Perbandingan Penduga-Least Trimmed Squares Dan Penduga-M Regresi Robust Linier Berganda Pada Data Simulasi Yang Mengandung Berbagai Tingkatan Pencilan

Chairunissa, Abela (2019) Perbandingan Penduga-Least Trimmed Squares Dan Penduga-M Regresi Robust Linier Berganda Pada Data Simulasi Yang Mengandung Berbagai Tingkatan Pencilan. Sarjana thesis, Universitas Brawijaya.

Abstract

Regresi robust digunakan ketika asumsi normalitas sisaan tidak terpenuhi karena adanya pencilan. Penduga-M dan penduga-LTS adalah dua penduga dalam regresi robust. Penelitian ini menggunakan data simulasi pada regresi linier berganda yang dibangkitkan dengan enam tingkatan pencilan yang berbeda-beda, yaitu 0%, 1%, 2%, 3%, 4%, dan 5%. Dari sejumlah pencilan yang telah ditetapkan akan dikalikan suatu pembobot. Nilai koefisien regresi konstan, namun terbagi menjadi tiga kondisi, yaitu rendah, sedang, serta tinggi. Hasil penelitian ini menunjukkan bahwa penduga-M dan penduga-LTS menghasilkan penduga yang robust. Untuk kondisi pencilan pada variabel bebas, diperoleh bahwa penduga-M menghasilkan penduga yang lebih stabil, begitu pula untuk kondisi pencilan pada variabel terikat. Sedangkan untuk pencilan pada variabel bebas dan terikat, diperoleh bahwa penduga-LTS lebih stabil. Berdasarkan kriteria R2 dan MSE diperoleh bahwa penduga-LTS menghasilkan model yang lebih baik dibandingkan penduga-M. Berdasarkan nilai efisiensi relatif, pendugaan parameter dengan regresi robust penduga-M lebih efisien dibanding regresi robust penduga-LTS.

English Abstract

Robust regression is used when the assumption of normality of residuals is not met due to outliers. M-estimator and LTS-estimator are two estimators in robust regression. This study uses simulation data on multiple linear regression generated with six different levels of outliers, namely 0%, 1%, 2%, 3%, 4%, and 5%. From a fixed number of outliers, a weighting is multiplied. The value of the regression coefficient is constant, but it is divided into three conditions, namely low, medium and high. The results of this study indicate that the M-estimator and the LTS-estimator produce robust estimators. For outlier conditions on independent variables, it was found that the M-estimator produces more stable predictors, as well as for outlier conditions on the dependent variable. As for outliers on the independent and dependent variables, it was found that the LTS estimator was more stable. Based on the R2 and MSE criteria it was found that the LTS-estimator produced a better model than the M-estimator. Based on the value of relative efficiency, parameter estimation with M-estimator robust regression is more efficient than LTS-estimator robust regression.

Other obstract

-

Item Type: Thesis (Sarjana)
Identification Number: SKR/MIPA/2019/499/052001621
Uncontrolled Keywords: Pencilan, Penduga-LTS, Penduga-M, Regresi Robust. Outlier, LTS-Estimator, M-Estimator, Robust Regression
Subjects: 500 Natural sciences and mathematics > 511 General principles of mathematics > 511.8 Mathematical models (Mathematical simulation)
Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam > Statistika
Depositing User: Budi Wahyono Wahyono
Date Deposited: 21 Jul 2020 12:43
Last Modified: 26 Sep 2022 23:58
URI: http://repository.ub.ac.id/id/eprint/179495
[thumbnail of Abela Chairunissa.pdf] Text
Abela Chairunissa.pdf

Download (3MB)

Actions (login required)

View Item View Item