Analisis Dinamik Model Penyebaran Penyakit Toxoplasmosis pada Kucing dan Manusia dengan Jumlah Populasi Bervariasi

Aulani, Fitroh (2018) Analisis Dinamik Model Penyebaran Penyakit Toxoplasmosis pada Kucing dan Manusia dengan Jumlah Populasi Bervariasi. Sarjana thesis, Universitas Brawijaya.

Abstract

Pada skripsi ini dibahas model penyebaran penyakit Toxoplasmosis pada kucing dan manusia dengan jumlah populasi manusia bervariasi. Model tersebut dinyatakan dalam sistem otonomus nonlinear lima dimensi yang terdiri dari dua populasi, yaitu populasi manusia dan populasi kucing. Populasi manusia dibagi menjadi tiga subpopulasi, yaitu manusia rentan, manusia terinfeksi, dan manusia terkendali sedangkan populasi kucing dibagi menjadi dua subpopulasi, yaitu kucing rentan dan kucing terinfeksi. Sistem tersebut disederhanakan dalam bentuk sistem otonomus nonlinear tiga dimensi yang ekuivalen sehingga mudah dianalisis. Pada sistem tiga dimensi tersebut cukup dipandang tiga variabel yang menyatakan proporsi manusia rentan, proporsi manusia terinfeksi, dan proporsi kucing rentan. Berdasarkan hasil analisis diperoleh titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik dengan syarat eksistensinya. Kestabilan global titik kesetimbangan dianalisis menggunakan fungsi Lyapunov. Syarat eksistensi, kestabilan lokal, dan kestabilan global titik kesetimbangan bergantung pada bilangan reproduksi dasar (R0). Titik kesetimbangan bebas penyakit selalu eksis, sedangkan titik kesetimbangan endemik eksis jika R0 > 1. Jika R0 < 1 titik kesetimbangan bebas penyakit bersifat stabil asimtotik global, sebaliknya jika R0 > 1 titik kesetimbangan endemik bersifat stabil asimtotik global. Simulasi numerik yang dilakukan mendukung hasil analisis yang diperoleh.

English Abstract

This final project discusses a dynamical analysis on a model of toxoplasmosis disease in cat and human with varying population size. The model is described by a nonlinear autonomous system of five dimensions consist of two populations, human population and cat population. Human population is divided into three subpopulations, susceptible, infected, and controlled, while the cat population into two subpopulations, susceptible and infected. This system has simplified to the equivalent nonlinear autonomous system of three dimensions so that easy to analyzed. The system of three dimensions is observed on three variables consist of proportion of susceptible human, proportion of infected human, and proportion of susceptible cat. Analysis of the model shows that there are disease free equilibrium and endemic equilibrium points. Global stability have been analized by Lyapunov function. Existence, local stability and global stability of the equilibrium points depend on the basic reproduction number (R0). The disease free equilibrium point always exist, the endemic equilibrium point exist if R0 > 1. If R0 < 1 the disease free equilibrium point is global asymptotically stable, otherwise the endemic equilibrium point is global asymptotically stable. Numerical solution results agree with the theoretical results.

Item Type: Thesis (Sarjana)
Identification Number: SKR/MIPA/2018/67/051802762
Uncontrolled Keywords: penyakit Toxoplasmosis, populasi manusia bervariasi, kestabilan global, fungsi Lyapunov, angka reproduksi dasar. toxoplasmosis disease, varying human population, global stability, Lyapunov function, basic reproduction number.
Subjects: 500 Natural sciences and mathematics > 571 Physiology and related subjects > 571.9 Diseases > 571.95 Toxicology
Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika
Depositing User: Budi Wahyono Wahyono
Date Deposited: 03 Jun 2020 10:18
Last Modified: 18 Oct 2021 01:30
URI: http://repository.ub.ac.id/id/eprint/168601
[thumbnail of Fitroh Aulani (2).pdf]
Preview
Text
Fitroh Aulani (2).pdf - Published Version

Download (1MB) | Preview

Actions (login required)

View Item View Item