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CHAPTER 2 

STUDY LITERACY 

 

2.1 WPT  

2.1.1 Biot-Savart Law 

EM phenomenon has been studied for long time ago. It is a nature when electron 

flowing in a conductor there is magnetic field around the conductor. Figure 2. 1 shows 

magnetic field in the point q. Magnetic Field B is a vector at point q with radius r. This 

magnetic field magnitude is the same in around circle. Direction of magnetic field follows 

Fleming’s Right-Hand Rule. 

 

Figure 2. 1  Magnetic field around a current-carrying conductor 

Biot and Savart did experiments about the force that produced by an electric current 

that surrounded by magnet. They concluded their experimental results in a mathematical 

expression. This expression gives the value of the magnetic field in space in respect with 

the current that produces the field. The formula is: 

3
4

i l q
H

q

 
    (2-1) 

Where 

H  : slightly-different of magnetic field vector (A/m) 

i   : instantaneous current (A) 

l  : slightly-different of coil length (m) 
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q   : vector of examined point (m) 

q   : magnitude of examined point (m) 

H-Field is measured in A/m, while B field is measured tesla T or W/m2. Connection 

between those magnetic fields explained in Maxwell’s Equation as: 

B H  (2-2) 

Where  : magnetic constant (4π 10-7) 

Applying Equation (2-1) to Equation (2-2), the equation becomes: 

3
4

i l q
B

q





 
    (2-3) 

2.1.2 Magnetic Field Vector in Circular Current Carrying Conductor 

Current flowing in circular conductor generates magnetic field in the surrounding. 

Since current flowing is same in any circle point, let us consider magnetic field at point P 

to point Q as shown in Figure 2. 2. Slightly change in coil length affects slightly change in 

magnetic field at Q. Plane axes in circular conductor are y-axis as radius r and x-axis as 

come in paper. While Z-axis is perpendicular with plane axes. 

 

Figure 2. 2  Magnetic field on a circular current-carrying conductor 

We derived the vector of conductor length and vector of magnetic point in space. 

Circular conductor has radius r1 and angle θ. 

1( sin ,cos ,0)l r       (2-4) 

1 1( cos , sin , )q PQ x r r z      (2-5) 
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   
 
  

  (2-6) 

Cosine function is even function, else sine function is odd function. The integral from 

0 to 2π separated into two functions which has integral from 0 to π. Since two odd 

functions cancelled each other, magnetic field in y-axis is zero. Else, even function become 

twice of its own function. 

2 2 2 3 21 1
1 1

0
cos ( 2 cos )

2
x

i r
B x z r xr d


  



     (2-7) 

0yB   (2-8) 
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1 1 1
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z

i r
B r x x z r xr d


  



      (2-9) 

2.1.3 Magnetic Field in the Z-Axes 

Transmitter coil are separated with receiver coil in distance z as shown in Figure 2. 3. 

Magnetic field in center point of one coil to another coil  is decreasing as z increasing. 

Considering coil 2 has slightly increase radius r and has different Δr, magnetic field is 

slightly change too. 

 

Figure 2. 3  Magnetic field of two coils in the z-axis 

WPT has two coils located in the same axis. A coil itself has plane axes as an area of 

circle. Magnetic density defined as the integrals of magnetic field over the circle area in a 

coil. Magnetic field in the z-axis in Equation (2-9) is substituted in Equation (2-10). The 

magnetic flux φ, which is integral with the area of differential circle, is: 

B dS    (2-10) 
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2 2 2 3 21 1
1 1 1

0
( cos )( 2 cos ) 2

2

i r
r x x z r xr d r r


    



 
        

 
  (2-11) 

2 2 2 2 3 2

1 1 1 1 1
0 0

( cos )( 2 cos )
r

i r r r r r z r rr d dr


           (2-12) 

To get more simply magnetic flux φ, the integral parameters are divided by radius of 

transmitter coil r1. If WPT has two coils with same diameter, then the ratio q is equal to 1. 

