BAB IV Hasil dan Pembahasan

4.1 Sintesis Nanopartikel Fe₃O₄

Awal mula pembuatan sintesis Fe₃O₄, larutan garam FeCl₃.6H₂O dan FeCl₂.4H₂O disertai penambahan aquades menampakkan warna larutan berwarna kuning. Selanjutnya dengan adanya penambahan *ammonia water* (NH₄OH) 2 M secara perlahan mengakibatkan terjadi perubahan warna menjadi kuning-kecoklatan kemudian menjadi coklat-kehitaman dan diakhir proses akan menjadi berwarna hitam pekat. Terbentuknya perubahan warna hitam dan adanya endapan berwarna hitam menunjukkan bahwa terbentuknya nanopartikel Fe₃O₄. Selama proses sintesis mengalami beberapa perubahan warna diakibatkan adanya pengaruh fasa senyawa yang terbentuk [12].

Gambar 4.1 Jalur pembentukan nanopartikel magnetik dengan metode sintesis kopresipitasi [26].

Dalam pembentukan Fe₃O₄ mengalami dua proses dengan tahapan yang berbeda yaitu akageneite menjadi goethite menjadi hematite dan maghemite menjadi magnetit dan rute pembentukan

ferro hidroksida lepidocrotit membentuk maghemite menjadi magnetit [26].

Perlakuan pembuatan nanopartikel Fe_3O_4 harus memperhatikan larutan agar tidak kontak langsung dengan udara sehingga perlu dilakukan penutupan pada bagian atas Erlenmeyer menggunakan *plastic wrap* untuk menghindari oksidasi. Pada akhir proses, sifat magnetik nanopartikel dapat diketahui dengan menempelkan batang magnet disekitar Erlenmeyer nampak mengikuti gerak batang magnet jika digerakkan ke beberapa arah.

Nanopartikel Fe₃O₄ yang terbentuk dibilas dengan akuades hingga pH dibawah 7 untuk menghilangkan NH₄Cl dan reaktan yang tidak bereaksi. Selanjutnya material dikeringkan terlebih dahulu menggunakan *freeze drying* sebelum dikarakterisasi.

4.2 Karakterisasi Fe₃O₄-PVA menggunakan FTIR

Larutan Fe(III) dan larutan Fe(II) ditambahkan dengan NH₃.H₂O menyebabkan OH mengikat pada larutan Fe(III) dan larutan Fe(II) membentuk larutan Fe₃O₄. Selanjutnya dengan penambahan larutan PVA terhadap larutan Fe₃O₄ akan membentuk larutan Fe₃O₄-PVA. Hal ini dikarenakan pada senyawa PVA memiliki gugus O-H, atom H akan lepas dan rantai C-H berinteraksi dengan permukaan Fe₃O₄. Penjelasan interaksi Fe₃O₄-PVA dilihat pada gambar 4.2.

Gambar 4.2 Mekanisme interaksi Fe₃O₄-PVA

Karakterisasi nanopartikel Fe_3O_4 dengan FTIR untuk menentukan vibrasi dan rotasi molekul yang melapisi nanopartikel sehingga terekam dalam FTIR. Selain itu, FTIR mampu untuk mengidentifikasi gugus fungsi pada senyawa Fe_3O_4 -PVA yang terbentuk sehingga mempermudah dalam penentuan ciri khas gugus yang dimiliki nanopartikel Fe_3O_4 -PVA.

Gambar 4.3 Spektra IR nanopartikel Fe_3O_4 -PVA(5,7,9)% dan *bare* Fe_3O_4 waktu ultrasonikasi 30 menit

