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Alkylphenol - ethoxylates - (APEOs) are ‘surfactants which' “have ' been
widely used in a variety of commercial products and can be degraded in the

aguatic environment becoming more toxic metabolites. 4-tert-octylphenol (OP)

UNIVERSITAS

is one of the primary breakdown products of APEOs with endocrine disrupting
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properties that has been known as persistent and ubiquitos pollutant. In order to
investigate the effect of OP toxicity to aquatic plant, the submersed macrophyte
Ceratophyllum demersum was chosen to treat with various concentrations of OP
(0,05, 1,15, 2 and 3 mg L?) for 5 days. The toxic effect and oxidative stress

REPOSITORY.UBACID |

caused by 'OP resulted 'in-an -inhibition of growth rate, reduction of total

[

chlorophyll content (chlorophyll' a and b) and an increase in the levels of
reactive roxygen - species (ROS), O, and - H20,. 'However, there. was: no
significant change in the content of malondialdehyde (MDA). The antioxidative
enzyme activities showed a significant increase in superoxide dismutase (SOD),

guaiacol peroxidase (POD), catalase (CAT), gluthathione reductase (GR) and
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ascorbate ‘peroxidase ' (APX). The contents of non-enzymatic antioxidants,
ascorbate (AsA) and glutathione (GSH), were also significantly increased under
OPexposure. To confirm the role of GSH in C. demersum under OP exposure,
BSO, a specific and potent inhibitor of GSH biosynthesis, was used. After BSO
pretreatment, the total GSH content was significantly reduced. The decreasing
of total GSH indicated that the synthesis of GSH has been blocked, it was
followed by the decreasing of total AsA content and also-GR and APX enzyme

UNIVERSITAS

* BRAWIJAYA

activity. Interestingly, C. demersum showed much more severe phenotype under

OP exposure  with. BSO  pretreatment. ~In- conclusion, - C. ' demersum- might

| REPOSITORY.UB.AC.D ‘

actively regulate the antioxidant machinery, especially GSH biosynthesis, to

against OP-induced oxidative stress.

Keywords: 4-tert-octylphenol, Ceratophyllum demersum, oxidative stress, ROS,
GSH
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1/ INTRODUCTION

REPO:

1.1 . Background

Alkylphenol ethoxylates (APEOs) belong to the group- of non-ionic
surfactants, consisting of a branched chain alkylphenol which has been reacted

with. ethylene oxide, . producing an ethoxylate chain. (Renner, 1997).

BRAWIJAYA
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Commercial ‘formulations are usually a complex mixture of homologues,

&

oligomers and isomers. The main alkylphenols used are nonylphenol (NP) and
octylphenol, with-nonylphenol ethoxylate (NPNEQ) taking approximately 80%
of the world market, and octylphenol ethoxylate (OpnEQ) taking the remaining

20% (White et-al;, 1994). These products have a large economic relevance and

|_REPOSITORY.UB.AC.D |

have been used in a wide range of domestic and industrial applications for more
than 40 years, such as precursors to the detergents, emulsifiers, as additives for
fuels and lubricants, polymers, and as components in phenolic resins as well as
manufactured of agricultural chemical products (Renner, 1997; Staples et al.,
1999; Oketola and Fagbemigun, 2013).

Recent, year, there have -been:many concerns raised regarding  the

UNIVERSITAS

environmental safety of alkylphenol ethoxylate (APEQOS) surfactant because it
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can be degraded.in the aquatic environment becoming more recalcitrant and
toxic metabolites. ‘One of the biodegradation products from alkylphenol

ethoxylate is -4-tert-octylphenol (OP), which can be degraded through

UB.ACID |

photochemically and biologically processes (Ball et al., 1989; Ahel et al.,
1994). Since first introduced in 1940s, alkylphenol compounds including. OP

[ ReposITORY

has been detected in sediments, water, atmosphere and organisms (Van Ry et

al., 2000; Chen et al., 2006; Zhang et al., 2008; Dong et al., 2014).
4-tert-octylphenol (OP) as prevalent environmental pollutant has been

shown to possess intrinsic estrogenic activity, because it competes for binding

to the estrogen receptor in higher organisms (Blake and Boockfor, 1997). In

UNIVERSITAS
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addition, it also' can suppress-growth, -decrease photosynthetic' pigments and

destroy-algal ultrastructure (Zhou et al., 2013). Moreover, OP has been reported
that ‘it caninduce -oxidative -stress in:Arabidopsis: thaliana by ‘modulating
antioxidant enzymes like superoxide dismustase (SOD), ascorbate peroxidase
(APX)and catalase (CAT) (Chen et al., 2013).

Oxidative stress defined as imbalance conditions in any cell compartment

UNIVERSITAS
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between production of reactive oxygen species (ROS) and antioxidant defense,

leading to lipid peroxidation, resulting in damage to cell membranes, protein
oxidation, enzyme inhibition, and strand breakage in nucleic acids that are
caused by both biotic and abiotic factors (Allen, 1995).

In order to overcome oxidative stress situations, plants have developed
elaborate mechanisms, composed by enzymatic and non-enzymatic antioxidant
to detoxify these reactive oxygen species (ROS) (Asada, 1992; L.i et al., 2008):
Major ROS scavenging enzymes in plants include ‘superoxide dismustase
(SOD, E.C. 1.15.1.1), catalase (CAT, E.C.. 1.11.1.6), ascorbate peroxidase
(APX, E.C. 1.11.1.11) and glutathione reductase (GR, E.C. 1.8.1.7). SODs act
as the first line of defense against ROS, dismutating superoxide radical (O,™)
to hydrogen peroxide (H>O,) (Apel and Hirt, 2004), while CAT and several
classes of peroxidases like APX, scavenge the H,O; into H,O and O, (Aravind

|_REPOSITORY.UB.AC.D |
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and Prasad, 2003). Beside that, APX and GR are two key enzymes in ascorbate
glutathione cycle, where APX detoxifies H,O, by consuming ascorbate (AsA)
and GR involves in the regeneration of ‘glutathione (GSH) (Apel and Hirt,

2004). The non-enzymatic mechanisms include the major cellular redox buffers
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AsA “and GSH, as ‘well as phenolic: compounds, tocopherol, -flavonoids,
alkaloids, and carotenoids that play a key role in delaying and/or preventing
oxidative reactions catalyzed by free radicals (Apel and Hirt, 2004; Singh et
al., 2010; Wang et al., 2011).
Although-the -availability and toxicity of 4-tert-octylphenol (OP) has
attracted more attention recently, however, to our knowledge only one paper
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related to oxidative stress and: antioxidant responses of plants: under: OP
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exposure has been published (Chen et al., 2013). The research related to the
physiological effect of OP on aquatic plant:is absent.- Considering to: the
occurance of OP in aquatic environment, more attention need to be paid to the
effect of OP onaquatic plant.

Aguatic plants have been known as bioindicator that can reflect the
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environmental -conditions. Ceratophyllum demersum-commonly. known as

hornwort or coontail "is submerged, free-floating aquatic ‘plant  with
cosmopolitan-distribution. It is-also-well known for its ability to cope with

various abiotic stresses (Rama Devi and Prasad, 1998; Sun et al., 2008;

| REPOSITORY.UB.AC.ID |

Duman et al., 2014). Thus, C. demersum is a good candidate for assessing the

toxicity of 4-tert-octylphenol (OP). The results' might provide some valuable

information for applying to phytoremediation.,

1.2 - Objective

The work behind this thesis has been conducted by specific objectives,

listed below:
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1. To'investigate the effect of 4-tert-octylphenol (OP) exposure on the
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alterations of ROS and oxidative stress in Ceratophyllum demersum
2. To'investigate the effect of OP exposure on the antioxidant responses

in C. demersum,
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2. LITERATURE REVIEW

REPO

2.1 ' Alkylphenols

Alkylphenols; such as nonylphenol and. octylphenol are the primary
breakdown products from alkylphenol ethoxylates (APEOs). APEOs have been

widely used groups. of surfactants and manufactured for several commercial

BRAWIJAYA
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purposes (Renner, 1997). APEOs have been introduced in the middle of last

&

century. and. applied in household products and in agricultural .and .industrial
sector. Inthe market place, nonylphenol ethoxylates (NPEOs) account takes
80% of APEQOs, while octylphenol ethoxylates (OPES). takes 20% remaining.
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These products have a large economic relevance. All other alkylphenols are
less useful, because the alkyl chain is either too long or too short for a surfactant
function. The length of the ethoxylate chain'varies between 4 to 20 ethoxy units,
depending on_the application. APEOs with 8-12 ethoxylates groups are
commonly ‘used. Mostly APEOs were used as the raw materials basis: for

cleaning and washing agent with the surfactant properties, such as foaming
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behaviour, ‘wetting, dispersing, emulsifying ‘and ' 'solubility increase. Most
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APEOs enter the aquatic environment after disposal .in wastewater (White et
al.; 1994).

Degradation of alkylphenol ethoxylates (APEQs) in wastewater treatment

plants or in the environment generates more persistent shorter-chain APEOs

and alkylphenols (APs) that have been known can mimic natural hormones and
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that the levels present in the environment may be sufficient to disrupt endocrine
function in wildlife (Blake and Boockfor, 1997; Routledge and Sumpter, 1997;
Thiele et al.; 1997; Ying et al., 2002).

