Modifikasi Skema Sentral Nessyahu-Tadmor Untuk Penyelesaian Numerik Hukum Konservasi Satu

Putri, Kharisma Surya (2019) Modifikasi Skema Sentral Nessyahu-Tadmor Untuk Penyelesaian Numerik Hukum Konservasi Satu. Sarjana thesis, Universitas Brawijaya.

Abstract

Pada Metode Volume Hingga, skema tipe sentral merupakan salah satu skema numerik yang dapat digunakan untuk menyelesaikan permasalahan persamaan diferensial parsial (PDP) hiperbolik. Adapun skema sentral yang telah dikembangkan adalah skema orde satu Lax- Friedrichs dan skema orde dua Nessyahu-Tadmor. Kedua skema ini memiliki kesederhanaan bebas penyelesaian permasalahan Riemann, namun memiliki disipasi numerik yang cukup besar ketika digunakan Δ

English Abstract

In Finite Volume Method, central type scheme is one of numerical scheme that can be used to solve hyperbolic partial differential equations (PDEs) problem. The first-order Lax–Friedrichs scheme and central Nessyahu–Tadmor scheme are family of central schemes that have been developed. They offer the simplicity of the Riemann-solver-free approach, but these family of central schemes suffer from excessive numerical viscosity when a sufficiently small time step is used. In this final project we discuss the construction of a new family of central schemes by modifying central Nessyahu–Tadmor (NT) scheme. The main idea behind the construction is the use of more precise information of the local propagation speed. The new scheme maintains the simplicity of the Riemann-solver-free approach, yet it gives much smaller numerical viscosity. Furthermore, they admit a particularly simple semi discrete formulation. In the end of this final project, we conclude with a series of numerical examples. In this final project, the presented schemes are applied to one dimensional hyperbolic conservation laws problem.

Other obstract

-

Item Type: Thesis (Sarjana)
Identification Number: SKR/MIPA/2019/466/052001630
Uncontrolled Keywords: Hukum konservasi, Metode Volume Hingga, skema sentral, skema NT, disipasi numerik. Conservation laws, Finite Volume Method, central schemes, NT scheme, numerical dissipation.
Subjects: 500 Natural sciences and mathematics > 513 Arithmetic > 513.6 Modular arithmetic
Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika
Depositing User: Budi Wahyono Wahyono
Date Deposited: 10 Aug 2020 08:01
Last Modified: 10 Aug 2020 08:01
URI: http://repository.ub.ac.id/id/eprint/179234
Full text not available from this repository.

Actions (login required)

View Item View Item