2

1 1 1

, ,
rr z

r z q
r r r

    (2-13) 

2 2 3 2

1 1
0 0

(1 cos )( 1 2 cos )
q

i r r r r z r d dr


           (2-14) 

Constant number which has no θ and r̃ components, are computed later to give a 

simple integral equation of magnetic flux φ. The 𝜓 is the integral function that depend on q 

and z̃ values. 

2 2 3 2

( , ) 0 0
(1 cos )( 1 2 cos )

q

q z
r r r z r d dr



          (2-15) 

1 1 ( , )q z
i r    (2-16) 

2.1.4 Magnetic Field Generated by N-Turns of Two Coils 

Two coils are transmitter and receiver. One turn can produce one magnetic flux φ. 

Adding more turns on the coil, then the magnetic flux φ multiplies as the number of turns. 

Two coils in one pair also multiplies the magnetic flux. 

1 1 1 2 ( , )q z
i rn n    (2-17) 

2.1.5 Inductive Voltage in a Pair of Coils 

Faraday observed generated voltage under magnetic field in coil edges known as 

induced voltage. In a pair of two coils where two currents are flowing at same directions, 

induced voltages are generated with polarity follows the direction of currents as shown in 

Fig 2. 4.  
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Figure 2. 4  Inductive voltage in a pair of two coils 

Faraday’s Law has differential form where C is the closed path encircling cross-

sectional area S. Induced voltage via the time variation of a magnetic field has the potential 

to do work in an electric field. In this case, Faraday’s Law expressed in terms of the 

induced electric field as: 

C S

d
E dr B dS

dt

 
    

 
   (2-18) 

From that integral form, the potential of two points is the reversal of closed loop of 

electric field. Potential in the two point of one coil from the closed path of electric field is: 

L

C

v E dr    (2-19) 

By applying Faraday’s Law in Equation (2-18) to the edge potential of one coil, the 

induced voltage is equal to magnetic flux φ in time rate. The equation is: 

L

C S

d d
v B dS

dt dt

 
     

 
   (2-20) 

The flux density equation is substituted from Biot-Savart in Equation (2-16). First, the 

voltage induced by current in same coil. The current flowing in coil 1 influence the amount 

of coil 1 voltage. The density flux generated by current in coil 1 induces it self. In other 

word, the distance z is 0. So do the coil 2 has the same condition as coil 1. The self-

induced voltages v11 and v22 become: 

211 1
11 1 1 (1,0)

d di
v rn

dt dt


    (2-21) 
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222 2
22 2 2 (1,0)

d di
v r n

dt dt


    (2-22) 

Another induced voltage is coming from the amount of current in different coil. The 

current flowing in coil 2 induces the coil 1 with a finite distance z. The density flux is 

different from before. It does not apply z=0 anymore. The induced voltage in coil 1 

because of the current flowing in coil 2, or the opposites, is: 

1

2 2

12 2
12 2 1 2

( , )
r z

r r

d di
v r n n

dt dt


    (2-23) 

2

1 1

21 1
21 1 2 1

( , )
r z

r r

d di
v r n n

dt dt


    (2-24) 

2.1.6 Self and Mutual Inductance in a Pair of Coils 

Turning a coils by hand might be difficult to arrange. Irregular turns might appear. 

This condition should make approach. Horizontally and vertically turns is applied as 

shown Fig 2. 5. Brown colored means the very first turn. Red colored is next horizontal 

turns notated by n. Blue colored is next vertical turns notated by m. Every horizontal turn 

adds distance by wire diameter between a pair of coil. While every vertical turn adds the 

radius between them. 

Faraday’s Law describes the amount of self-induction emf which is equal to the time 

rate of change of the magnetic flux. The magnetic flux is proportional to the magnetic field 

due to the source current, which in turn is proportional to the source current in the circuit. 

Therefore, a self-induced emf is always proportional to the time rate of change of the 

source current. 