Alkylphenol ethoxylates (APEQS) are unstable in aquatic environments

[

with a half-life of several days and can be easily degraded to alkylphenols (AP)

through photochemical and biochemical process (Yoshimura, 1986). AP such
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as nonylphenol (NP) and 4-tert-octylphenol (OP) are, however, much more

REPO

stable in the environment with a half-life of approximately 2 months in water

and lasting years in sediment (Ying et al:, 2002).

2.2 4-tert-octylphenol (OP)

4-tert-octylphenol (OP) is an important-industrial chemical that might
pose for fresh and marine waters and sediments, waste water treatment plants
(WWTP), soil, air and predatory wildlife. OP (CAS no. 140-66-9) is a high

production-volume substance (Brooke et al., 2005). In_Taiwan; during 2010-

BRAWIJAYA

UNIVERSITAS

&

2013, the average of yearly production of nonylphenol (NP) and OP is 36,000
and. 11,000 tons, respectively, according to data statisic Bureau of Foreign
Trade of Taiwan (TWBOFT). Furthermore, Dong et al ' (2014) reported that

both OP and NP were detected in the sediment of Kaohsiung Harbor, Taiwan

[_ReposiTORY.B.ACID |

and probably pose a potential ecological risk to aquatic life.

The 4-tert-octylphenol (OP) is a solid substance (melting point 79-82°C,
boiling point 280-283°C). It has a vapour pressure of 0.21 Pa at 20°C, a water
solubility of 19 mg L™ at 22°C and a log octanol-water partition coefficient
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(log Kow) 0f 4.12:The log Kewimplies-a moderate bioaccumulation potential in
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aquatic biota and the substance mainly partitions to soil and sediment when it
Is ‘released 'tothe environment (Brooke ‘et al., 2005). OP or 4-(1,1,3,3-

tetramethylbutyl) phenol is the primary manufactured isomer with a general
formula ' CsH4(OH)CgHiz  (Fig.: 1), - made by 'alkylating phenol  with
diisobutylene. Mixtures of OP ethoxylates are often used as detergents, such as
Triton X-100 (Blake and Boockfor, 1997).
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Fig. 1. Molecular structure of 4-tert-octylphenol (OP) (Sigma-aldrich).
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2.3 'Production and Uses of 4-tert-octylphenol (OP)

REPO

There are two -main routes used in the production of ' 4-tert-octylphenol
(OP), both of which ‘involve the reaction of phenol and tert-octene (di-

isobutene) in the presence of:

a) an ion-exchange resin or boron trifluoride complex in a batch reactor; or

b) a fixed bed ion-exchange resin in a continuous process.

BRAWIJAYA
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The tert-octene is produced by dimerisation of isobutene which ensures
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that the octene is branched rather than linear. The purity of isobutene also
means ‘no. other homologues - are expected. Reaction with phenol - leads

predominantly to substitution by tert-octene in the 4- (para-) position (see Fig:

[_ReposiTORY.B.ACID |

1). In the first process, the neutralised and/or deactivated catalyst is disposed
of via authorised waste facilities in accordance with existing regulations; in the
second process, it is discharged directly into an incineration plant (Brooke et
al.; 2005).

Overall, 4-tert-octylphenol (OP) has two main direct uses:

» the production of phenol-formaldehyde resins (or phenolic resins) (and
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their subsequent derivatives); and
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= the production of octylphenol ethoxylates (OPES) (and their subsequent

derivatives).

OP has been widely used in domestic and industrial applications, such as
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rubber. industry; paints; printing inks and coatings, industry; chemical industry

in “emulsion ‘polymerisation -and emulsion “polymer “manufacture; ‘use of

[

ethoxylated resins in the oil industry; textile.and leather industry as finishing
agents, plant protection and ‘animal health products industry. Other potential
uses of OP, include lubricant additives, adhesives, cleaning products, metal

cleaning applications, fragrances, pharmaceuticals, the foundry industry, paper
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coatings, fuel oil stabilisers .and injection moulding ((Renner, 1997; Blake and
Boockfor, 1997; Soares et al., 2008).

REPO:

2.4 Environmental Fate and Distribution

Based on a log Koy 0f 4.12, the organic carbon—water partition coefficient
(Koc) for 4-tert-octylphenol (OP) is estimated as 2740 I/kg (Brooke et al., 2005).

However, it is an indication for a high tendency to-adsorb at organic material.
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Johnson et al. (1998) studied the sorption of OP to different river sediments
using laboratory batch' techniques. The study predicted that suspended
sediments might also play a key role in the fate of OP. in.industrialised areas.
In the rural areas a higher proportion OP might be predicted to remain free in

solution.

|_REPOSITORY.UB.AC.D |

4-tert-octylphenol (OP) is a weak ‘acid, because of this pH might have an
effect on its adsorptive behaviour, The pKa is thought to be around 10. Hence,
in the environment, the substance will be present in the un-dissociated and more
hydrophobic form (Brooke et al., 2005). OP is of low volatility and low water

solubility, and will sorb strongly to organic:matter in soils, sediments and
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sludges. Degradation processes within these media (biotic and abiotic) are

.
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predicted to be- relatively slow. If released directly to the ratmosphere,
degradation occurs rapidly through hydroxyl radical attack. The potential for
bioaccumulation-in aquatic organisms: is expected to be low to moderate
(Brooke et al., 2005; Renner, 1997).

4-tert-octylphenol (OP) ‘is not produced naturally. It presence in: the

UB.ACID |
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environment is solely a consequence of anthropogenic activity. OP enter the
environment primarily via industrial and municipal wastewater treatment plant
effluents (liquid and sludge), but also due to direct discharge such as through
pesticide application (Ying et al., 2002).. Many researchers have shown that OP

widely “exist "in various mediums of water environment, such as water,
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sediments and biological bodies (Chen et al., 2006; Hohne and Pittmann; 2008;
¥
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Zhang et al.,2008; Oketola and Fagbemigun, 2013; Dong et al., 2014)
especially the sediments, which play the role of storing OP.

2.5 Effect of 4-tert-octylphenol (OP) to Organisms

4-tert-octylphenol (OP) is known as endocrine disruptors, which possess

the ability to. mimic natural estrogens and disrupt the endocrine systems of
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higher ‘organisms by “interacting with the estrogen receptor (Blake and

Boockfor, 1997). Gray et al. (1999) concluded that .exposure to OP.during early

development ' through to “maturity negatively affected the reproductive
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performance of male medaka as a result of reductions.in courtship intensity and

fertilisation rates.

4-tert-octylphenol (OP) may exert its effects on organisms by more than
one mode of action. Endocrine-mediated responses, on the other hand, are most
likely to be mediated by a specific mechanism, and the majority of the data for
this substance point towards interference and/or competition with the binding
of natural estrogens (such as 17p-estradiol) to receptor sites and mimicry of

their effects (i.e., an estrogen agonist). There are some structural similarities
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between OP and certain hormones (see Fig. 2), and OP has been demonstrated
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to bind to the estrogen receptor in almost exactly the same way as estradiol
(Brooke et al., 2005).

CHa OH
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HO

Estradiol 4-tert octylphenol (OP)

Fig. 2. Structures of hormone estradiol and 4-tert-octylphenol (OP)
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In addition, 4-tert octylphenol (OP) exposure also can suppress growth,

REPO:

decrease photosynthetic pigments and destroy algal ultrastructure (Zhou et al.,
2013). - Moreover, OP. concentrations higher than 0,062 mg'L*, was shown to
decrease by 50% growth of Microcystis aeruginosa, Pseudokirchneriella
subcapitata (formerly named:Selenastrum capricornutum) and Scenedesmus

subspicatus (Baptista et al., 2009); European Commission, 2005). In terestrial

BRAWIJAYA
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plant, Arabidopsis thaliana and Gypsophila elegans, OP-has been reported that
can reduce the mean length of roots start at concentration 0.1 and 4.25 mg L?,
respectively (Sinkkonen;, et al.; 2011; Chen et al;, 2013). Mareover, OP has

&

been reported that it can induce oxidative stress in Arabidopsis thaliana by
modulating antioxidant enzymes like APX, CAT and SOD (Chen et al.; 2013):
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2.6 Oxidative Stress and Antioxidant System in Plant
2.6.1 Oxidative Stress in Plant

Plants are frequently exposed to a plethora of unfavorable or even
adverse environmental -conditions, termed abiotic, stresses (Fig. 3) such as

salinity (Hasanuzzaman et al., 2011a; 2011b; Hossain et al., 2011), drought

UNIVERSITAS

(Selote and. Khanna-Chopra, 2010; Hasanuzzaman. and. Fujita; 2011), heat
(Chakraborty and ‘Pradhan, 2011; Rani et al., 2013), cold (Yang et al., 2011;
Zhao et al.,2009), flooding (Li et al., 2011), heavy metal toxicity (Hossain et
al.; 2010; Wang et al., 2012); UV-radiation (Kumari et al., 2010; Lietal., 2010;
Ravindran et al., 2010).and ozone (Yan et al., 2010a; Yan et al., 2010Db).

Abiotic''stress “leads to 'a series of “morphological, physiological,

.
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biochemical and molecular changes. that adversely affect plant growth and
productivity (Zezulka et'al.; 2013). Abiotic stresses modify plant metabolism
leading to harmful effects on growth, development and productivity. If the

stress becomes very:high-and/or continues for an extended period-it may lead
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to anintolerable metabolic load on cells, reducing growth; and in severe cases,
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result in plant death (Hasanuzzaman et al., 2012).
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Fig. 3. Different types of abiotic stress in plants (Hasanuzzaman et al., 2012).

