Jemy Wijaya, Roxi (2021) Pengaruh Pocket Milling Toolpath True Spiral dan Variasi Irregular Helix Angle Terhadap Surface Roughness Stainless Steel 304 Dalam Proses Automation Machining. Sarjana thesis, Universitas Brawijaya.
Abstract
Perkembangan industri saat ini, mendorong terciptanya pembaruan dalam industri manufaktur. Berbagai macam produk industri dapat dibuat dengan cepat dan tingkat kepresisian tinggi. Perpaduan antara proses milling menggunakan toolpath pocket milling dan Automation Machine, salah satunya merupakan mesin Computer Numerically Controlled (CNC), menghasilkan sebuah alternatif kombinasi untuk mendapatkan hasil akhir dengan ketelitian yang tinggi. Mesin CNC Vertical Machining Center seringkali digunakan di dunia industri manufaktur terutama untuk proses pocket milling. Seperti contohnya pembuatan seal flange pada mechanical seal yang sering digunakan pada berbagai industri. Terkadang dalam prosesnya, terdapat permasalahan yang terjadi, salah satunya yaitu fenomena regenerative chatter. Fenomena ini mengakibatkan kualitas permukaan benda kerja menjadi kasar dan menyebabkan turunnya kualitas suatu produk. Upaya dalam meminimalisir terjadinya fenomena tersebut dengan menentukan parameter permesinan yang sesuai seperti spindle speed (rpm), axial depth of cut dan irregular helix angle. Penelitian dilakukan dengan cara membandingkan getaran (Acceleration-Time Domain Displacement) yang terjadi pada proses pocket milling yang menggunakan pahat irregular helix 36˚/38˚ dan irregular helix 40˚/42˚ cutting tool dalam variasi spindle speed 2000, 2250, 2500, dan 2750 rpm dengan axial depth of cut kontinyu dengan kenaikan sebesar 0.2mm sampai terjadinya ketidakstabilan Acceleration-Time Domain Displacement pada material Stainless Steel 304 yang sering digunakan pada industri mechanical seal. Nilai kekasaran pada penelitian diambil menggunakan Surface Roughness Tester SJ-301 Mitutoyo, kemudian dibandingkan antara dua pahat yang digunakan pada axial depth of cut yang sama. Kemampuan pemakanan kedalaman pahat dalam penelitian ini ditunjukkan oleh stability lobe diagram sebagai salah satu referensi parameter spindle speed dan axial axial depth of cut efektif pada proses permesinan dengan toolpath pocket milling dan variasi irregular helix sehingga bisa digunakan untuk mencegah terjadinya fenomena chatter. Permesinan pocket milling menggunakan irregular helix angle cutting tool memiliki daerah batas aman penggunaan axial depth of cut yang lebih tinggi pada stability lobe diagram dengan menggunakan pahat irregular helix angle 40˚/42˚ dibandingkan pahat irregular helix angle 36˚/38˚. Pada salah satu sampel, yaitu rpm 2750 dan 1.4 mm axial depth of cut, nilai kekasaran hasil permukaan permesinan menggunakan irregular helix 40˚/42˚ lebih rendah dengan rata-rata nilai 0.284 µm dibandingkan menggunakan irregular helix 36˚/38˚ dengan nilai 0.375 µm.
English Abstract
The current industrial developments encourage the creation of reforms in the manufacturing industry. A wide variety of industrial products can be made quickly and with high precision. The combination of the milling process using a toolpath pocket milling and Automation Machine, one of which is a Computer Numerically Controlled (CNC) machine, produces an alternative combination to get the final result with high accuracy. CNC Vertical Machining Center machines are often used in the manufacturing industry, especially for the pocket milling process. For example, the manufacture of flange seals on mechanical seals which are often used in various industries. Sometimes in the process, there are problems that occur, one of which is the phenomenon of regenerative chatter. This phenomenon causes the surface quality of the workpiece to become rough and causes a decrease in the quality of a product. Efforts to minimize the occurrence of this phenomenon by determining appropriate machining parameters such as spindle speed (rpm), axial depth of cut and irregular helix angle. The research was conducted by comparing the vibrations (Acceleration-Time Domain Displacement) that occur in the pocket milling process using 36˚/38˚ irregular helix chisels and 40˚/42˚ irregular helix cutting tools in spindle speed variations of 2000, 2250, 2500, and 2750 rpm with continuous axial depth of cut with an increase of 0.2mm until the occurrence of Acceleration-Time Domain Displacement instability in Stainless Steel 304 material which is often used in the mechanical seal industry. The roughness value in this study was taken using the Surface Roughness Tester SJ-301 Mitutoyo, then compared between two chisels used at the same axial depth of cut. The ability to feed the tool depth in this study is shown by the stability lobe diagram as a reference parameter for spindle speed and axial axial depth of cut effective in machining processes with toolpath pocket milling and irregular helix variations so that it can be used to prevent chatter phenomena. Pocket milling machining using an irregular helix angle cutting tool has a safe limit area for using a higher axial depth of cut on the stability lobe diagram using a 40˚/42˚ irregular helix angle tool compared to a 36˚/38˚ irregular helix angle tool. In one of the samples, namely 2750 rpm and 1.4 mm axial depth of cut, the roughness value of the machined surface using an irregular helix 40˚/42˚ is lower with an average value of 0.284 µm compared to using an irregular helix 36˚/38˚ with a value of 0.375 µm.
Other obstract
-
Item Type: | Thesis (Sarjana) |
---|---|
Identification Number: | 052107 |
Uncontrolled Keywords: | pocket milling, regenerative chatter, irregular helix, surface roughness--pocket milling, regenerative chatter, irregular helix, surface roughness. |
Subjects: | 600 Technology (Applied sciences) > 621 Applied physics > 621.8 Machine engineering |
Divisions: | Fakultas Teknik > Teknik Mesin |
Depositing User: | Unnamed user with email gaby |
Date Deposited: | 22 Oct 2021 07:11 |
Last Modified: | 22 Feb 2022 07:41 |
URI: | http://repository.ub.ac.id/id/eprint/185068 |
Text (DALAM MASA EMBARGO)
Roxi Jemy Wijaya.pdf Restricted to Registered users only until 31 December 2023. Download (19MB) | Request a copy |
Actions (login required)
View Item |