 

Figure 2. 5  Inductive voltage with n-turns coils 
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The magnetic flux through the area enclosed by a circuit varies with time because of 

time-varying currents in nearby circuits. This condition induces an emf through a process 

known as mutual induction, so called because it depends on the interaction of two circuits. 

The induced voltage in coil 1 is coming from self-induction and another induction. In 

other words, the induced voltage of coil 1 vL1 is the sum of self-induction voltage v11 and 

another coil induction v12. Coil 2 also has its self and another induction voltage. These self-

inductions became constant parameters as self-inductors L1 and L2. Those two other 

inductions also constant parameters, they are mutual inductances M12 and M21. 

1 11 12

2 21 22

L

L

v v v

v v v

 

 
 

1 2
1 1 12L

di di
v L M

dt dt
   (2-25) 

1 2
2 21 2L

di di
v M L

dt dt
   (2-26) 

Several turns on a coil increase amount of magnetic flux. The common way to make 

turn are horizontally n and vertically m. nm notation means the ratio of q or z in two pair of 

nm turns. Distance between two coils affects the value of magnetic flux. Far distance 

makes magnetic flux is slightly different in every pair of two coils. That means in far 

distance, magnetic flux multiply with the number of turns. In a short distance, every 

magnetic flux generated by a pair is different from another pair. 

1 1 1
11 1 (1,0) 1 ( ,0) 1 ( ,0)q nm

di di di
v r r r

dt dt dt
            

2 1 2
12 2 2 2 ( , )(1, ) ( , ) nm nmz q z

di di di
v r r r

dt dt dt
            

From Equation (2-13), the ratio is changed. Now flux parameters are over r2. The flux 

parameter is change with prime notation. 

𝑟̃′ =
𝑟

𝑟2
, 𝑧̃′ =

𝑧

𝑟2
, 𝑞′ =

𝑟1

𝑟2
  

1 1 (1,0) 1 ( ,0) 1 ( ,0)q nmL r r r           (2-27) 

' ' '2 2 (1,0) 2 2( ,0) ( ,0)q n m
L r r r           (2-28) 

12 2 2 2 ( , )(1, ) ( , ) nm nmz q z
M r r r           (2-29) 

' ' ' ' ' ''12 2 2 2 ( , )(1, ) ( , ) n m n mz q z
M r r r           (2-30) 
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In mutual induction, the emf induced in one coil is always proportional to the rate at 

which the current in the other coil is changing. Although the proportionality constants M12 

and M21 appear to have different values, it can be shown that they are equal. 

2.1.7 Ohm’s Law in WPT Circuit 

Employing Faraday’s Law of induction, the polarities of inductor and the current 

directions is a fixed set as shown in Fig 2. 6. Changing current direction in revers makes 

polarity change. Capacitor voltage appear as parasite as well as internal resistance in a coil. 

 

Figure 2. 6  WPT’s circuit diagram 

One circuit has its own equation derived from Ohm’s Law and Kirchoff’s Law. WPT 

consists of two different circuits. Transmitter circuit consists of power supply u, power 

supply inner resistance R1, coil resistance R2, self-inductance L1, mutual inductance M12, 

parasitic capacitance C1. This circuit equation is:  

1 2
1 2 1 1 1 1( ) C

di di
u R R i v L M

dt dt
      (2-31) 

Receiver circuit consists of load R4, coil resistance R3, self-inductance L2, mutual 

inductance M21, parasitic capacitance C2. This circuit equation is: 

1 2
3 4 2 2 2 20 ( ) C

di di
R R i v M L

dt dt
      (2-32) 

Both transmitter and receiver circuits has parasitic capacitor on it. Capacitor hold the 

electric energy from a electric charge flowing through it and release in a voltage form. The 

value of voltage depend on the integral of current in time respect. From Ohm’s Law, the 

equations of capacitor voltages are: 

1 1

1

1
Cv i dt

C
   (2-33) 
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2 2

2

1
Cv i dt

C
   (2-34) 

Those four equations Equation (2-31~2-34) contain the integral differential form with 

time. They need to be solved into differential of i1, i2, vC1, and vC2. These four parameters 

are important to continue analyzing coil circuits. 