There are several forms of reactive oxygen species (ROS) including free
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radicals such as superoxide radical (O27), hydroxyl radical (OH"), and non-
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radical (molecular) forms: hydrogen peroxide (H.O,) and singlet oxygen (*0,)
(Bartosz, 1997). In-plants,  ROS are unavoidable by-products of aerobic
metabolism being produced in various cellular compartments (see Fig. 4) like

| REPOSITORY.UB.ACID |

chloroplasts, mitochondria, and peroxisomes (Gupta and lgamberdiev, 2015).

Production and removal of ROS must be strictly controlled. However, the

equilibrium between production and scavenging of ROS may be perturbed by
a number of adverse abiotic stress factors such as high light, drought, low
temperature; high temperature, and mechanical stress (Apel'and Hirt, 2004).
In chloroplasts O, production takes place at PSI and PSII; it is converted
by-SOD to H,O (Gupta and lgamberdiev, 2015). In peroxisomes; glycolate
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oxidase (GO), acyl-CoA oxidase and xanthine oxidase (XO) are major sites of

REPO!

ROS production, SOD is scavenger. On the other hand, the generation of O,™
involves both the reaction of xanthine oxidase (XO) in the organelle matrix-and
a small electron transport chain at the peroxisomal membrane - level
(Hasanuzzaman-et al., 2012). The plant mitochondrial electron transport chain

is also an important source of ROS production-in plant cells and consists of
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several dehydrogenase complexes that reduce a common-pool of ubiquinone

(Q). ROS production is likely to occur mainly in complex I (NADH
dehydrogenase) and complex 1 (Mgller 2001 ; Blokhina et al. 2003). Although

mitochondrial ROS production is much lower compared to chloroplasts,

| REPOSITORY.UB.AC.D ‘

mitochondrial ROS are important regulators of a number of cellular processes,

including stress adaptation ‘and PCD (Robson and Vanlerberghe, 2002). In
glyoxysomes, acyl-CoA oxidase. is the primary. enzyme-responsible for. the
generation of H,0,. Plasma membrane-bound NADPH oxidases (NADPHox)
as well as cell-wall associated peroxidases (POX) are the main sources of O,™
and H,0, producing apoplastic enzymes activated by various forms of stress
(Mittler, 2002; Mhamdi et al., 2010).
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Peroxysome - g %
Endoplasssic reticutum

Fig. 4. ROS-generating pathways in various’ compartments of plant cell
(Hasanuzzaman et al., 2012).
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2.6.2 Detoxification of ROS by the Antioxidant Defense System

REPO

Certain environmental stresses or genetic defects cause the production of
ROS to exceed the management capacity. ROS play two divergent roles in
plants:-at low concentrations, they act as signaling molecules for the activation
of defense responses under stresses, whereas at high concentrations, they cause

exacerbating damage to cellular components. If prolonged, abiotic stresses,
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through enhanced production of ROS, can pose a threat to cells by causing the

&

peroxidation of lipids, oxidation of proteins, damage to nucleic acids, enzyme
inhibition, ‘activation of the programmed cell death  (PCD) pathway and
ultimately cell death (Sies and Cadenas, 1985; Apel and Hirt, 2004; Mgller et
al., 2007).

An imbalance between the excess production of ROS and the ability of

[_ReposiTORY.B.ACID |

the "organisms ' to'counteract or detoxify their harmful effects through
neutralization by antioxidants defined as oxidative stress (Bartosz, 1997;
Demidchik, 2015). Plants have developed elaborate' mechanisms to withstand
an_oxidative stress. These mechanisms can be conveniently divided into two
groups, viz. non-enzymatic and enzymatic antioxidants (Apel and Hirt, 2004;
Gupta and lgamberdiev, 2015).

Plants possess-an efficient non-enzymatic antioxidants, such asascorbate
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and glutathione and enzymatic antioxidants, including superoxide dismutase,
SOD; catalase; CAT; ascorbate peroxidase, APX;' glutathione reductase, GR;
glutathione peroxidase, and peroxidases, POD as defense systems which work

in concert to control the cascades of uncontrolled oxidation and protect plant
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cells from oxidative damage by scavenging ROS (see Fig. 5) (Mittler et al.,
2004; Gill and Tuteja, 2010).
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Fig..5. Mechanisms of ROS detoxification by different antioxidant enzymes
(Grol etral., 2013).
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2.6.2.1 Non-enzymatic Antioxidants
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a. Ascorbate (AsA)

Ascorbate (AsA) ‘is an important antioxidant in ‘plant tissues which is
synthesized in the cytosol of higher plants primarily from the conversion of D-

glucose to AsA. AsA is present in all subcellular compartments; including the

REPOSITORY.UB.ACID |

apoplast (cell . wall), chloroplasts, cytosol, vacuoles, mitochondria, and

l

peroxisomes (Rautenkranz et al., 1994; Foyerand Lelandais, 1996; Jimenez et
al., 1997). It reacts with a range of ROS such.as H,0,, O, and O,, which are
the basis of its antioxidant action. AsA, the terminal electron donor in these
processes, scavenges free radicals in the hydrophilic environments of plant

cells. It also' scavenges OHe at diffusion-controlled rates (Yu, 1994). In the
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AsA-GSH cycle, two molecules of AsA are utilized by APX to reduce H;0O; to

REPO:

water with the concomitant generation of monodehydroascorbate reductase
(MDHA). MDHA is a radical with a short life span that can disproportionate
into dehydroascorbate (DHA) and AsA. The electron donor is usually NADPH
and the reaction:is catalyzed by MDHAR or ferredoxin in-a'water—water cycle
in the chloroplasts (Asada, 1992; 1997).

In plant cells, the most important reducing substrate for the removal of
H,0, 1s AsA  (Wu et al., 2007). AsA is also thought to maintain the reduced

state of the chloroplastic antioxidant, a-tocopherol. AsA:in plants may be
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involved in the synthesis of zeaxanthin, which dissipates excess light energy in
the thylakoid membranes, preventing oxidative damage (Conklin et al., 1996).

Improvement of ascorbate content in plants will increase plant stress tolerance,

|_REPOSITORY.UB.AC.D |

while decreasing ascorbate content will result in stress sensitivity. of plants
(Zhang, 2013).

b. Glutathione (GSH)

Glutathione  (GSH) is-'a multifunctional ' water-soluble ' tripeptide
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containing a sulfhydryl (-SH) group and is a substrate for DHAR in the AsA-

.
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GSH: pathway. GSH is an' abundant metabolite 'in plants: which' directly
scavenges OHe and 'O, and may protect enzyme thiol groups and also known

to involve in signal transduction in virtually all cellular components such as

UB.ACID |

chloroplasts, mitochondria, endoplasmic reticulum, vacuoles, and cytosol
(Noctor and ‘Foyer, 1998; Gill et al., 2013). Additionally, GSH detoxifies

herbicides by conjugation, either spontaneously or by the activity of a

[ ReposITORY

glutathione-S-transferase, and also regulates gene expression in response to
environmental stress and pathogen attack (Noctor et al., 2002). Furthermore,
GR catalyzes the  NADPH-dependent. formation ' of -a disulphide bond in
glutathione disulphide (GSSG) and is thus important for maintaining the
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reduced pool of GSH. Together, GSH and GR perform the scavenging of ROS
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and its reaction: products; thereby provide tolerance to stress-exposed: plants
(Gill et al., 2013). Other functions of GSH include the formation of

phytochelatins (PCs), which have an affinity to heavy metal and are transported

REPO

as complexes into the vacuole, thus allowing plants to have some level of
resistance to heavy metal (Wang et al;; 2012). The role of GSH in the
antioxidant defense systems provides a strong basis for its use as a stress
marker. The change in the ratio of its reduced (GSH) to oxidized (GSSG) form

BRAWIJAYA

UNIVERSITAS

during the degradation of H,O- is important in certain redox signaling pathways
(Bloem et al.; 2015).

