Dyahfebriana, Enggar (2017) Subgrup Normal Anti Q-Fuzzy. Sarjana thesis, Universitas Brawijaya.
Abstract
Himpunan bagian fuzzy merupakan himpunan yang setiap unsurnya memiliki nilai derajat keanggotaan pada interval [ ] yang ditentukan oleh fungsi keanggotaan tertentu. Himpunan bagian fuzzy dikembangkan menjadi himpunan bagian Q-fuzzy yang merupakan hasil kali kartesius himpunan tak kosong dan himpunan Q. Suatu himpunan bagian Q-fuzzy disebut koset Q-fuzzy jika memenuhi aksioma-aksioma tertentu. Himpunan bagian Q-fuzzy disebut subgrup anti Q-fuzzy jika memenuhi aksioma-aksioma tertentu. Subgrup anti Q-fuzzy disebut subgrup normal anti Q-fuzzy jika memenuhi aksioma-aksioma tertentu. Koset tengah anti Q-fuzzy dari subgrup anti Q-fuzzy dan irisan dua subgrup anti Q-fuzzy juga merupakan subgrup anti Q-fuzzy. Koset tengah anti Q-fuzzy dari subgrup normal anti Q-fuzzy dan irisan dua subgrup normal anti Q-fuzzy juga merupakan subgrup normal anti Q-fuzzy. Suatu pemetaan disebut anti Q-homomorfisma grup jika memenuhi aksioma-aksioma tertentu. Image dan preimage anti Q-homomorfisma grup merupakan subgrup anti Q-fuzzy. Image dan Preimage anti Q-homomorfisma grup merupakan subgrup normal anti Q-fuzzy.
English Abstract
Fuzzy subset is the set of all elements had a degree of membership value in the interval [0,1] which is determined by the specific membership function. The fuzzy subset is expanded into a Q-fuzzy subset which is the Cartesian product of a not empty set and the set Q. A Q-fuzzy subset called Q-fuzzy coset if it satisfied certain axioms. Q-fuzzy subset called anti Q-fuzzy subgroup if it satisfied certain axioms. Anti Q-fuzzy subgroup called anti Q-fuzzy normal subgroup if it satisfied certain axioms. Anti Q-fuzzy middle coset of anti Q-fuzzy subgroup and intersections of two anti Q-fuzzy subgroups are also anti Q-fuzzy subgroups. Anti Q-fuzzy middle coset of anti Q-fuzzy normal subgroup and intersections of two anti Q-fuzzy normal subgroup are also anti Q-fuzzy normal subgroup. A mapping is called group anti Q-homomorphism if it satisfied certain axioms. Image and preimage group anti Q-homomorphism is an anti Q-fuzzy subgroup. Image and Preimage group anti Q-homomorphism is a anti Q-fuzzy normal subgroup.
Item Type: | Thesis (Sarjana) |
---|---|
Identification Number: | SKR/FMIPA/2017/481/051709837 |
Uncontrolled Keywords: | himpunan bagian fuzzy, himpunan bagian Q-fuzzy, subgrup anti Q-fuzzy, subgrup normal anti Q-fuzzy, koset tengah anti Q-fuzzy, anti Q-homomorfisma grup |
Subjects: | 500 Natural sciences and mathematics > 511 General principles of mathematics > 511.3 Mathematical logic (Symbolic logic) > 511.31 Nonclassical logic > 511.313 Fuzzy logic |
Divisions: | Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika |
Depositing User: | Nur Cholis |
Date Deposited: | 02 Nov 2017 01:37 |
Last Modified: | 17 Nov 2021 02:54 |
URI: | http://repository.ub.ac.id/id/eprint/4718 |
Preview |
Text
BAB III.pdf Download (507kB) | Preview |
Preview |
Text
BAB IV.pdf Download (113kB) | Preview |
Preview |
Text
Bagian Depan.pdf Download (387kB) | Preview |
Preview |
Text
DAFTAR PUSTAKA.pdf Download (112kB) | Preview |
Preview |
Text
BAB II.pdf Download (560kB) | Preview |
Preview |
Text
BAB I.pdf Download (116kB) | Preview |
Actions (login required)
View Item |