2.1.8 State Space Equation 

As we know, when we apply Kirchoff’s Current Law (KCL) or Kirchoff’s Voltage 

Law (KVL) in networks that contain energy−storing devices, we obtain 

integro−differential equations. Also, when a network contains just one such device 

(capacitor or inductor), it is said to be a first−order circuit. If it contains two such devices, 

it is said to be second−order circuit, and so on. Thus, a first order linear, time−invariant 

circuit can be described by a differential equation of the form [Karris, 2008]: 

1 0 ( ) ( )
dy

a a y t x t
dt

   (2-35) 

A second order circuit can be described by a second−order differential equation of the 

same form as Equation (2-35) where the highest order is a second derivative. An nth−order 

differential equation can be resolved to first−order simultaneous differential equations with 

a set of auxiliary variables called state variables. The resulting first−order differential 

equations are called state−space equations, or simply state equations. These equations can 

be obtained either from the nth−order differential equation, or directly from the network, 

provided that the state variables are chosen appropriately. The state variable method offers 

the advantage that it can also be used with non−linear and time−varying devices. However, 

our discussion will be limited to linear, time−invariant circuits. 

To get the equations of the circuit, Kirchoff’s Current Law (KCL) and Kirchoff’s 

Voltage Law (KVL) are used. The equations contains integral and/or differential because 

of L-C components. When there are nth-order differential equations, state-space equations 

can be obtained. The state-space equation from the circuit is: 

x Ax Bu   (2-36) 

Where 
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  

 

2.1.9 Steady State Solution 

If a circuit contains only one energy−storing device, the state equations are written as 

Equation (2-36) with output: 

y Cx Du   (2-37) 

Where A, B, C, D are constants matrices. Also, for two or more simultaneous 

differential equations, and are 2x2 or higher order matrices, and are column vectors with 

two or more rows. A pair of state equation Equation (2-36) and (2-37) with initial 

conditions: 

0 0( )x t x  (2-38) 

The solution of those pair state equation is: 

0

0

( ) ( ) ( )

0( ) ( )
t

A t t A t A

t
x t e x e e Bu d       (2-39) 

Using Equation (2-38) and substituting u(τ) = sin(ωt)  to Equation (2-39), The 

Steady State Solution of Equation (2-36) is: 

2 2 1( ) ( cos( ) sin( ))( )sx t I t A t I A B         (2-40) 

2.1.10 Transfer Function 

The state transition matrix can be computed from the Inverse Laplace transform. The 

transfer function can be found from the coefficient matrices of the state equations. The 

state space equation in Equation (2-36) taking Laplace transform on both sides: 

( ) (0) ( ) ( )sX s x AX s BU s     
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or 

( ) ( ) (0) ( )sI A X s x BU s    (2-41) 

Multiplying both sides of Equation (41) with (sI − A)−1, the equation become: 

1 1( ) ( ) (0) ( ) ( )X s sI A x sI A BU s      (2-42) 

Comparing Equation (42) with: 

0

( ) ( ) ( )

0( ) ( )
t

A t A t A

t
x t e x e e Bu d      (2-43) 

The right side of Equation (2-42) is the Laplace transform of Equation (2-43). The 

relation between state transition matrix 𝑒𝐴(𝑡) from the Inverse Laplace of (sI − A)−1 is: 

𝑒𝐴(𝑡) = ℒ−1{(sI − A)−1} (2-44) 

Next, Consider output state equation is Equation (2-37): 

y Cx Du    

Taking the Laplace of both sides of Equation (2-37), the equation becomes: 

( ) ( ) ( )Y s CX s DU s   (2-45) 

Substituting Equation (42) to Equation (2-45), the equation becomes: 

1 1( ) ( ) (0) ( ) ( )Y s C sI A x C sI A B D U s         (2-46) 

If the initial condition is 0, Equation (2-46) reduces to 

1( ) ( ) ( )Y s C sI A B D U s      (2-47) 

In Equation (2-47), U(s) is the Laplace transform of the input u(t); then, division of 

both sides by U(s) yields the transfer function: 

1( )
( ) ( ) ( )

( )

Y s
G s C sI A B D U s

U s

       (2-48) 

2.1.11 Bode Plot Diagram 

A Bode diagram consists of two graphs: One is a plot of the logarithm of the 

magnitude of a sinusoidal transfer function; the other is a plot of the phase angle; both are 

plotted against the frequency on a logarithmic scale. 