&

2.6.2.2 Enzymatic Antioxidants
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a. Superoxide Dismustase (SOD)

In plant cells, SODs are considered the first line of defense against
damage by the- superoxide - radical. It removes O, by catalyzing. its
dismutation, one O," being reduced to H,0O;and another oxidized to O,. SODs
occur in different isoforms with different metal cofactors, namely copper and
zinc (Cu/ZnSOD), manganese (MnSOD), and iron (FeSOD). Cu/ZnSOD is
localized in the cytosol and chloroplasts, MnSOD in the matrix of mitochondria
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and peroxisomes, and FeSOD in the chloroplasts-of some higher plants, but
they are also generally found in prokaryotes (Scandalios, 1993; Elavarthi and
Martin, 2010).

b. Catalase (CAT)

REPOSITORY.UBACID |
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Catalase (CAT) is'a tetrameric hemecontaining enzyme that is foundin all
aerobic organisms and serves to rapidly degrade H,O,. CATs are present in
peroxisomes, glyoxysomes, and. related organelles where  H,0,-generating
enzymes are located (Agrawal et al., 2009). CAT has one of the highest

turnover rates of all enzymes: one molecule of CAT can convert around six

BRAWIJAYA

UNIVERSITAS

15

&




ptstng

SITORY.UBAC.ID |

mitlion- molecules of H,0O; to H,0 and O, per minute. Thus, CAT is important

REPO:

in removing H,0,, which is generated. in peroxisomes by oxidases involved in
B-oxidation of fatty acids, photorespiration, and purine catabolism (Gill and
Tuteja, 2010). It has also been reported that apart from its reaction with H,O»,

CAT -also reacts with- some hydroperoxides (Willekens et al:; 1995).

c..Ascorbate-Glutathione (AsA-GSH) Cycle Enzymes
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The AsA—GSH cycle is the major defense system against ROS in
chloroplasts, cytosol, mitochondria, peroxisomes and-apoplasts. The AsA-
GSH cycle involves four enzymes (APX, MDHAR, DHAR and GR) as well as
AsA, GSH and NADPH which work together to detoxify H,O, in a series of
cyclic reactions and further regenerate AsA and GSH. In this cycle' APX

|_REPOSITORY.UB.AC.D |

catalyses the reduction of H;O; to H,O with the simultaneous generation of
monodehydroascorbate (MDHA), which is converted to AsA by the action of
NADPH-dependent MDHAR:or disproportionates nonenzymatically to  AsA
and dehydroascorbate (DHA) (Mittler, 2002). DHA undergoes irreversible
hydrolysis to 2, 3-diketogulonic acid or is recycled to AsA by DHAR, which
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uses GSH as the reductant (Chen et al., 2003). This results in the generation of
GSSG; which is regenerated to GSH by GR.

.
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o - Ascorbate Peroxidase (APX)
The scavenging of H,O, by APX is the first step of the AsA-GSH

cycle and may play the most essential role in. scavenging ROS and
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protecting cells in higher plants of electrons from AsA to H,0;, producing
DHA and water (Raven, 2002). The APX family consists of at least five
different isoforms including mitochondrial (mAPX), thylakoid (tAPX) and
glyoxisome membrane forms (gmAPX), as well as chloroplast stromal
soluble form (sAPX), cytosolic form (CAPX) (Noctor and Foyer, 1998).
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o - Glutathione Reductase (GR)
Glutathione reductase (GR) is a potential enzyme of the AsA-GSH

REPO

cycle and plays ‘an ‘essential role in the defense system against ROS.
Increased GR activity confers stress tolerance and has the ability to alter the
redox state of important components of the electron transport chain. This

enzyme catalyzes the reduction of GSH, involved in many metabolic
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regulatory and antioxidative processes:in plants where GR catalyses the
NADPH-dependent reduction of disulphide bond of GSSG and is thus
important for maintaining the GSH: pool (Yousuf et al., 2012). Thus, GR

&

also maintains a high ratio of GSH/GSSG in plant cells, also necessary for
accelerating the - H,O, scavenging - pathway, ' particularly - under . stress
conditions (Gill et al., 2013).

[_ReposiTORY.B.ACID |

d. Gualacol Peroxidase (POD)

Guaiacol peroxidases (PODs) are  involved in many physiological
processes in plants, involving responses to-biotic and. abiotic.stresses and the
biosynthesis of lignin. Lignin is'a polymer responsible for rendering the plant

stronger. ;and . more. rigid. and . also making. .the cell walls hydrophobic.
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Peroxidases are involved in the polymerization of the precursors of lignin. They

are also .involved. in the scavenging of reactive oxygen species (ROS), which
are partially reduced forms of atmospheric oxygen, highly reactive, and capable
of causing oxidative damage to the cell. POD can be a source of hydrogen

peroxide (H.O2) but also are capable of'scavenging it (Vicuna, 2005). POD can

REPOSITORY.UBACID |

decompose H,O, become water and oxygen. It is predominantly located in the

[

cytosol, cell'wall, vacuolar and extracellular spaces (Mishra et al., 2006).
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2.7 Ceratophyllum demersum

Ceratophyllum demersum L. (hornwaort or coontail) grows fast in shallow,
muddy, quiescent water bodies at low light intensities (Aravind and Prasad,
2005). 1t is a submerged, rootless, free floating, perennial-and is cosmopolitan
in distribution (Fig. 6). This submerged macrophyte has a high capacity for

vegetative propagation: and -biomass. production even- under the modest

UNIVERSITAS
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nutritional conditions. 1t is useful as an oxygenator for use in the Closed
Equilibrated Biological Aquatic System (CEBAS) (Chorom et al., 2012). C.
demersum can be biofilter for heavy metals, such as Cd (Aravind and Prasad,
2005), Pb (Mishra et al.; 2006) and Ni (Chorom et al., 2012).

Some studies have been reported that C. demersum is tolerant to oxidative

| REPOSITORY.UB.AC.D ‘

stress- due to different abiotic stress, such as heavy metals (Rama Devi and
Prasad, 1998; Mishra et al., 2006; Chorom et al., 2012), organic contaminants
(Menone and. Pflugmacher, 2005; Yin et al., 2008) and brominated flame

retardant (Sun et al., 2008) through activation of antioxidant system.
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Fig. 6. Ceratophyllum demersum (Wikipedia).
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3:MATERIALS AND' METHODS

3.1 Materials
3.1.1 Plants

Ceratophyllum demersum were collected from Pingtung Agricultural

Biotechnology Park (PABP). Before 4-tert-octylphenol (OP) treatments, plants

BRAWIJAYA
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(3 cm tip portion) were acclimatized in aquaria for 1 week under laboratory
conditions (55 umol m2 s light with 12 h photoperiod at 25 + 2°C) in 10%

&

Hoagland’s solution (Appendix I) (Hoagland and Arnon, 1950). The solutions

were refreshed everyday during acclimation periods and the pH. value was

| REPOSITORY.UB.AC.D |

maintained at 6.5.

3.1.2. 4-tert-octylphenol (OP) Preparation

4-tert-octylphenol (OP) was purchased from-Sigma-Aldrich, USA. The
stock solution was prepared in DMSOQ. at a concentration of 20,000 mg L* and
stored at 4°C in the dark.

UNIVERSITAS

3.2. Experimental Design
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The experimental design was described by the flow chart as shown in
Fig.7 and the detail procedures. were. as follows: plants were exposed to
different concentration of OP (0, 0.5, 1, 1.5, 2 and 3 mg L™) after acclimation
for 1 week. The stock solution of each-.compound was spiked.into. 300 ml 10%

hoagland solution in 500 ml glass beaker according to the concentrations. The
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plants maintained under.above mentioned laboratory conditions and keep in the
growth chamber (FIRSTEK, ‘GC-101). The experiments were conducted in
triplicate and the density of each replicate was 1 ,g/300 ml. The toxicity of
DMSO to C. demersum was checked and no observed effect concentration of

BRAWIJAYA
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DMSO was determined to be 0.025% (v/v) to the growth rate and lipid
peroxidation from the preliminary experiment.

All glass beakers received a 100% solution exchange for every 24 h in the
5 days exposure. The pH of all solutions were maintained at 6.5 at all treatments
and fresh weight of the: plants were measured everyday. The relative growth
rate (RGR) for 5 days cultivation was calculated using the following equation
(Watanabe et al.,-2000):

UNIVERSITAS
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Relative Growth Rate (RGR) = (InWi = InWg)/(t:- to)

where W; is the fresh weight at time t,, Wy is-the; initial fresh weight at the

| REPOSITORY.UB.AC.ID |

beginning of ‘the treatment. After the experimental treatments, leaves were

harvested, rinsed with distilled water, blotted and stored at -80°C for the further

analysis.

Further experiment were conducted using BSO, a specific and potent
inhibitor of y-ECS, the first enzyme that play role in biosynthesis of GSH to
confirm the involvement of GSH in C. demersum defense mechanism under
OP exposure. The leaves of C. demersum pretreated with 0.5 mM BSO, for 8 h

(Chao et al., 2011). After 8h, the solution were renewed and. the leaves were
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treated with and without 3 mg L™ OP for 5 days. For chemical preparation and

3
7]

the detailed analysis procedure, please refer to Appendix H-1V.
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Ceratophyllum demersum exposed to OP

|~ Control | | 0.5 mg L J | 1mgL! J | 1.5mgL! J | 2 mg L | | 3mgL! ] S days

Detection of OP Determination of
induced oxidative stress enzymatic
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enzymatic antioxidants

Fig. 7. The flow chart of experimental design.
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3.3. Biochemical analysis

REPO

3.3.1. Determination of photosynthetic pigments

A 0.1 g leaves sample was extracted in 4 ml extraction buffer (sodium
phosphate buffer 50 mM, pH = 6.8) under 4°C. The homogenate was taken 40
pland added 960 il ethanol (100%), and was mixed together. The mixture was
put in the dark chamber-at 4°C for 30 minutes and centrifuged at 1000 g for 15

BRAWIJAYA
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minutes under 4°C. The absorbance of the supernatant was measured at 649

&

and: 665 nm and  calculated - the chlorophyll content using these formula

according to Wintermans and De Mots (1965) :

g Chlorophyll a = (13.7 % Asss) (5,76 % Asss) [(1g Chl (40 )]
i% Chlorophyll b = (258 X A649) T (76 X A665) [l.lg Chl (40 l.ll)l]
Sj Total Chlorophyll =(6.1'x Asgs) + (20.04 x Ags0) [1g Chl (40 uh?]