Gambar 4.3 merupakan spektra FTIR dari nanopartikel Fe₃O₄-PVA dan Fe₃O₄ tanpa *coating* PVA (bare Fe₃O₄). Spektra FTIR tersebut diperoleh dari sampel Fe₃O₄-PVA dengan waktu ultrasonikasi 30 menit dan pengaruh konsentrasi PVA (5, 7, dan 9)%. Serapan yang muncul pada daerah sekitar 3100-3500 cm⁻¹ menunjukkan adanya gugus O-H dan diidentifikasi sebagai OH pada permukaan Fe₃O₄. Puncak serapan ini muncul pada sampel Fe₃O₄ baik yang dengan maupun tanpa lapisan PVA. Serapan gugus C-H dari PVA berada pada dikisaran bilangan gelombang 2950 cm⁻¹. Sedangkan, gugus C-C dari PVA muncul pada daerah bilangan gelombang 1400 cm⁻¹. Serapan pada bilangan gelombang tersebut hanya muncul pada spectra FTIR untuk sampel Fe₃O₄-PVA namun tidak muncul pada spectra FTIR untuk sampel bare Fe₃O₄. Interaksi ikatan Fe-O-C dapat diidentifikasi dari serapan pada daerah sekitar 1100 cm⁻¹ yang menunjukkan bahwa Fe₃O₄ telah terlapisi dengan PVA Sedangkan pada daerah sidik jari (*fingerprint*), semua sampel Fe₃O₄ dan Fe₃O₄-PVA menunjukkan serapan tajam pada kisaran 570 cm⁻¹ [27] yang merupakan vibrasi tekuk (*bending*) dari senyawa Fe₃O₄.

Gambar 4.4 Spektra IR nanopartikel Fe_3O_4 -PVA(5,7,9)% dan *bare* Fe_3O_4 waktu ultrasonikasi 60 menit

Berdasarkan gambar 4.4 tentang spektra dari nanopartikel Fe₃O₄-PVA dan Fe₃O₄ tanpa pelapisan (*coating*). Spektra diperoleh dari sampel Fe₃O₄-PVA dengan waktu ultrasonikasi 60 menit dan pengaruh konsentrasi PVA (5, 7, dan 9)%. Serapan yang muncul pada daerah kisaran 3600 cm⁻¹ menunjukkan adanya gugus O-H dan diidentifikasi sebagai OH pada permukaan Fe₃O₄. Pada bilangan gelombang 2980 cm⁻¹ menunjukkan serapan gugus C-H dari PVA dan daerah serapan kisaran 1420 cm⁻¹ merupakan gugus C-C dari PVA. Namun, spektra FTIR tersebut tidak muncul pada *bare* Fe₃O₄. Interaksi ikatan Fe-O-C dapat diidentifikasi dari serapan pada daerah sekitar 1100 cm⁻¹ yang menunjukkan bahwa Fe₃O₄ telah terlapisi dengan PVA. Daerah sidik jari kisaran 568cm⁻¹ [27] menunjukkan serapan tajam, hal ini menandakan keberadaan sampel *bare* Fe₃O₄ dan Fe₃O₄-PVA.

Gambar 4.5 Spektra IR nanopartikel Fe₃O₄-PVA(5,7,9)% dan *bare* Fe₃O₄ waktu 120 ultrasonikasi menit

Gambar 4.4 merupakan spektra FTIR dari nanopartikel Fe₃O₄-PVA dan Fe₃O₄ tanpa *coating* PVA (*bare* Fe₃O₄). Spektra FTIR tersebut diperoleh dari sampel Fe₃O₄-PVA dengan waktu ultrasonikasi 120 menit dan pengaruh konsentrasi PVA (5, 7, dan 9)%. Serapan yang muncul pada daerah sekitar 3610 cm⁻¹ menunjukkan adanya gugus O-H dan diidentifikasi sebagai OH pada permukaan Fe₃O₄. Puncak serapan ini muncul pada sampel Fe₃O₄ baik yang dengan maupun tanpa lapisan PVA. Serapan gugus C-H dari PVA berada pada dikisaran bilangan gelombang 2950 cm⁻¹. Sedangkan, gugus C-C dari PVA muncul pada daerah bilangan gelombang 1405 cm⁻¹. Serapan pada bilangan gelombang tersebut hanya muncul pada spectra FTIR untuk sampel Fe₃O₄-PVA namun tidak muncul pada spectra FTIR untuk sampel bare Fe₃O₄. Interaksi ikatan Fe-O-C dapat diidentifikasi dari serapan pada daerah sekitar 1100 cm⁻¹ yang menunjukkan bahwa Fe₃O₄ telah terlapisi dengan PVA Sedangkan pada daerah sidik jari (fingerprint), semua sampel Fe₃O₄ dan Fe₃O₄-PVA menunjukkan serapan tajam pada kisaran 565 cm⁻¹ [27] yang merupakan vibrasi tekuk (bending) dari senyawa Fe₃O₄.

