP, model 1_2_3 |
Divisions: | S2/S3 > Doktor Teknik Sipil, Fakultas Teknik |
Depositing User: | soegeng sugeng |
Date Deposited: | 23 Jan 2024 02:38 |
Last Modified: | 23 Jan 2024 02:38 |
URI: | http://repository.ub.ac.id/id/eprint/213256 |
Text
Adi Susetyo Dermawan.pdf Download (18MB) |
Actions (login required)
View Item |