The standard representation of the logarithmic magnitude of G(jω) is 20 log |G(jω)|, 

where the base of the logarithm is 10.The unit used in this representation of the magnitude 

is the decibel, usually abbreviated dB. In the logarithmic representation, the curves are 

drawn on semi log paper, using the log scale for frequency and the linear stale for either 

magnitude (but in decibels) or phase angle (in degrees). (The frequency range of interest 

determines the number of logarithmic cycles required on the abscissa.) 
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The main advantage of using the Bode diagram is that multiplication of magnitudes 

can be converted into addition. Furthermore, a simple method for sketching an 

approximate log-magnitude curve is available. It is based on asymptotic approximations. 

Such approximation by straight-line asymptotes is sufficient if only rough information on 

the frequency-response characteristics is needed. 

The steady-state output of a transfer function system can be obtained directly from the 

sinusoidal transfer function, that is, the transfer function in which s is replaced by jω, 

where ω is frequency. 

 

Figure 2. 7  Block diagram of a system 

Consider the stable, linear time-invariant system shown in Figure 2. 7. The input and 

output of the system, whose transfer function is G(s), are denoted by x(t) and y(t), 

respectively. If the input x(t) is a sinusoidal signal, the steady-state output will also be a 

sinusoidal signal of the same frequency, but with possibly different magnitude and phase 

angle. Let us assume that the input signal is given by: 

( ) sin( )x t X t  (2-49) 

Suppose The Laplace-transformed output Y(s) is 

1 2

( ) ( )
( ) ( )

( ) ( )( ) ( )n

G s p s
Y s X s

X s s s s s s s
 

  
 (2-50) 

where X(s) is the Laplace transform of the input x(t). 

After waiting until steady-state conditions are reached, the frequency response can be 

calculated by replacing s in the transfer function by jω. It will also be shown that the 

steady-state response can be given by 

( ) jG j Me M     (2-51) 

where M is the amplitude ratio of the output and input sinusoids and α is the phase 

shift between the input sinusoid and the output sinusoid. In the frequency-response test. 

the input frequency ω is varied until the entire frequency range of interest is covered. 

2.1.12 Average Power Input and Output 

For a one-port, let the port voltage and current pair be specified as v(t) and i(t). Both 

of them has angular frequency with frequency f and period T. 
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2
2 f

T


    (2-52) 

For a periodic voltage and current pair, the average power dissipation over a period T 

is defined as: 

0

1
( ) ( )

T

avP v t i t dt
T

   (2-53) 

With the given WPT circuit as shown in Figure 6, the average power input P1 and 

power output P4, are: 

1 1 1 1
0

1
( )( ( ) ( ))

T

s sP i t u t R i t dt
T

   (2-54) 

2

4 4 2
0

1
( )

T

sP R i t dt
T

   (2-55) 

2.1.13 Efficiency of the WPT 

Efficiency of the system is the ratio between its output with its input. Measurement of 

power output and input give the efficiency as follows: 

4

1

P

P
   (2-56) 

2.2 Solar Cell 

Solar cell is an electrical conversion device which transform energy from sun light 

into electrical energy. Conventional solar cell use photovoltaic (PV) cell. The radiation 

from sun light contains photon energy. When sun light reach solar cell, some energy added 

to material inside solar cell. Sun lights continuously add photon energy until material has 

enough energy to release its electron. There are many electrons released from material. 

This electron moves to the positive output terminal. Current will flow if the output terminal 

connected to load. 

Solar cell output power is fluctuated. Intensity of sun light affects power output. 