Berdasarkan penjelasan diatas dapat ditarik kesimpulan bahwa dari berbagai macam variasi waktu dan konsentrasi Fe₃O₄-PVA

waktu 60 menit diperoleh *peak* yang tajam pada daerah *fingerprint* untuk gugus Fe-O dengan bilangan gelombang 568 cm⁻¹.

4.3 Pengaruh Waktu Ultrasonikasi Fe₃O₄-PVA terhadap Ukuran

Kristalit dan Parameter Kisi

Table 4.1 Pengaruh Waktu Ultrasonikasi Fe₃O₄-PVA terhadapUkuran Kristalit dan Parameter Kisi

Sampel	Waktu sonikasi (menit)	Parameter kisi	Ukuran kristalit
Bare Fe ₃ O ₄	30	8.3260	14.6043
	60	8.3490	7.8547
	120	8.3900	7.3354
Fe ₃ O ₄ -	30	8.3900	5.3941
PVA 5	60	8.3610	8.9134
	120	8.3660	6.3616
Fe ₃ O ₄ -	30	8.3710	9.8878
PVA 7	60	8.3550	19.5592
	120	8.3740	7.2919
Fe ₃ O ₄ -	30	8.3870	6.4016
PVA 9	60	8.3470	12.5894
	120	8.3840	6.7671

Berdasarkan tabel 4.1 menunjukkan pengaruh variasi waktu ultrasonikasi terhadap sintesis nanopartikel Fe₃O₄-PVA yang mengakibatkan perubahan pada parameter kisi dan ukuran kristalit. Pada setiap variasi mengalami *trend* atau pola yang berbeda. Secara umum pola yang dihasilkan memiliki kemiripan satu dengan lainnya sehingga mempermudah untuk diamati. Dari tabel 4.1 bahwa parameter kisi dengan ukuran kristalit berbanding terbalik terlihat dari semakin lamanya penggunaan waktu ultrasonikasi terhadap sintesis nanopartikel Fe₃O₄-PVA.

Gambar 4.6 Hubungan Fe₃O₄-PVA 5% dengan kisi dan ukuran kristal

Hasil analisis XRD terhadap sampel nanopartikel Fe₃O₄-PVA dengan konsentrasi PVA 5% pada berbagai variasi waktu ultrasonikasi disajikan pada gambar 4.6. Dari gambar 4.6 diketahui bahwa Fe₃O₄-PVA 5% dengan waktu ultrasonikasi 30, 60 dan 120 menit diperoleh ukuran kristal secara berurutan sebesar 5.3941, 8.9134 dan 6.3616 nm. Dari gambar 4.6 diketahui bahwa nanopartikel Fe₃O₄-PVA yang memiliki ukuran kristal terkecil yaitu nanopartikel dengan komposisi PVA 5% dan waktu ultrasonikasi 30 menit. Sedangkan ukuran kristal terbesar diperoleh pada waktu ultrasonikasi 60 menit. Selanjutnya pada waktu ultrasonikasi 120 menit, ukuran Kristal nanopartikel yang dihasilkan menjadi lebih kecil dari waktu utltrasonikasi 60 menit. Hal ini kemungkinan dapat disebabkan karena pada 30 menit waktu nanopartikel ketika dalam ultrasonikasi. tahap mengalami pembentukan inti (nukleasi), polimer PVA segera ditambahkan. Akibatnya inti Kristal belum mengalami pertumbuhan inti dengan ukuran yang lebih besar namun terlebih dahulu dilapisi dengan polimer PVA. Sedangkan pada waktu ultrasonikasi 60 menit, Kristal Fe₃O₄ mengalami proses nukleasi dan diikuti dengan pertumbuhan inti (growth) setelah itu baru terlapisi oleh polimer PVA. Selain itu kemungkinan nanopartikel mengalami clustering juga berkontribusi menyebabkan Kristal yang dihasilkan berukuran lebih besar. Selanjutnya pada waktu ultrasonikasi 120 menit, ukuran Kristal nanopartikel kembali menurun. Hal ini disebabkan karena Kristal

Fe₃O₄ yang telah membentuk clustering cenderung berinteraksi dengan polimer PVA dan membentuk cluster Fe₃O₄-PVA. Menurut Yang, 2005 semakin lama waktu ultrasonikasi akan menyebabkan titik isolektrik (IEP) dari Fe₃O₄ mengarahkan ke kondisi yang lebih asam (pH yang lebih rendah) [28]. Pada kondisi pH tersebut, jumlah muatan positif dipermukaan Fe₃O₄ akan semakin meningkat. Akibatnya probabilitas PVA yang bermuatan negatif untuk berinteraksi dengan Fe₃O₄ yang bermuatan positif akan semakin besar. Hal ini akan menyebabkan ukuran ksristalit Fe₃O₄-PVA dengan waktu ultrasonikasi 120 menit menjadi lebih kecil.

