CHAPTER5

TH ERESULT ANDDATA ANALYSIS

In this research, the observation of observing the extract effect of *Thymus vulgaris* on IL-12 in blood used ELISA, and number of bacterial colonies in liver male mice model infected with. *Salmonella Typhimuryum*

This research used 5 groups with 4 mice in each group, with different dose of Thymus vulgaris in D1:250mg/kgB.wt,D2:500mg/kgB.wt,D 3:750mg/kgB.wt of micet here were also positive control(+) *Salmonella Typhimuryum* negative control(-).

5.1. The effect of *Thymus vulgaris* extract on the level of blood IL12

Groups		Samp	Mean ± Std. dev.		
	1	2	3	4	
C-	25.81	1.08	26.06	14.36	16.83±11.83
C+	5.23	4.94	12.32	11.16	8.41±3.88
D1	23.28	25.27	22.99	26.10	24.41±1.52
D2	55.56	39.34	40.91	36.14	42.99±8.61
D3	38.76	45.06	39.92	42.41	41.54±2.80

Table 5.1 The results of the study are as shown inas follows:

C-:negative control ,C+:positive control,D1:Treatment group1,D 2:treatment group2,D

3:treatment group3

Based on the table above shows that the difference in dose of *Thymus vulgaris* extract influence or different effects on IL-12. Based on the table above shows that the difference in dose of *Thymus vulgaris* extract influence or different effects on IL-12. The existence of the effect of *Thymus vulgaris* extract is starting to look where the IL-12 in mice induced *Salmonella Typhimurium* bacteria becomes highest, after the treatment was given in the form of *Thymus vulgaris* extract started at a dose of 250 mg/kgETV (D1), compared with IL-12 in the positive control group. Then the IL-12 more increased when given higher doses of 500 mg/kgETV (D2), until the higher doses of 750 mg/kgETV (D3). Thus, based on the assessment descriptively according to the mean IL-12 is, it can be said that the administration of treatment in the form of *Thymus vulgaris* extract at a dose of 250 mg/kgETV (D1), 500 mg/kgETV (D2), and 750 mg/kgETV (D3) showed different influences, where the higher dose of *Thymus vulgaris* extract provided was further increase the IL-12.

As for the overall differences in IL-12 in each treatment above can also be depicted in graphic form as follows.

Figure 5. 1 Graph of IL-12 at each dose of Thymus vulgaris extract

Based on test data normality test using the Kolmogorov - Smirnov test , IL-12 data has p-value of 0.200 (p > 0.05), so it can be concluded that the data IL-12 has a normal distribution. Thus it can be tested by ANOVA, because the assumption of normality of data distribution have been appropriate

5.2 The effect of *Thymus vulgaris* extract on number of bacterial colonies in liver of male mice model infected with.*Salmonella Typhimuryum*

Then the results of the study are as shown in Table as follows

Groups		Mean ± Std. dev.			
	1	2	3	4	
C-	0	4	0	0	1.0±2.0
C+	223	137	142	238	185.0±52.9
D1	115	32	0	78	56.25±50.6
D2	0	0	0	0	0±0
D3	0	0	0	0	0±0

Table 5.2 Average of THE COLONY OF SALMONELLA Typhimuryum

Based on the table above shows that the difference in dose of *Thymus vulgaris* extract influence or different effects on the colony of *Salmonella Typhimurium*. Based on the table above shows that the difference in dose of *Thymus vulgaris* extract influence or different effects on the colony of *Salmonella Typhimurium*. The existence of the effect of *Thymus vulgaris* extract is starting to look where the colony of

Salmonella typhimurium in mice induced *Salmonella Typhimurium* bacteria in the group D1 becomes lowest than positive control group, after the treatment was given in the form of *Thymus vulgaris* extract started at a dose of 250 mg/ml. Then the colony of *Salmonella Typhimurium* becomes zero when given higher doses of 500 mg/ml (D2), and decrease again when given higher doses of 750 mg/ml (D3).

As for the overall differences in the colony of *Salmonella Typhimurium* in each treatment above can also be depicted in graphic form as follows.

Figure 5.2 Graph of the colony of *Salmonella* Typhimurium at each dose *Thymus vulgaris* extract

p value 0.005 that is lower than alpha 0.05, so rejected the statistical hypothesis which states there is no relationship between the dose of *Thymus vulgaris* extract with the colony of *Salmonella Typhimurium*. In other words, it shows there's significant relationship between the dose of *Thymus vulgaris* extract with the colony of *Salmonella Typhimurium*, where the higher of the dose *Thymus vulgaris* extract give The colony of *Salmonella Typhimurium* of negative control group, D1 (250 mg/ml), D2 (500 mg/ml), and D3 (750 mg/ml) have different significantly with the colony of *Salmonella Typhimurium* of negative control group, D1 (250 mg/ml), D2 (500 mg/ml), and D3 (750 mg/ml) have different significantly with the colony of *Salmonella Typhimurium* of negative control group, D1 (250 mg/ml), D2 (500 mg/ml), and D3 (750 mg/ml) did not differ significantly for one each other (p>0.05).

Then the test results comparing multiple (Tukey 's Test) in each treatment showed that the colony of *Salmonella Typhimurium* in the positive control group differ significantly with the colony of *Salmonella Typhimurium* in negative control group, D1 (250 mg/ml), D2 (500 mg/ml), and D3 (750 mg/ml) (p<0.05).

n, than the colony of Salmonella Typhimurium wasl be decrease. And vice vers

the effect of *Thymus vulgaris* extract to the average the colony of *Salmonella Typhimurium* of research results by using One way ANOVA, it is necessary to the

fulfillment of some of the assumptions of data, where's data the colony of *Salmonella Typhimurium* must have a normal distribution and has a homogeneous variance.

Figure 5.3: *Salmonella typhimurium* colonies:

Image1: Positive control (there is over growth of bacteria)

Image2: Negativecontrol (There is no growth of bacteria) Image3:Treatmentgroup1(there is no growth of bacteria) Image4:Treatmentgroup2(there is no growth of bacteria) Image5:Treatmentgroup3(there is no growth of bacteria)