Chlorophyll.a content (mg g* FW)

=Chlorophyll a x 50 (dilution) + 1000 +~ FW (g)
Chlorophyll-b content (mg g* FW)

=Chlorophyll b x 50 (dilution) <+ 1000 =~ FW (g)
Total Chlorophyll content (mg g FW)

=Total Chlorophyll x 50 (dilution) 1000 +~ FW (q)
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3.3.2. Determination of Lipid Peroxidation (MDA contents)

Lipid peroxidation was expressed as MDA content.. MDA content was
determined according to the method decribed by Heath and Packer (1968).
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Briefly; a 0.1 g leaves sample was extracted in 1 ml 5% trichloroactic acid
(TCA) under 4°C. The homogenate was centrifuged at 12,000 g for 10 min

[

under 4°C. A sample-of 0.5 ml of the supernatant was mixed with 2 ml of 20%
TCA containing 0.5% thiobarbituric acid (TBBA). The mixture was incubated
at 95°C for 30 min and the reaction was terminated after transferred to ice box:

The 2 ml of the above reaction solution was taken and centrifuged at 12,000 g
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for 10 min under 4°C. Theamount of MDA content was calculated from: the

REPO

difference in absorbance at 532 nm and 600 nm using an extinction coefficient
of 155-mM™* cm™,

3.3.3. Determination of Hydrogen Peroxide (H20.) Activity

The level of H,O, was determined according to. Jana and Choudhuri
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(1981). Briefly, a 0.1 g leaves sample was extracted in 2 ml-50 mM sodium

&

phosphate buffer pH 6.8 containing 1 mM hydroxylamine under 4°C. The
homogenate was centrifuged at 12,000 g for 10 min under 4°C. A sample of
0.5 ml of the supernatant was mixed with 0.5 ml TiCl, [Titanium Chloride
(0.1%, v/v) diluted in 20% (v/v) H,SO4} and centrifuged at 12,000 g for-10 min

under 25°C. The absorbance of supernatant was measured at 410 nm. The

[_ReposiTORY.B.ACID |

content of H,0, was calculated using an extinction' coefficient of 0.28 pmol-*

cmt

3.3.4. Determination of Superoxide Radical (O2™) Activity

The level of O, was determined according to Panda (2007) and Elstner
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and:Heupel (1976). Briefly, a 0.1 g leaves sample was extracted in.1 ml 65 mM

sodium phosphate buffer pH 7.8 under 4°C. The homogenate was centrifuged
at 12,000 g for 20 min-under 4°C. A sample of 0.5 ml of the supernatant was
mixed with 0.45 ml 65 mM sodium phosphate buffer pH 7.8 and-0.05 ml 10
mM hydroxylamine. The mixture was put under 25°C for 20 minutes. After 20

minutes, 0.5 ml of the mixture was taken and mixed with 0.5 ml 17 mM

REPOSITORY.UBACID |

sulfanilic acid and. 0.5 ml 7 mM a-naphtylamine, the mixture was put under

[

25°C for 20 minutes. After 20 minutes, 0.7 ml of the mixture was taken and
mixed with 0.7 ml ether and centrifuged at 1,500 g for 5 min under 25°C. The
absorbance of 'supernatant was measured at 530 nm. The content of O, was
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calculated 'according to the standard —curve 'generated -using  different

REPO

concentration of sodium nitrite (0, 1, 2, 5, 10 and 20 uM).

3.4. Effect of 4-tert-octylphenol (OP) on Enzymatic Antioxidant

3.4.1. Spectrophotometric measurement

A 0.1 g sample was extracted in' 1 - ml 50 mM. sodium phosphate buffer
(pH 7) containing 2 mM NaEDTA and 1 mM PMSF, with the addition of 0.5
mM ascorbate for the APX assay. The homogenate was. centrifuged at 12,000

BRAWIJAYA
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g for 10 minutes under 4°C at least 3 times and the supernatant used for the
enzyme . assays.  Protein..contents were determined following the methods

described by Bradford (Bradford, 1976), using bovine serum albumin as

[_ReposiTORY.B.ACID |

standard and  measured. the absorbance at 595 nm_using ELISA reader
(Spectramax 190, Kim Forest Enterprise). The average protein content that was

used for spectrophotometric measurements was 0.2 pg pl=.

3.4.1.1 Ascorbate Peroxidase (APX; EC 1.11.1.11) Assay

APX activity was determined as described by Nakano and Asada (1981).

UNIVERSITAS

Briefly, 1 ml reaction solution contained 0.1 ml supernatant, 50 mM sodium
phosphate buffer (pH 7.0), 1.5 mM Na;EDTA,; 0.5 mM Ascorbate; 0.25 mM

H20,. The decrease in absorbance at 290 nm was measured and activity was
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calculated using the extinction coefficient &€ =2.8 mM™ ecm%. One unit of APX
activity'was defined as the amount required to decompose 1 nmol ascorbic acid

min=t mg protein-*.
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3.4.1.2 Catalase (CAT; EC 1.11.1.6) Assay

CAT activity was determined as described by Kato and Shimizu (1987).
Briefly, 1 ml reaction solution contained 0.1 ml supernatant, 25 mM sodium
phosphate buffer (pH 7.0) and 20 mM H;O,. The decrease in absorbance at 240
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nm was measured that accompanied the consumption of H,O2and activity was
calculated using the extinction coefficient ¢ = 40 mM~t cm™. One unit of CAT
activity was defined as the:amount required to decompose 1 nmol-H,O, min™?

mg protein ™™,

3.4.1.3 Glutathione Reductase (GR; EC 1.8.1.7) Assay

BRAWIJAYA
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GR activity was determined as described by Sgherri'et al. (1994). Briefly,

&

1 ml reaction solution contained 0.1 ml supernatant, 0.2 M sodium phosphate
buffer (pH 7.5), 0.2:mM Na;EDTA, 1.5 mM MgCl;, 0.25 mM GSSG and 25
uM B-NADPH. GR activity was quantified by following the reduction of

NADPH reflected as a change of the absorbance at 340 nmand calculated using

| REPOSITORY.UB.AC.D |

the extinction coefficient € = 6.2 mM~t cm L. One unit of GR activity was
defined as the ‘amount of enzyme required to decompose 1 ‘umol B-NADPH

min ! mg protein~*.

3.4.1.4 Superoxide Dismustase (SOD; EC 1.15.1.1) Assay

SOD activity was determined as described by Beauchamp and Fridovich
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(1971). Briefly, 475 ul reaction solution contained 20 pl supernatant, 0.025 M
sodium phosphate buffer (pH 7.8), 0.16 MM Na,EDTA, 20.52 mM methionine,

2
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99.5 uM NBT and 2.34 uM riboflavin. The reaction mixtures were illuminated
under the light in incubator for 15 minutes. SOD activity was quantified by
monitoring the rinhibition of -nitro blue tetrazolium (NBT) photochemical

reduction at 340 nm. One unit of SOD activity was defined as 50% inhibition
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of the reduction of NBT 'mg protein~* h-.
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3.4.1.5. Peroxidase (POD; EC 1.11.1.7) Assay

REPO

POD activity were carried -out spectrophotometrically as described by
Kato and Shimizu (1987). Briefly, 1.29 ml reaction solution contained 0.1 ml
supernatant, 7.7 mM sodium phosphate buffer (pH 6.8), 0.77 mM guaiacol and
11.54 mM H,0,. POD enzyme will converted H,O, to H,O and O, then oxygen

reacts with guaiacol to produce a brown. color. The increase absorbance as a
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result of formation oxidized product (tetraguaiacol) was measured at A=470

&

nm and calculated using the extinction coefficient ¢ = 26.6 mM-t cm™t. One
unit of POD activity was defined as 1 umole tetraguaiacol formation min™ mg

protein ?.
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3.4.2. Zymography Assay

A 0.3 g sample was extracted in 0.5 ml 50 mM sodium phosphate buffer
(pH 7.0) containing 2 mM Na;EDTA and 1 mM PMSF; with the addition of 5
mM ascorbate for the APX' zymography assay. The homogenate was
centrifuged at 12,000 g for 10 minutes under 4°C at least: 3 times and. the
supernatant was used for the zymography assays. Protein contents were
determined; following the methods described by Bradford: (Bradford, 1976),

using bovine serum albumin as standard and measured the absorbance at 595

UNIVERSITAS
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nm using ELISA reader (Spectramax 190, Kim Forest Enterprise). The average
protein content that used for zymography assay was 0.4 pg ™ The supernatant
was mixed with 10X protein dye (Appendix 1) and stored in.-80°C for further

analysis.
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3.4.2.1 Ascorbate Peroxidase (APX; EC 1.11.1.11) Assay

The zymography assay of APX was based on the principle that nitroblue
tetrazolium will react with ascorbate and TEMED generated formazan purple

blue color. While APX will scavange ascorbate, so if there is no ascorbate, there
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is no purple-blue color on the gel. APX zymography assay was conducted using

10% native PAGE resolving gel which was prepared according to the

composition of 1.5 mm gel as shown in the Table 1.