Berdasarkan gambar 4.6 diperoleh parameter kisi dari nanopartikel Fe₃O₄ 5% dengan waktu ultrasonikasi 30, 60 dan 120 menit secara berurutan yaitu 8.3900 Å, 8.3610Å dan 8.3660 Å. Hal ini mengindikasikan bahwa pada waktu ultrasonikasi 30-60 menit, mengalami partikel Fe₃O₄ mulai pembentukan (formasi) menghasilakan nanopartikel dengan ukuran Kristal yang lebih besar. Namun, setelah waktu ultrasonikasi 60 menit nanopartikel kembali mengalami deformasi. Pada 60 menit pertama, kisi kristal mengalami penyempitan akibat pembentukan (formation) dari nanopartikel dengan ukuran yang lebih besar, sedangkan kisi kembali melebar pada saat mengalami deformasi. Pada saat deformasi ikatan antar atom cenderung akan lepas kembali dan berkontribusi terhadap ukuran partikel yang lebih kecil.

Gambar 4.7 Hubungan Fe₃O₄-PVA 7% dengan kisi dan ukuran kristal 18

Hasil analisis XRD terhadap sampel nanopartikel Fe₃O₄-PVA dengan konsentrasi PVA 7% pada berbagai variasi waktu ultrasonikasi disajikan pada gambar 4.7. Dari gambar 4.7 diketahui bahwa Fe₃O₄-PVA 9% dengan waktu ultrasonikasi 30, 60 dan 120 menit diperoleh ukuran kristal secara berurutan sebesar 9.8878, 19.5592 dan 7.2919 nm. Dari gambar 4.7 diketahui bahwa nanopartikel Fe₃O₄-PVA yang memiliki ukuran kristal terkecil yaitu nanopartikel dengan komposisi PVA 9% dan waktu ultrasonikasi 120 menit. Namun ukuran kristal terbesar diperoleh pada waktu ultrasonikasi 60 menit. Kecendrungan perubahan ukuran Kristal yang diperoleh dengan konsentrasi PVA 7% ini mirip dengan kecendrungan perubahan ukuran Kristal dengan penambahan PVA 5%. Hal ini dapat disebabkan karena pada 30 menit waktu ultrasonikasi, ketika nanopartikel dalam tahap mengalami pembentukan inti (nukleasi), polimer PVA segera ditambahkan. Sehingga dalam kondisi ini polimer PVA dapat mencegah terbentuknya kristal Fe₃O₄ dengan ukuran yang lebih besar. Sedangkan pada waktu ultrasonikasi 60 menit, kristal Fe₃O₄ mengalami proses nukleasi dan diikuti dengan pertumbuhan inti (growth) setelah itu baru terlapisi oleh polimer PVA. Selain itu kemungkinan nanopartikel mengalami clustering juga berkontribusi menyebabkan kristal yang dihasilkan berukuran lebih besar. Selanjutnya pada waktu ultrasonikasi 120 menit, ukuran kristal nanopartikel kembali menurun.

Berdasarkan gambar 4.7 diperoleh parameter kisi dari nanopartikel Fe_3O_4 7% dengan waktu ultrasonikasi 30, 60 dan 120 menit secara berurutan yaitu 8.3710 Å, 8.3550 Å dan 8.3740 Å. Pada waktu 30–60 menit awal partikel Fe_2O_3 .FeO mengalami pembentukan (formasi) Fe_3O_4 , namun setelah waktu 60 menit lebih mengalami deformasi. Pada saat pembentukan kisi menyempit sedangkan kisi melebar berarti mengalami deformasi yang artinya cenderung akan lepas ikatannya.

