Nisa, SitiKhairun (2013) Quasi-Ideal Dalam Semigrup Ternari Terurut. Sarjana thesis, Universitas Brawijaya.
Abstract
Dalam skripsi ini dibahas tentang quasi-ideal dalam semigrup ternari terurut. Skripsi ini juga membahas tentang hubungan quasi-ideal minimal dengan quasi-simple dalam semigrup ternari terurut. Suatu himpunan bagian tak kosong Q dari semigrup ternari terurut S disebut quasi-ideal dari S jika Q memenuhi kondisi [SSQ]∩[SQS]∩[QSS]⊆Q, [SSQ]∩[SSQSS]∩[QSS]⊆Q, dan jika x∈Q dan y∈S sedemikian sehingga y≤x maka y∈Q. Q juga disebut quasi-ideal dari S jika dan hanya jika Q=L∩M∩R. Q adalah quasi-ideal minimal jika dan hanya jika Q adalah quasi-simple.
English Abstract
This script will be discussed about the properties and theorem of quasi-ideal in ordered ternary semigroup. Also, this script will be discussed about the relation between minimal quasi with quasi-simple in ordered ternary semigroup. A nonempty subset Q of a ordered ternary semigroup S is called a quasi-ideal of S if following conditions holds [SSQ]∩[SQS]∩[QSS]⊆Q, [SSQ]∩[SSQSS]∩[QSS]⊆Q, and if x∈Q and y∈S such that y≤x then y∈Q. Q also called quasi-ideal of S if and only if Q=L∩M∩R. Q is a minimal quasi-ideal if and only if Q is quasi-simple.
Item Type: | Thesis (Sarjana) |
---|---|
Identification Number: | SKR/MIPA/2013/157/051306330 |
Subjects: | 500 Natural sciences and mathematics > 510 Mathematics |
Divisions: | Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika |
Depositing User: | Hasbi |
Date Deposited: | 03 Sep 2013 10:30 |
Last Modified: | 25 Oct 2021 01:57 |
URI: | http://repository.ub.ac.id/id/eprint/153416 |
![]() |
Text
SITI_KHAIRUN_NISA_SKRIPSI.pdf Download (2MB) |
![]() |
Other (Thumbnails conversion from text to thumbnail_lightbox)
lightbox.jpg Download (28kB) |
![]() |
Other (Thumbnails conversion from text to thumbnail_preview)
preview.jpg Download (12kB) |
![]() |
Other (Thumbnails conversion from text to thumbnail_medium)
medium.jpg Download (4kB) |
![]() |
Other (Thumbnails conversion from text to thumbnail_small)
small.jpg Download (1kB) |
Actions (login required)
![]() |
View Item |