Because of that, the control circuit should be applied to maintain the continuous electricity. 

Power is define as: 

P IV  

The power output of solar cell is [El-sharif]: 

out out out OC SCP V I V I FF   (2-57) 

Where FF is coefficient factor of solar cell 
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Solar cell can be connected in parallel and/or series. Parallel connection of solar cell 

adds power output by increasing its output current. While series connection adds power 

output by increasing its output voltage. 

The efficiency of solar cell is 

solar out out in OC SC inV I P V I FF P    (2-58) 

Solar cell can be combined in hydrogen generator. Hydrogen generator need hydrogen 

which produced from water electrolysis process. Solar cell produces electricity which is 

used to produce pure hydrogen.  

2.3 Fuel Cell  

Fuel Cell is electrochemical conversion device which transform hydrogen into 

electrical energy and vapor. In Proton Exchange Membrane (PEM), hydrogen generated by 

electrolysis process flows to the PEM. Proton continue flowing to other side membrane, 

while electron flowing to the load. On the other side membrane, proton reacted with 

oxygen also with electron. So that it transform into water and heat. 

The decomposition chemical reaction of water is [ULUOĞLU, 2010]: 

2 2 22 ( ) 2 ( ) ( )H O l electricity H g O g    

To decompose hydrogen and oxygen, there is minimum voltage between two 

electrodes. The minimum voltage Vref is: 

1.229refV V   (2-59) 

The reaction also need external energy. The thermoneutral voltage Vtn is: 

1.482tnV V   (2-60) 

The energy efficiency is given as: 

tn
cell

cell

V

V
   (2-61) 

The hydrogen production need power from PV panel as shown in Figure 2. 8. Here is 

the data from [D. Scamman, 2014]. 
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Figure 2. 8  ELY-800 polarisation curves for a) cold and b) warm start-up system 

temperature 

Source [Karris, 2008] 

2.4 Power Electronic Control Circuit 

Electricity from solar cell depends on the availability of sun light. The sun light may 

be predicted but the weather can not be controlled. Sometime cloudy condition happen and  

reduces the intensity of sun light. Solar cell power output changes as the change of sun 

light intensity. 

In order to get constant output voltage, solar cell output terminal should be connected 

to controller circuit which convert fluctuate voltage into fixed voltage. This controller 

circuit name SEPIC which is shown in Figure 2. 9 [Elena Niculescu, 2006]. 
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Figure 2. 9  Equivalent circuit for a) two coupled inductor and b) sepic with coupled 

inductor 

Using the waveforms of inductor currents, the formula of average value of ripple 

component of inductor currents can be written as: 

1 1 2 1 1 1 2 1
1

1 1

( ) ( )

2
L D

e s m

D D D V D D D V
I

L f K R

 
   (2-62) 

1 1 2 1 1 1 2 1
2

2 2

( ) ( )

2
L D

e s m

D D D V D D D V
I

L f K R

 
   (2-63) 

Where 

IL1D   : average value of i1 

IL2D   : average value of i2 

D1   : switch-on duty cycle 

D2   : diode-on duty cycle 

VI   : dc input voltage 

L1e, L2e : effective inductances 

fs   : switching frequency 

K1m, K2m  : parameters of conduction through the inductors 

The calculation of these components of inductor currents needs to find the parameter 

D2 firstly. In order to find the expression of the component IL0, we use again the 

relationship of the converter efficiency, that is 

1 1( )O O sepic L D LOV I V I I   (2-64) 

For assumption of 100% efficiency, the above equation yields 

1 1 1 2

2 1

LO

m m

DV D D
I

R K K

 
  

 
 (2-65) 
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2.5 Simulation and Mathematics Software 

To help computation of formula, three kinds of mathematics software are used. They 

are Mathematica developed by Wolfram Research, Scilab developed by Scilab Enterprises, 

and Pyhthon developed by Phyton Software Foundation. One simulation software is used 

too. It is LT-Spice developed by Linear Technology. 
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