Gambar 4.8 Hubungan Fe₃O₄-PVA 9% dengan kisi dan ukuran kristal

Hasil analisis XRD terhadap sampel nanopartikel Fe₃O₄-PVA dengan konsentrasi PVA 9% pada berbagai variasi waktu ultrasonikasi disajikan pada gambar 4.8. Dari gambar 4.8 diketahui bahwa Fe₃O₄-PVA 9% dengan waktu ultrasonikasi 30, 60 dan 120 menit diperoleh ukuran kristal secara berurutan sebesar 6.4016, 12.5894 dan 6.7671 nm. Dari gambar 4.8 diketahui bahwa nanopartikel Fe₃O₄-PVA yang memiliki ukuran kristal terkecil yaitu nanopartikel dengan komposisi PVA 9% dan waktu ultrasonikasi 120 menit. Namun ukuran kristal terbesar diperoleh pada waktu ultrasonikasi 60 menit. Kecendrungan perubahan ukuran kristal yang terjadi dengan penambahan PVA 9% mirip dengan penambahan PVA dengan konsentrasi PVA 5 dan 7%. Namun secara keseluruhan, hasil karakterisasi menunjukkan bahwa ukuran kristal yang diperoleh dengan penambahan PVA 7% cenderung lebih besar dibandingkan PVA 5 dan 9%.

Berdasarkan gambar 4.8 diperoleh parameter kisi dari nanopartikel Fe₃O₄ 9% dengan waktu ultrasonikasi 30, 60 dan 120 menit secara berurutan yaitu 8.3870 Å, 8.3470 Å dan 8.3840 Å. Pada waktu 30–60 menit awal partikel Fe₂O₃.FeO mengalami pembentukan (formasi) Fe₃O₄, namun setelah waktu 60 menit lebih mengalami deformasi. Pada saat pembentukan kisi menyempit sedangkan kisi melebar berarti mengalami deformasi yang artinya cenderung akan lepas ikatannya.

20

Hasil analisis XRD dari sintesis nanopartikel *bare* Fe_3O_4 dengan berbagai variasi waktu dilihat pada gambar 4.9. Dari gambar 4.8 diketahui bahwa *bare* Fe_3O_4 dengan waktu ultrasonikasi 30, 60 dan 120 menit diperoleh ukuran kristal secara berurutan sebesar 14.6043, 7.8547 dan 7.3354 nm.

Gambar 4.9 Hubungan *bare* Fe₃O₄ dengan kisi dan ukuran kristal

Berdasarkan gambar 4.9 diperoleh parameter kisi dari nanopartikel *bare* Fe₃O₄ dengan waktu ultrasonikasi 30, 60 dan 120 menit secara berurutan yaitu 8.3260 Å, 8.3490 Å dan 8.3900 Å. Dari gambar 4.8 diketahui bahwa nanopartikel *bare* Fe₃O₄ yang memiliki ukuran kristal terkecil yaitu *bare* Fe₃O₄ waktu 120 menit. Hal tersebut menunjukkan bahwa sejak awal proses somikasi Fe₃O₄ terbentuk. Namun, dengan seiring bertambah waktu terus-menerus mengalami deformasi sehingga parameter kisi besar dan panjang, ukuran kristalit menjadi lebih kecil.

4.4 Pengaruh Konsentrasi PVA terhadap Ukuran Kristalit dan

Parameter Kisi

Tabel 4.2 Pengaruh Konsentrasi PVA terhadap Ukuran Kristalit dan

Parameter Kisi

Waktu Sonikasi	Massa PVA	Parameter	Ukuran
(menit)	(g)	Kisi	Kristalit
30	5	8.3900	5.3941
60	7	8.3610	8.9134
120	9	8.3660	6.3616
30	5	8.3710	9.8878
60	7	8.3550	19.5592
120	9	8.3740	7.2919
30	5	8.3870	6.4016
60	7	8.3470	12.5894
120	9	8.3840	6.7671

Berdasarkan tabel 4.2 pengaruh konsentrasi PVA terhadap ukuran kristalit dan parameter kisi diketahui bahwa dengan penambahan konsentrasi PVA semakin banyak maka ukuran kristalit semakin kecil dan parameter kisi semakin besar yang dihasilkan.

