Firdaus, Ihwan (2015) Penerapanmeshless Method Of Lines Pada Persamaan Klein-Gordon. Sarjana thesis, Universitas Brawijaya.
Abstract
PadaskripsiinidibahasMeshless Method of Lines (MMOL) untukmenyelesaikanpersamaan Klein-Gordon. Padametodeini, turunanspasialpersamaandiferensialparsialdidekatiolehkombinasi linear fungsi basis radialmultiquadric, sehinggapersamaandiferensialparsialdireduksimenjadisistempersamaandiferensialbiasaordesatu.SelanjutnyasolusisistemtersebutdiperolehdenganmenerapkanmetodeRunge-Kuttaordeempat. Simulasinumerikdilakukanuntukmemeriksakeakuratanmetodedanfaktor-faktor yang berpengaruhpadaakurasiMMOL. Berdasarkansimulasinumerik yang dilakukan,ditunjukkanfaktor-faktor yang berpengaruhpadaMMOL, yaitunilaishape parameter, jumlahnode, langkahwaktu, danjenistitikkolokasi.
English Abstract
In this final project, we discuss the Meshless Method of Lines (MMOL) to solve the Klein-Gordon equations. In this method, the partial differential equation is spatially approximated by linear combination ofmultiquadric radial basis function and therefore it is reduced to a system of ordinary differential equations. Solutions of that system are obtained by applying the fourth order Runge-Kutta method. Numerical simulations are performed to observe the accuracy of this method and to know some factors which influence the accuracy of MMOL. Based on numerical simulations,it is shown that the accuracy of MMOL depends on the shape parameter, the number of node, time step, and the type of collocation points
Item Type: | Thesis (Sarjana) |
---|---|
Identification Number: | SKR/MIPA/2015/44/051501515 |
Subjects: | 500 Natural sciences and mathematics > 510 Mathematics |
Divisions: | Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika |
Depositing User: | Samsul Arifin |
Date Deposited: | 24 Feb 2015 16:00 |
Last Modified: | 24 Feb 2015 16:00 |
URI: | http://repository.ub.ac.id/id/eprint/154494 |
Actions (login required)
View Item |