Implementasi Metode Fuzzy K-Nearest Neighbor Untuk Klasifikasi Penyakit Tanaman Kedelai Pada Citra Daun

Anggoro, Yerry (2017) Implementasi Metode Fuzzy K-Nearest Neighbor Untuk Klasifikasi Penyakit Tanaman Kedelai Pada Citra Daun. Sarjana thesis, Universitas Brawijaya.

Abstract

Kebutuhan protein sangatlah penting bagi tubuh manusia, salah satunya adalah kedelai yang merupakan sumber protein nabati. Selain jagung dan beras, kedelai merupakan komoditi pangan utama di Indonesia. Akan tetapi produksi kedelai dalam negeri belum memenuhi permintaan secara baik. Produksi kedelai di tingkat petani sebenarnya masih bisa ditingkatkan melalui inovasi teknologi, salah satunya yaitu mendeteksi penyakit tanaman kedelai pada daun dengan metode Fuzzy K-Nearest Neighbor dan segmentasi menggunakan metode Otsu. Citra diproses dengan metode Otsu untuk memisahkan bagian yang berpenyakit dengan bagian yang tidak berpenyakit lalu melakukan pengklasifikasian dengan metode Fuzzy K-Nearest Neighbor untuk menentukan penyakit karat daun, Downy Mildew, dan pustul bakteri. Terdapat empat pengujian yaitu pengujian perbandingan data latih dan data uji dengan akurasi tertinggi pada perbandingan 90:10 dengan jumlah 54 data latih dan 6 data uji sebesar 100%, pengujian terhadap nilai Threshold dengan T=10 menghasilkan akurasi 83,33%, pengujian terhadap nilai k=5 menghasilkan akurasi 83,33%, dan pengujian terhadap nilai m=2 dengan akurasi 83,33%.

English Abstract

Protein is one of essential thing to the human body, there are many source of protein and one of it is a soy which is nabati protein source. besides corn and rice, soy is the main food commodities in Indonesia. However, domestic production of soybean has not been enough to fulfil the necessity. Soybean production at the level of actual farmers could still be enhanced through technological innovation, one of that is to detect plant disease of soybeans on the leaves by the method of Fuzzy K-Nearest Neighbor and the segmentation using the method of Otsu. The image processed with the method of Otsu to separate parts that are diseased with parts that are not diseased and then do a classification by the method of Fuzzy K-Nearest Neighbor to determine leaf rust disease, Downy Mildew, and bacterial pustule. There are four tests such as test comparison data training and test data with the highest accuracy in comparison with a total of 90:10 54 training data and test data of 6 100%, testing against the values of Threshold with T = 10 generates 83,33% accuracy, testing against the values of k = 5 generates 83,33%, accuracy and testing against the values m = 2 with accuracy of 83,33%.

Item Type: Thesis (Sarjana)
Identification Number: SKR/FTIK/2017/562/051708074
Uncontrolled Keywords: Otsu, Fuzzy K-Nearest Neighbor, kedelai
Subjects: 000 Computer science, information and general works > 006 Special computer methods > 006.3 Artificial intelligence > 006.31 Machine learning
Divisions: Fakultas Ilmu Komputer > Teknik Informatika
Depositing User: Yusuf Dwi N.
Date Deposited: 03 Oct 2017 04:21
Last Modified: 02 Sep 2020 07:23
URI: http://repository.ub.ac.id/id/eprint/3179
[thumbnail of Bagian Depan.pdf]
Preview
Text
Bagian Depan.pdf

Download (8MB) | Preview
[thumbnail of BAB I.pdf]
Preview
Text
BAB I.pdf

Download (5MB) | Preview
[thumbnail of BAB II.pdf]
Preview
Text
BAB II.pdf

Download (10MB) | Preview
[thumbnail of BAB III.pdf]
Preview
Text
BAB III.pdf

Download (5MB) | Preview
[thumbnail of BAB IV.pdf]
Preview
Text
BAB IV.pdf

Download (17MB) | Preview
[thumbnail of BAB V.pdf]
Preview
Text
BAB V.pdf

Download (10MB) | Preview
[thumbnail of BAB VI.pdf]
Preview
Text
BAB VI.pdf

Download (6MB) | Preview
[thumbnail of BAB VII.pdf]
Preview
Text
BAB VII.pdf

Download (4MB) | Preview
[thumbnail of Daftar Pustaka.pdf]
Preview
Text
Daftar Pustaka.pdf

Download (4MB) | Preview

Actions (login required)

View Item View Item