Table 1. Composition of one 1.5 mm gel

Resolving gel (ml) Stacking
gel (ml)
12% 10% 8% 4%
Solution A (40%) 2.40 2.00 1.60 0.40
Solution B 2.00 2.00 2.00 -
Solution C - - - 1.00
TEMED 0.0072 0.0072 0.0072 0.0040
H.O 1.98 2.38 2.78 1.78
50% glycerol 1.6 1.6 1.6 0.80
10% APS 0.02 0.02 0.02 0.02
Total Volume 8 ml 4'ml

Solution A: 40% polyacrylamide mix

Solution B: 1.5 M Tris-HCI pH 8.8
Solution C: 0.5 M Tris-HCI pH 6.8

The gel was run under 4°C using 1X TG Buffer (Appendix HI) containing

2 mM ascorbate as running buffer. The gel'was prerun at 80 V for 30 minutes

to ensure the gel full of ascorbate. After prerun, the running buffer in the inner

tank was changed freshly. Then, 5 ug protein were loaded in each well. The gel

was run at 80 V until the sample into resolving gel for 99 minutes. After that,

the voltage was changed into 120V and run for 160 minutes.
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After electrophoresis, activity of APX ‘was stained using the method
described by Mittler and Zilinskas (1993). Briefly, the gel was equilibrated with
15:ml 50 mM NaPOy4 pH 7.0 containing 2:-mM ascorbate for 10 min (3-times).
After that, the gel was incubated in 50 mM NaPO, pH 7.0 containing 4 mM

REPO:

ascorbate and 2-mM-H;0; for.25 minutes. The gel was washed with 50 mM
NaPO, pH 7.8 containing 28 mM TEMED and 2.45 mM NBT for 3-5 minutes
in the dark (stop while the bands are disguisable). After that, 10% acetic acid
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was added to stop the reaction and photographed using ‘scanner (EPSON

&

Perfection V370). Stored the gel in 10% acetic acid at 4°C up for several

months.

3.4.2.2 Peroxidase (POD; EC 1,11.1.7) Assay

|_REPOSITORY.UB.AC.D |

The zymography assay of POD. was based on the principle that POD
enzyme will converted H,0; to H,O and O, then oxygen reacts with guaiacol
to produce a brown color. POD zymography assay was conducted using 10%
native PAGE resolving gel which was prepared according to the composition

of 1.5 mm gel as shown in the Table 1,

UNIVERSITAS

The gel'was run-under 4°C using 1X TG Buffer-as running buffer. The gel
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was prerun at 80 V for 30 minutes to eliminate APS. After prerun, the running

.

buffer in the inner tank was changed freshly. Then, 5 ug protein were loaded in
each well. The gel was run at 80 V until the sample into resolving gel for 60

minutes. Afterthat, the voltage was changed into 120 V and run the gel for 5 —

UB.ACID |

6 hours.

After polyacrylamide gel electrophoresis, activity of POD'was stained

[ ReposITORY

using the method described by Koksal and Gulgin (2008). The gel was washed
with distillated water to remove the buffer. Then, the gel was incubated in 4.5
mM guaiacol and 22.5 mM H,0; in 100 mM phosphate buffer (pH 7.0) at 25°C
and gently shake (stop while the bands are disguisable). The staining solution
is then poured off; the gel was briefly rinsed. After that, 10% acetic acid was
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added to stop the reaction-and photographed using scanner (EPSON Perfection
V/370). Stored the gel in 10% acetic acid at 4°C up for several months. The

REPO

POD bands are brown on the transparent gel and stable for at least several

hours. The gel was stored in 10% acetic acid at 4°C up for several months

3.4.2.3 Glutathione Reductase (GR; EC 1.8:1.7) Assay

GR zymography. assay was conducted using 10% native PAGE resolving
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gel which was prepared according to the composition of 1.5'-mm- gel as shown
in the Table 1.
The gel was run-under 4°C using 1X TG Buffer as running buffer. The gel

&

was prerun at 80 V for 30 minutes to eliminate APS. After prerun, the running

[_ReposiTORY.B.ACID |

buffer in the inner tank was changed freshly. Then, 5 pug protein were loaded in
each well. The gel was run at 80 V until the sample into resolving.gel  for 75
minutes. After that, the voltage was changed into 120V and run the gel for 115
minutes.

After ‘electrophoresis, ‘activity of GR'was stained 'using the method
described by Foyer et al. (1991). Briefly, the gel was immersed with the 10 mi
staining solution contained 250 mM Tris-HCI'pH 7.5,"3 mM Na;EDTA, 0.4
mM.NADPH, 0.68 mM 2,6 dichlorophenolindophenol (DCIP), 0.48 mM 3-
(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and
3.4 mM GSSG, gently shake in the dark at least 1 h until the bands were

UNIVERSITAS
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disguisable. Duplicate gel was stained in the absence of GSSG as control. After

staining, the gel was briefly rinsed and immersed in 10% acetic acid until the
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background: become  transparent. Take a picture using scanner. (EPSON

[

Perfection VV370). The gel was stored in 10% acetic acid at 4°C up for several

months.
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3.4.2.4 Superoxide Dismustase (SOD; EC 1.15:1.1) Assay

REPO:

The zymography assay of SOD was conducted, using 10% native PAGE
resolving gel which was prepared according to the composition of 1.5 mm gel
as shown in the Table 1.

The gel was run under 4°C using 1X TG Buffer as running buffer. The gel

was prerun at 80 V for 30 minutes to eliminate APS. After prerun, the running
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buffer in the inner tank was changed freshly. Then, 5 ug protein were loaded in
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each well. The gel was run at 80.V until the sample into resolving gel for 99
minutes. After that, the voltage was changed into 120 V and the gel was run
until the dye is at the end of gel for 60 minutes.

After electrophoresis, activity of total SOD was stained using the method

described by Beauchamp and Fridovich.(1971). Briefly, the gel was immersed
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in'0.1% NBT for 15 minutes in the dark and gently shake. The gel was rinsed
with distillated water three times. The gel was added with 20 ml 0.1 M sodium
phosphate buffer pH 7.0 containing 66.7 pul TEMED and 74.7 ul 7.5 mM
riboflavin, shake for 15 minutes. The gel was briefly rinsed with distillated

water three times and added the small amount of 0.1 M sodium phosphate
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buffer pH 7.0, gently shake under light for 10 minutes until the bands were
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disguisable. After that, 10% acetic acid was added to stop the reaction and
photographed using scanner (EPSON Perfection V370). Stored the gel in 10%
acetic acid at 4°C up for several months.

To identified. the SOD. 1soenzymes, H,O, and KCN were added. For
detected the MnSOD, the H,0, were used to inhibit CuzZnSOD and FeSOD.
Briefly, the gel was immersed in 20 ml 0.1 M sodium phosphate buffer pH 7.0

UB.ACID |
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containing 16.5 ul 9.7 M H;0; for 30 minutes under 4°C. The gel was briefly
rinsed with distillated water three times. Then, the gel was stained followed the
total 'SOD ' staining procedure ‘and photographed using 'scanner (EPSON
Perfection V370).
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MnSOD and FeSOD were detected by adding KCNto inhibit CuZnSOD.
Briefly, the gel was immersed in 0.1% NBT for 15 minutes in the dark and

REPO:

gently shake. The gel-was rinsed with distillated water three times. The gel was
added with 20 ml 0.1 M sodium phaosphate buffer pH 7.0 containing 66.7 pl
TEMED, 74.7 pl 7.5 mM riboflavin and 80 pl 2'M KCN, shake for15 minutes.

The gel was briefly rinsed with distillated water three times and added the small

BRAWIJAYA
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amount of 0.1 Msodium phosphate buffer pH 7.0, gently shake under light for

10 minutes until the bands were disguisable. After that, 10% acetic acid was

&

added to stop the reaction and photographed using scanner (EPSON Perfection
V370). Stored the gel in 10% acetic acid at 4°C up for several months. Finally,

the three gels were compared to determine the SOD isoenzymes.
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3.4.2.5 Protein Staining

Protein staining was conducted using 10% native PAGE resolving gel
which was prepared according. to. the composition of 1.5 mm-gel as shown in
the Table 1.

The gel was run-under 4°C using 1X TG Buffer as running buffer. The
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gel was prerun at 80 V for 30 minutes to eliminate APS. After prerun, the
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running buffer in the inner tank was changed freshly. Then, 5 ug protein were

.

loaded in each well. The gel'was run at 80 V' until the sample into resolving gel

for 99 minutes. After that, the voltage was changed into 120 V. and the gel was

UB.ACID |

run until the dye is at the end of gel for 60 minutes.

