Analisis Sentimen Tweet COVID-19 Menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM), Yuita Arum Sari, S.Kom., M.Kom. dan Novanto Yudistira, Dr.Eng., S.Kom., M.Sc.

Rahman, Muhammad Zaini (2021) Analisis Sentimen Tweet COVID-19 Menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM), Yuita Arum Sari, S.Kom., M.Kom. dan Novanto Yudistira, Dr.Eng., S.Kom., M.Sc. Sarjana thesis, Universitas Brawijaya.

Abstract

Kebijakan pemerintah terkait karantina menimbulkan berbagai respon dari masyarakat masyarakat, sebagian masyarakat merasa hal ini harus dilaksanakan agar penyebaran penyakit COVID-19 dapat ditekan, namun tidak sedikit juga yang merasa hal ini merugikan masyarakat karena ruang geraknya dibatasi, responrespon masyarakat ini dapat ditemukan di dalam postingan-postingan Twitter mereka. Dengan menganalisis sentimen pada postingan Twitter masyarakat maka kita dapat menyimpulkan apakah suatu kebijakan cenderung lebih banyak mendapatkan respon positif ataukah negatif terhadap masyarakat yang terdampak, untuk melakukan analisis ini digunakan metode deep learning yaitu Long-Short Term Memory (LSTM) dengan penambahan Word Embedding terhadap 1364 data Twitter masyarakat Indonesia yang dicrawling secara mandiri. Kinerja dengan menggunakan metode LSTM ini menghasilkan 81% accuracy, 80% precision, 80% recall, dan 81% f-measure. Metode LSTM ini menghasilkan performa yang lebih baik dibandingkan dengan 2 metode lainnya yaitu Naïve Bayes dan Recurrent Neural Network (RNN) dengan selisih sebesar + 8%, dengan perincian 74% accuracy, 72% precision, 74% recall, dan 69% f-measure untuk metode Naïve Bayes dan 71% accuracy, 71% precision, 72% recall, dan 72% fmeasure untuk metode RNN.

English Abstract

Government policies related to quarantine have generated various responses from the community, some people feel that The quarantine must be done so that the spread of the COVID-19 disease can be suppressed, but others also feel that this is detrimental to the community because their activities are being limited, this response can be found in their Twitter post. By analyzing the sentiments on people's Twitter posts, we can conclude whether a policy tends to get more positive or negative responses to the affected community. To carry out this analysis, deep learning method is used, namely Long-Short Term Memoryf (LSTM) with the addition of Word Embedding to 1364 independently crawled Indonesian people's Twitter data. Performance using the LSTM method produces 81% accuracy, 80% precision, 80% recall, and 81% f-measure. This LSTM method produces better performance than the other 2 methods, namely Naïve Bayes and Recurrent Neural Network (RNN) with a difference of + 8%, with details of 74% accuracy, 72% precision, 74% recall, and 69% f-measure for the Naïve Bayes method and 71% accuracy, 71% precision, 72% recall, and 72% f-measure for the RNN method.

Item Type: Thesis (Sarjana)
Identification Number: 0521150114
Uncontrolled Keywords: Analisis Sentimen, Twitter, COVID-19, karantina, Word Embedding, Deep Learning, Long-Short Term Memory, Teks Berbahasa Indonesia. Sentiment Analysis, Twitter, COVID-19, Quarantine, Word Embedding, Deep Learning, Long-Short Term Memory, Indonesian Text.
Subjects: 000 Computer science, information and general works > 004 Computer science
Divisions: Fakultas Ilmu Komputer > Teknik Informatika
Depositing User: Budi Wahyono Wahyono
Date Deposited: 04 Nov 2021 06:09
Last Modified: 14 Oct 2024 08:05
URI: http://repository.ub.ac.id/id/eprint/186475
[thumbnail of Muhammad Zaini Rahman..pdf] Text
Muhammad Zaini Rahman..pdf

Download (4MB)

Actions (login required)

View Item View Item