Penerapanmeshless Method Of Lines Pada Persamaan Klein-Gordon.

Firdaus, Ihwan (2015) Penerapanmeshless Method Of Lines Pada Persamaan Klein-Gordon. Sarjana thesis, Universitas Brawijaya.

Abstract

PadaskripsiinidibahasMeshless Method of Lines (MMOL) untukmenyelesaikanpersamaan Klein-Gordon. Padametodeini, turunanspasialpersamaandiferensialparsialdidekatiolehkombinasi linear fungsi basis radialmultiquadric, sehinggapersamaandiferensialparsialdireduksimenjadisistempersamaandiferensialbiasaordesatu.SelanjutnyasolusisistemtersebutdiperolehdenganmenerapkanmetodeRunge-Kuttaordeempat. Simulasinumerikdilakukanuntukmemeriksakeakuratanmetodedanfaktor-faktor yang berpengaruhpadaakurasiMMOL. Berdasarkansimulasinumerik yang dilakukan,ditunjukkanfaktor-faktor yang berpengaruhpadaMMOL, yaitunilaishape parameter, jumlahnode, langkahwaktu, danjenistitikkolokasi.

English Abstract

In this final project, we discuss the Meshless Method of Lines (MMOL) to solve the Klein-Gordon equations. In this method, the partial differential equation is spatially approximated by linear combination ofmultiquadric radial basis function and therefore it is reduced to a system of ordinary differential equations. Solutions of that system are obtained by applying the fourth order Runge-Kutta method. Numerical simulations are performed to observe the accuracy of this method and to know some factors which influence the accuracy of MMOL. Based on numerical simulations,it is shown that the accuracy of MMOL depends on the shape parameter, the number of node, time step, and the type of collocation points

Item Type: Thesis (Sarjana)
Identification Number: SKR/MIPA/2015/44/051501515
Subjects: 500 Natural sciences and mathematics > 510 Mathematics
Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika
Depositing User: Samsul Arifin
Date Deposited: 24 Feb 2015 16:00
Last Modified: 24 Feb 2015 16:00
URI: http://repository.ub.ac.id/id/eprint/154494
Full text not available from this repository.

Actions (login required)

View Item View Item