After electrophoresis, the gel was stained using Coomassie Brilliant Blue

[ ReposITORY

R 250 (Appendix IH1) and gently shake for 30'minutes. For destain procedure,
the gel was immersed in destain buffer | (50% methanol. + 10% glacial acetic
acid)and then replace with destain buffer 11" (5% methanol + 7% glacial acetic
acid). Take a picture -using scanner. (EPSON. Perfection. VV370) when the
background turned to transparent. Stored the gel in ddH,0 + destain buffer |1

at room temperature up for several months,

UNIVERSITAS

¥ BRAWIJAYA

31




ptstng

SITORY.UBAC.ID |

3.5. Effect of 4-tert-octylphenol (OP) on‘Non-enzymatic Antioxidant
3.5.1 Determination of Ascorbate (AsA)

Ascorbate '(AsA) and total ascorbate (AsA+dehydroascorbate (DHA))
were determined according to the method described by Hodges et al. (1996). A

REPO:

0.1 g leaves samples was extracted in 1 ml of 5% (v/v) TCA. The homogenate

was centrifuged at 12,000 g for 10 minutes under 4°C. For determination of

BRAWIJAYA
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total ascorbate; 0.1 ml of supernatant was-added to 0.5 ml of 120 mM sodium
phosphate buffer (pH7.4) containing 0.2 ml of 15 mM Na,EDTA and 0.2 ml of
10-mM dithiothreitol (DTT). After reaction at 25°C for 10 min, 0.1 ml of 40
mM N-ethylmaleimide, 0.4 ml of 10% TCA (v/v), 0.4 ml of 8 M H3PO4, 0.4 ml
of 0.26 M a,0’-dipyridyl in 70% ethanol (w/v) and 0.2 ml of 0.19 M FeCl; were
added and mixed well in‘sequence. AsA was assayed in a similiar procedure
except-that 0.1 ml ddH;O was. used to replace 0.1 ml.of DTT and 40 mM N-

ethylmaleimide. The mixtures were incubated at water bath under 40°C for

&
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1 h. The absorbance of the mixture were assayed at 525 -nm. The content of
ascorbate -was calculated according to the standard ‘curve generated with

different concentrations. of L-ascorbate (0-40 nmole). The difference between
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total ascorbate and AsA was considered to represent the content of DHA.
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3.5.2 Determination of Glutathione (GSH)

The glutathione pool was assayed as described by Anderson (1985) with

UB.ACID |

little modification. A 0.1 g leaves samples was extracted in 1 ml of 5% (v/v)
TCA. The homogenate was centrifuged at 12,000 g for 10 minutes under 4°C.
Then, 0.4 M phosphate buffer pH 8.0 was added into TCA extracts for
neutralization with ratio 1.2 1. Then, the supernatant was divided into 2 tubes
for measuring total GSH (tGSH) and GSSG. For GSSG quantification, 0.1 ml

[ ReposITORY

supernatant was added with 2 ul 1M 2-vinylpiridine and incubated in 25°C for
1 h to eliminate GSH. After 1 h, then the extract keep in 4°C and used for
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determination of GSSG. For tGSH assay, 1 ml of reaction mixture containing
0.2 mM B-NADPH, 100 mM phosphate buffer (pH. 7.5), 5mM Na,EDTA, 0.6
mM 5,5’ dithiobis (2-nitrobenzoic acid) prepared in'0.2:M NaPO; pH 7.5 and
0.1 ml of supernatant were mixed. The reaction was started by adding 0.1 ml
GR (LU/ml) then monitored by measuring the change in absorbance at 412 nm

for 2 min. GSSG was assayed in a similiar procedure with tGSH. A standard

UNIVERSITAS
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curve was prepared based on solutions with different concentrations of 1 - mM
GSSG (0-20 nmole). The difference between tGSH and GSSG content was

considered to represent the content of GSH.
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3.6 Statistical Analysis

Data from experiments were analyzed by one-way analysis of variance
(ANOVA) followed by Tukey’s post hoc analysis at P < 0.05 to identify
significant differences among treatments- using the software SPSS 20.0

package. Data are presented as mean * standard deviation (mean + SD).
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4, RESULT
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4.1. Effect of 4-tert-octylphenol (OP) on the Growth Rate and Physiological
Features

After 5 days treatments under 4-tert-octylphenol (OP) exposure, the

physiological features in Ceratophyllum demersum were observed.

UNIVERSITAS
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Physiological features, such as chlorosis and yellowing leaves were shown
obviously at concentration 3 mg L. In the higher concentration, some leaves
were also fall down (Fig. 8A). The growth rate based on the fresh weight of
plant fragments were gradually decreased with the increasing of OP
concentrations. Relative growth rates were decreased significantly by about 26,
66, 69, 70 and 92% in the C. demersum treated with 0.5, 1, 1.5, 2 and 3 mg L™
for 5 days, respectively, compared with the control (Fig. 8B).
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OP coneentrations (mg L1)

Fig. 8. Physiological features in C. demersum leaves after exposed to 0, 0.5, 1,
1.5, 2 and 3 mg L OP for 5 days (A); Effects of OP_on growth rates
of C. demersum (B). Data are expressed as a mean + SD. Different
letters indicate significant differences (P < 0.05).
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Photosynthetic pigments, such as total chlorophyll (chlorophyll a and b)

REPO:

were also decreased under OP treatments. For total chlorophyll, the significant
decreased were found at 1.5, 2 and 3 mg L1 by about 20, 23 and 43%, compared
with the control, respectively, and that of chlorophyll a by about 20, 21 and
42%, respectively. Chlorophyll b did not significantly alter in plants treated

with OP, while a significant decrease was detected at concentration 3 mg L*
(Fig. 9).
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Fig. 9. Effects of exposure to OP.on the total chlorophyll (chlorephyll a and b)
content of C. demersum. Data are expressed as a mean + SD. Different
letters indicate significant differences (P </0.05).
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4.2. Effects of 4-tert-octylphenol (OP) on the Levels of ROS and Lipid
Peroxidation

Treatment with 3 mg L2 OP increased the content of O, significantly by

about 12% (Fig. 10A), when compared with: control plants; and that of H,O;

were increased in 2 mg L and 3 mg L' OP treatments by about 15 and 29%
(Fig. 10B), respectively. The content of MDA in plants treated with OP did not

increase as expected, the MDA contents were not altered under OP treatments

(Fig. 10C).
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a a
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OP concentrations (mg L)

Fig. 10. Effects of OP on the levels of ROS, O, (A), H;0; (B) and MDA
contents (C) in C. demersum. Data are expressed as a mean £ SD.
Different letters indicate significant differences (P < 0.05).
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4.3. Effects of 4-tert-octylphenol (OP) on the Enzymatic Antioxidants

REPO

A significant increase of SOD activity was observed in C. demersum

leaves treated with -3 mg L OP: after 5 days exposure, while 'no-significant

<L
E alterations were detected at the lower concentration (0.5, 1, 1.5 and 2 mg L %)
gi (Fig: 11B). At least three SOD. isoenzymes; CuZnSOD, FeSOD 1 and FeSOD
%]
§<{ 2, were detectable in both, the control and OP-treated leaves (Fig. 11A) and
% % their activities were highest in plants treated with 3 mg L OP.
R A
1 CuZnSOD
SOD 1 FeSOD 1
- activity 1 FeSOD 2
H _
C 0.5 1 15 2 3 (mgL™)
S
2 g SOD Activit
= ; 3B r y
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- < 30
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=
S0 25+
& % 20
25|
o 56
2
5
H

OP concentrations (mg-L1)

Fig. 11. Effects of OP on SOD activity.in C. demersum. Zymography assay of
SOD activity in-native PAGE (A); Spectrophotometric - measurement
of 'SOD- activity (B).. CBB are indicated Coomassie Brilliant Blue
staining. Data are expressed as a'mean + SD. Different letters indicate
significant differences (P < 0.05).
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The enzymatic activity ~ of ~POD ' (Fig. ' 12B) ~were observed

REPO!

spectrophotometrically showed- increasing activity by about 31% in leaves of
C.-demersum -after exposure-to- 3 mg L* for 5 days.-Furthermore, POD
isoenzymes were visualized using guaiacol and H,O, in C. demersum (Fig.
12A). Activity of POD isoenzymes increased after treatments with 3 mg: L% for

5 d, however no significant different was detected in lower concentration (0,

0.5,1; 1.5 and 3:mg L™?).
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Fig. 12. Effects of OP on POD activity.in C. demersum. Zymography assay of
POD activity in-native PAGE. (A); Spectrophotometric measurement
of POD- activity (B).. CBB are indicated Coomassie Brilliant Blue
staining. Data are expressed as a'mean + SD. Different letters indicate
significant differences (P < 0.05).
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Exposure-of plants to.0.5 and 1 mg L' did ‘not show any alterations in
APX activity compared to the control, while in 1.5, 2 and 3 mg L?, APX
activity increased gradually by -about 33, 51 and 62%, respectively (Fig. 13B).

<L
zf Zymography assay were conducted to detect APX activity using ascorbate as
gg electron donor, APX isoenzyme also showed an increasing in OP: treatments
%]
§<[ 1.5, 2 and 3 mg L* (Fig. 13A).
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Fig. 13. Effects of OP on APX activity-in'C. demersum:. Zymography assay of
APX activity in native PAGE (A); Spectrophotometric measurement
of APX activity (B). CBB are indicated Coomassie Brilliant Blue
staining. Data are expressed as a mean + SD. Different letters indicate
significant differences (P < 0.05).
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A significant increase in the activity of GR was observed- in plants treated
with 0.5, 1, 1.5 and 2 mg L by about 9, 27, 27 and 18% compared with the

control; respectively (Fig. 14B).. However, in:rthe highest concentration: OP

REPO:

<L
E treatment 3 mg L the GR activity decreased 27%, compared with the control.
1 B |
gg GR activity rassay -using native  PAGE also shows the same  pattern with
%]
§<{ spectrophotometric measurement. Two GR isoenzymes were detected in gel
%% and iincreased -after- treatments with 0.5-2-mg- L OP-and decreased at: OP
£ concentration 3 mg L (Fig. 14A)
A
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8 GR <+« GR1
I§ activity
L . —
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B 140 r
g 120 |
= 21.00
g 080 |
gl E 060 |
&| 040 |
a| 020 |
Bl 0.00

Control 0.5 1 15 2 3
OP concentrations (mg L)
Fig. 14. Effects of OP on GR activity in C. demersum. Zymography assay of
GR activity in‘native PAGE (A); Spectrophotometric measurement of
GR activity (B). CBB are indicated Coomassie Brilliant Blue staining.
Data are expressed as a mean * SD. Different letters indicate
significant differences (P < 0.05).
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Plants: treated -with various: concentrations' OP in'the growth 'medium

REPO

caused significant alterations of the activity of CAT (Fig. 15) in leaves. The
activity of CAT was increased significantly at 0.5, 1, 1.5, 2'and 3 mg L. The
maximum activities of CAT were observed in leaves at 1, 2 and 3 mg L™ OP,
which ‘were ~112, ~100 and ~78% higher than the activities in controls,

respectively.
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Fig. 15. Effects of OP on CAT activity in'C. demersum. Data are expressed as
a mean £ SD. Different letters indicate significant differences (P <
0.05).

