Kristanti, Karunia Theda (2018) Kontrol Optimal pada Model SVIR dengan Vaksinasi dan Pengobatan. Sarjana thesis, Universitas Brawijaya.
Abstract
Pada skripsi ini dibahas masalah kontrol optimal model SVIR (Susceptible-Vaccinated-Infected-Recovered) dengan vaksinasi dan pengobatan sebagai kontrol. Vaksinasi dan pengobatan dipilih sebagai kontrol karena mudah untuk diterapkan. Tujuan dari kontrol optimal adalah untuk meminimumkan jumlah subpopulasi terinfeksi serta meminimumkan biaya kontrol. Kontrol optimal diperoleh dengan menggunakan prinsip Pontryagin. Selanjutnya, masalah kontrol optimal diselesaikan secara numerik menggunakan metode Sweep Maju-Mundur. Terdapat tiga strategi yang dianalisis, yaitu: vaksinasi saja, pengobatan saja, serta kombinasi vaksinasi dan pengobatan. Simulasi numerik menunjukkan bahwa kombinasi vaksinasi dan pengobatan adalah kontrol optimal yang paling efektif dengan biaya yang paling minimum dalam upaya mengurangi jumlah subpopulasi terinfeksi.
English Abstract
In this final project, an optimal control problem of an SVIR (Susceptible-Vaccinated-Infected-Recovered) model with vaccination and treatment as controls is discussed. Vaccination and treatment are chosen as controls because they are easy to apply. The purpose of this optimal control is to minimize the number of infected subpopulation and to minimize the cost of the controls. Optimal control is obtained by using Pontryagin principle. Furthermore, the optimal control problem is solved numerically using Forward-Backward Sweep method. There are three strategies of proposed control that are analyzed: vaccination only, treatment only, and both vaccination and treatment. Numerical simulations show that the combination of vaccination and treatment is the most effective optimal control and less expensive in reducing infected subpopulation.
Item Type: | Thesis (Sarjana) |
---|---|
Identification Number: | SKR/MIPA/2018/60/051802755 |
Uncontrolled Keywords: | Kontrol optimal, model SVIR, prinsip Pontryagin, metode Sweep Maju-Mundur-Optimal control, SVIR model, Pontryagin principle, Forward-Backward Sweep method. |
Subjects: | 500 Natural sciences and mathematics > 519 Probabilities and applied mathematics > 519.5 Statistical mathematics > 519.53 Descriptive statistics, multivariate analysis, analysis of variance and covariance > 519.536 Regression analysis |
Divisions: | Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika |
Depositing User: | soegeng Moelyono |
Date Deposited: | 13 Jun 2020 01:31 |
Last Modified: | 16 Nov 2023 07:22 |
URI: | http://repository.ub.ac.id/id/eprint/168543 |
Text
Karunia Theda Kristanti.pdf Download (2MB) |
Actions (login required)
View Item |