Penerapan Fuzzy K–Nearest Neighbor (Fk-Nn) Untuk Diagnosa Penderita Liver Berdasarkan Indian Liver Patient Dataset (Ilpd)

Wijaya, HardikaTeguh (2015) Penerapan Fuzzy K–Nearest Neighbor (Fk-Nn) Untuk Diagnosa Penderita Liver Berdasarkan Indian Liver Patient Dataset (Ilpd). Sarjana thesis, Universitas Brawijaya.

Abstract

Penelitian ini membahas penerapan algoritma FKNN (Fuzzy K-Nearest Neighbor) untuk diagnosa penderita liver. Sistem yang dibangun menggunakan data pasien liver yang diambil dari archive.ics.uci.edu/ ml/ datasets/ ILPD+ %28Indian+ Liver+ Patient+Dataset%29. Algoritma FKNN adalah algoritma yang memberikan nilai keanggotaan kelas pada vektor sampel dan bukan menempatkan vektor pada kelas tertentu. Data latih yang digunakan adalah data pasien liver di india pada tahun 2012. Hasil dari pengujian ini untuk mengetahui pengaruh data latih, nilai k, sebaran kelas, serta mengetahui tingkat akurasi dari sistem ini. Dari hasil penelitian didapatkan akurasi sebesar 76% terhadap data latih, sedangkan terhadap nilai k mulai dari k=16 akurasi sebesar 74%. Dapat disimpulkan bahwa penelitian menggunakan algoritma FKNN (Fuzzy K-Nearest Neighbor) memiliki kinerja yang baik dalam diagnosa penderita liver.

English Abstract

This study discusses the application of FKNN algorithm (Fuzzy K - Nearest Neighbor) for the diagnosis of liver disease. The system is built using the data taken from the patients liver archive.ics.uci.edu/ ml/ datasets/ ILPD+ %28Indian+ Liver+Patient+Dataset%29. FKNN algorithm is an algorithm that gives the value of class membership in the sample vector and not putting the vector in a particular class. Training data used is data liver patients in India in 2012. The results of these tests to determine the effect of training data, the value of k, the distribution of the class, and to know the accuracy of the system. From the results, the accuracy of 76% of the training data, while the value k start at k = 16 accuracy of 74%. It can be concluded that research using FKNN algorithm (Fuzzy K - Nearest Neighbor) has a good performance in the diagnosis of liver disease.

Item Type: Thesis (Sarjana)
Identification Number: SKR/FTIK/2015/24/051500772
Subjects: 000 Computer science, information and general works > 005 Computer programming, programs, data
Divisions: Fakultas Ilmu Komputer > Teknik Informatika
Depositing User: Budi Wahyono Wahyono
Date Deposited: 06 Feb 2015 07:43
Last Modified: 20 Oct 2021 14:07
URI: http://repository.ub.ac.id/id/eprint/146286
[thumbnail of Cover.pdf]
Preview
Text
Cover.pdf

Download (1MB) | Preview
[thumbnail of DAFTAR_ISI.pdf]
Preview
Text
DAFTAR_ISI.pdf

Download (1MB) | Preview
[thumbnail of BAB_I_PENDAHULUAN.pdf]
Preview
Text
BAB_I_PENDAHULUAN.pdf

Download (1MB) | Preview
[thumbnail of Daftar_pustaka_YANG_SUDAH_DIURUTKAN.pdf]
Preview
Text
Daftar_pustaka_YANG_SUDAH_DIURUTKAN.pdf

Download (1MB) | Preview
[thumbnail of Bab_II_tinjauan_pustaka.pdf]
Preview
Text
Bab_II_tinjauan_pustaka.pdf

Download (1MB) | Preview
[thumbnail of BAB_III_Metodologi_Penelitian_dan_Perancangan.pdf]
Preview
Text
BAB_III_Metodologi_Penelitian_dan_Perancangan.pdf

Download (2MB) | Preview
[thumbnail of BAB_IV_Implementasi_dan_Pembahasan.pdf]
Preview
Text
BAB_IV_Implementasi_dan_Pembahasan.pdf

Download (1MB) | Preview
[thumbnail of BAB_V_Pengujian_dan_Analisis_BAB_VI_Penutup.pdf]
Preview
Text
BAB_V_Pengujian_dan_Analisis_BAB_VI_Penutup.pdf

Download (1MB) | Preview

Actions (login required)

View Item View Item