Hasil analisis pengaruh konsentrasi PVA (5, 7 dan 9)% dengan waktu ultrasonikasi 30 menit terhadap ukuran kristal dan parameter kisi dalam pembuatan nanopartikel Fe₃O₄-PVA disajikan pada gambar 4.10. Pengaruh konsentrasi PVA (5, 7 dan 9)% terhadap ukuran kristalit secara berurutan menunjukkan data sebagai berikut 5.3941, 8.9134 dan 6.3616 nm. Sedangkan untuk parameter kisi diperoleh data 8.3900 Å, 8.3610 Å dan 8.3660 Å. Hal ini sesuai dengan hasil penelitian Saxena, 2016 yang melaporkan bahwa nilai parameter kisi untuk magnetit yaitu 8.396 Å The Joint Committee on Powder Diffraction Standards (JCPDS) File 19-629 sedangkan nilai parameter kisi untuk maghemit yaitu 8.346 Å(JCPDS File 39-1346) [27]. Hasil ini juga diperkuat dengan data hasil karakterisasi XRD dan FTIR yang menunjukkan bahwa puncak difraksi yang dihasilkan berada diantara puncak difraksi untuk magnetit dan maghemit. Sedangkan dari FTIR diketahui bahwa spectra yang mengindikasikan adanya maghemit juga muncul di daerah finger print.

Gambar 4.10 Konsentrasi PVA terhadap kisi dan ukuran kristal

Penambahan polimer PVA pada permukaan nanopartikel Fe₃O₄ sangat mempengaruhi parameter kisi kristal dari nanopartikel yang dihasilkan. Parameter kisi yang semakin besar menandakan jarak atom Fe dengan O yang semakin melebar. Dari hasil penelitian diketahui bahwa, terdapat korelasi antara ukuran kristal terhadap parameter kisi kristal nanopartikel Fe₃O₄-PVA. Dalam hal ini ukuran kristal nanopartikel berbanding terbalik dengan parameter kisi kristal. Semakin kecil ukuran kristal menunjukkan semakin besar parameter kisi kristal. Pada konsentrasi PVA 7% diperoleh kristal dengan ukuran yang lebih besar dibandingkan penambahan PVA dengan konsentrasi 5%. Namun semakin tinggi konsentrasi PVA yang ditambahkan (9%) mengakibatkan ukuran kristal menjadi lebih kecil. Perubahan ukuran kristal menjadi lebih kecil dengan penambahan PVA 9% juga diikuti dengan perubahan nilai parameter kisi yang menjadi lebih besar.

Gambar 4.11 Konsentrasi PVA terhadap kisi dan ukuran kristal

Hasil analisis pengaruh konsentrasi PVA (5, 7 dan 9)% dengan waktu ultrasonikasi 30 menit terhadap ukuran kristal dan parameter kisi dalam pembuatan nanopartikel Fe₃O₄-PVA disajikan pada gambar 4.11. Pengaruh konsentrasi PVA (5, 7 dan 9)% terhadap ukuran kristalit secara berurutan menunjukkan data sebagai berikut 9.8878, 19.5592 dan 7.2919 nm. Sedangkan untuk parameter kisi diperoleh data 8.3710 Å, 8.3550 Å dan 8.3740 Å. Parameter kisi 8.396 Å (JCPDS File 19-629) teridentifikasi magnetit dan 8.346 Å (JCPDS File 39-1346) merupakan maghemit [27]. Sedangkan data yang diperoleh dari analisis XRD berada diantara magnetit dan maghemit.

Penambahan polimer PVA pada permukaan nanopartikel Fe_3O_4 sangat mempengaruhi parameter kisi kristal dari nanopartikel yang dihasilkan. Parameter kisi yang semakin besar menandakan jarak atom Fe dengan O yang semakin lebar. Dari hasil penelitian diketahui bahwa, terdapat korelasi antara ukuran kristal terhadap parameter kisi kristal nanopartikel Fe_3O_4 -PVA. Dalam hal ini ukuran kristal nanopartikel berbanding terbalik dengan parameter kisi kristal. Semakin kecil ukuran kristal menunjukkan semakin besar parameter kisi kristal. Pada konsentrasi PVA 7% diperoleh kristal dengan ukuran yang lebih besar dibandingkan penambahan PVA dengan konsentrasi 5%. Namun semakin tinggi konsentrasi PVA yang ditambahkan (9%) mengakibatkan ukuran kristal menjadi lebih kecil. Perubahan ukuran kristal menjadi lebih kecil dengan penambahan PVA 9% juga diikuti dengan perubahan nilai parameter kisi yang menjadi lebih besar.

Hasil analisis pengaruh konsentrasi PVA (5, 7 dan 9)% dengan waktu ultrasonikasi 120 menit terhadap ukuran kristal dan parameter kisi dalam pembuatan nanopartikel Fe₃O₄-PVA disajikan pada gambar 4.12. Pengaruh konsentrasi PVA (5, 7 dan 9)% terhadap ukuran kristalit secara berurutan menunjukkan data sebagai berikut 6.4016, 12.5894 dan 6.7671 nm. Sedangkan untuk parameter kisi diperoleh data 8.3870 Å, 8.3470 Å dan 8.3840 Å. Parameter kisi 8.396 Å (JCPDS File 19-629) teridentifikasi magnetit dan 8.346 Å (JCPDS File 39-1346) merupakan maghemite [27]. Sedangkan data yang diperoleh dari analisis XRD berada diantara magnetit dan maghemit.

Gambar 4.12 Konsentrasi PVA terhadap kisi dan ukuran kristal

Penambahan polimer PVA pada permukaan nanopartikel Fe_3O_4 sangat mempengaruhi parameter kisi kristal dari nanopartikel yang dihasilkan. Parameter kisi yang semakin besar menandakan jarak atom Fe dengan O yang semakin lebar. Dari hasil penelitian diketahui bahwa, terdapat korelasi antara ukuran kristal terhadap parameter kisi kristal nanopartikel Fe_3O_4 -PVA. Dalam hal ini ukuran kristal nanopartikel berbanding terbalik dengan parameter kisi kristal. Semakin kecil ukuran kristal menunjukkan semakin besar parameter kisi kristal. Pada konsentrasi PVA 7% diperoleh kristal dengan ukuran yang lebih besar dibandingkan penambahan PVA dengan konsentrasi 5%. Namun semakin tinggi konsentrasi PVA yang ditambahkan (9%) mengakibatkan ukuran kristal menjadi lebih kecil. Perubahan ukuran kristal menjadi lebih kecil dengan penambahan PVA 9% juga diikuti dengan perubahan nilai parameter kisi yang menjadi lebih besar.

Gambar 4.13 Difraktogram Nanopartikel bare Fe₃O₄

Pola difraksi yang dihasilkan dari proses karakterisasi menunjukkan terbentuknya Fe₃O₄. Berdasarkan gambar 4.13 pada salah satu variasi *bare* Fe₃O₄ diperoleh puncak difraksi pada $2\theta = 30^{\circ}$, 35,6°, 43,2° dan 57,2°. Puncak tersebut mengindikasikan bahwa nanopartikel Fe₃O₄ memiliki struktur spinel kubik berdasarkan refrensi (JCPDS file, PDF No. 65-3107) [35].

Gambar 4.14 Difraktogram Nanopartikel Fe₃O₄-PVA 5%

Pola difraksi yang dihasilkan dari proses karakterisasi menunjukkan terbentuknya Fe₃O₄. Berdasarkan gambar 4.14 pada variasi Fe₃O₄-PVA 5% diperoleh puncak difraksi pada $2\theta = 30,36^{\circ}$, 35,64°, 43,34° dan 57,21°. Puncak tersebut mengindikasikan bahwa nanopartikel Fe₃O₄ memiliki struktur spinel kubik berdasarkan refrensi (JCPDS file, PDF No. 65-3107) [35].

Gambar 4.15 Difraktogram Nanopartikel Fe₃O₄-PVA 7%

Berdasarkan gambar 4.15 pada variasi Fe_3O_4 -PVA 7% diperoleh puncak difraksi pada $2\theta = 30,24^{\circ}, 35,63^{\circ}, 43,18^{\circ}$ dan 57,25°. Berdasarkan refrensi (JCPDS file, PDF No. 65-3107) [35] mengindikasikan bahwa nanopartikel Fe_3O_4 memiliki struktur spinel kubik.

Gambar 4.16 Difraktogram Nanopartikel Fe₃O₄-PVA 9%

Berdasarkan gambar 4.16 pada variasi Fe_3O_4 -PVA 9% diperoleh puncak difraksi pada $2\theta = 30,32^{\circ}, 35,71^{\circ}, 43,49^{\circ}$ dan 57,27°. Hal tersebut memiliki makna struktur dari nanopartikel Fe_3O_4 memiliki bentuk spinel kubik, berdasarkan refrensi (JCPDS file, PDF No. 65-3107) [35].