<
<
=
<
e
o

4.4. Effects of 4-tert-octylphenol (OP) on the Non-Enzymatic Antioxidants
4.4.1 Ascorbate (AsA)

Fig. 16A shows that the contents of total ascorbate increased significantly

REPOSITORY.UB.ACID |

[

between concentration 1 mg L*and 3 mg L™ of OP, compared with the control,
the increasing percentage in 1, 1.5, 2 and 3 mg L "> by-about 42, 43,38 and 43%,
respectively. A significant enhancement in AsA content was also observed in
leaves treated with concentration 1 until 3-mg L™ of OP. compared with the
control, while the AsA contents at 2 and 3 mg L™ were decreased slightly
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compared with 1:and 1.5 mg L' OP but still-higher thanthe control (Fig. 16B),
while contents of DHA increased significantly between 0.5 and 3 mg L™* OP
(Fig. 16C). The ratio of ASC/DHA were observed and it decreased in: the
concentration 2 and 3 mg L OP compared with the control, by about 24 and
14%, respectively (Fig. 16D).
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Fig. 16. Effects of OP on total ascorbate (A), AsA (B), DHA (C) and AsA/DHA
(D) in C. demersum. Data are expressed as a mean + SD. Different
indicate significant differences (P < 0.05).
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4.4.2 Glutathione (GSH)

Plants treated with various concentration of OP (0.5, 1, 1.5, 2 and 3 mg
L.Y) ‘cause ssignificant ‘alteration in total glutathione (tGSH) ‘contents. The
increasing of tGSH reached 73% at 0.5 mg L™ and more than 100% between
concentration 1 and 3 mg L*(112-132%) (Fig. 17A). The same pattern-also
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were observed at the GSH contents, the increasing of GSH contents reached

REPO:

more than 100% in each concentration of OP treatments 0.5, 1, 1.5, 2 and 3 mg
L.t by about 107, 154, 177, 174 and 168%, respectively, compared with: the
control (Fig. 17B). Meanwhile, the GSSG contents decreased by 86, 85, 85, 71
and 50%, respectively, in plants treated with 0.5, 1, 1.5, 2 and 3 mg L (Fig.
17C). The ratio of GSH/GSSH were increased significantly under OP
treatments compared with the control (Fig. 17D)
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Fig. 17. Effects of OP. on total glutathione (A), GSH (B), GSSG (C) and
GSH/GSSG (D) in C. demersum. Data are expressed as a mean = SD.
Different letters indicate significant differences (P < 0.05).
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4.5 Pretreatment of C. demersum leaves with BSO

The data from previous treatment shown that the tGSH and GSH
increased inthe leaves treated with various concentrations of OP (Fig. 17A and
17B). It also shown that tAsA and AsA increased under OP treatments. We
hypothesized that GSH:may play an important role in C. demersum to cope
with OP induced oxidative stress.

To test the hypothesis, the leaves of C. demersum: pretreated with: 0.5
mM BSO, a specific and potent inhibitor of y-ECS, the first enzyme that play
role in biosynthesis of GSH for 8 h (Chao et al.,'2011). After 8h, renew. the
solution, then the leaves were treated without and with 3 mg L™ OP for 5 days.
After 5 days treatments under OP exposure, the physiological features in
C. demersum were observed. Physiological features, such as chlorosis and
yellowing leaves were shown obviously at OP treatment and BSO pretreatment
+ OP, compared to the control and BSO pretreatment. Some leaves also fell
down at OP treatment and the worst condition was found at BSO pretreatment

+ OP which most of the leaves fell down (Fig. 18).

Fig. '18. Physiological ' features inC. demersum 'leaves after 8h BSO
pretreatment and continued with'3' mg L™ OP exposure for 5 days.
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It was observed that the content of total glutathione (tGSH) (Fig. 19A),
total ascorbate (tAsA) (Fig. 19B), and the activities of GR (Fig. 19C) and APX

(Fig. 19D) were decreased in leaves of C. demersum pretreated with BSO.
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Fig. 19, Effect of BSO and BSO + OP on the contents of tGSH (A), tAsA(B);
GR (C)-and APX activity (D) in the leaves of C..demersum pretreated
with or without BSO for.8h, then transferred to hoagland solution with
or without 3 mg L-*OP for 5 days. Data are'expressed as a mean  SD.
Different letters in each graph indicate significant differences (P <
0.05).
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5./ DISCUSSION

REPO:

The toxicity effect of 4-tert-octylphenol (OP) in-aquatic plant has not been
widely studied, meanwhile OP has been reported by Chen et al. (2013) that it
can affect in the physiological -and morphological features- of ‘Arabidopsis

thaliana during growth and induced oxidative stress. In addition, at higher OP
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levels (0.25 and- 1 -mg L) Microcystis-aeruginosa growth was impaired,

indicating toxic effects (Baptista et al., 2009). OP also can suppress growth,

&

decrease photosynthetic pigments and-destroy algal ultrastructure in freshwater
green microalgae Scenedesmus obliguus (Zhou et al., 2013). In present study,
OP. exposure .in-Ceratophyllum-demersum caused. negative effect on plant

growth. Growth of plant, as determined by an increase in fresh wight, was

|_REPOSITORY.UB.AC.D |

significantly reduced in-concentration dependent manner: by OP. treatment
beginning with 0.5'mg L™ OP. As the growth is reduced with increasing OP
concentrations. it can. be hypothesized. that one of the toxicity effects. is. the
growth inhibition. OP was previously found to reduce the mean length of roots
and - inhibit the growth in A. thaliana and Gypsophila elegans. start at
concentration 0.1 and 4.25'mg'L 1, respectively (Sinkkonen et al., 2011; Chen
et al., 2013).

Photosynthesis ‘is the 'most fundamental and “intricate ~physiological
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process in all green plants. Reduction. of photosynthetic pigment content is a
physiological marker of abiotic stress in plant (Ashraf and Harris, 2013). The
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physiological features, such as chlorosis or yellowing leaves have been shown

in C..demersum under OP exposure. Accordingly, total chlorophyll contents (a

[ ReposITORY

and b) also decreased significantly. This loss in pigment contents could be due
to the damage of photosynthetic apparatus. In green algae and cyanobacteria,
OP had adverse effects on photosystem 1l energy. fluxes (Perron and Juneau,
2011). Photosystem: 11 (PSII) electron transport is one of the most sensitive

indicators of damage in the photosynthetic apparatus (Krause and Weis, 1991).
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Under stress condition; excess H>O, and O, can induces oxidative stress,

causing the lipid peroxidation, oxidation of proteins, damage to nucleic acids,
enzyme inhibition and ultimately cell death (Mittler,-2002; Apel and Hirt,
2004). Our result confirmed that OP induced the generation of O, and H,0;
in C. demersum significantly. In plant cells; ROS (H;0; and O,") can play dual

role, both an important signaling molecule and a toxic byproduct of cell

UNIVERSITAS

metabolism, its cellular levels.are under tight control, and:their maintenance
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has hallmarks of homeostatic regulation (Apel and Hirt, 2004). Studies with

&

exogenously applied H>O, confirm the role of H,O;as a cell death trigger and
show that high concentrations can cause necrosis instead of PCD (Yao et al.,
2001).

MDA 'is a reactive aldehyde known as the end product of oxidative
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degradation. of lipid and-have been used as the marker of lipid peroxidation
(Ayala ‘et al., 2014). MDA contents in plant cells ‘usually have positive
correlation with the level of ROS (Cheng, 2011; Wang et al., 2012). However,
In this'present study, the increasing of ROS level did not accompany with the
increasing of malondialdehyde contents (MDA). Similiar phenomena were also
found in C. demersum under Cd?* exposure, the MDA contents did not change
at concentration 0.01 — 0.5 mM Cd** while at 1 mM the MDA contents were
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decline (Dhir et al., 2004). The reduced contents of MDA were also reported in
Hydrilla verticilata and Vallisneria natans under,ammonium stress even the
high level of ROS were detected (Wang et al., 2008; 2010). Gupta et al. (1996)
suggested that the decreased of MDA under Cu?* in aquatic plant may be due
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to the decreasing of polyunsaturated fatty acids content, while Nimptsch and
Pflugmacher (2007) considered that the increase of antioxidant defense
mechanisms in Myriophyllum mattogrossense under ammonia stress can avoid
and obstruct the peroxidation of lipid.

Plant have developed the antioxidant defense mechanism to maintain the

equlibrium status between production and scavenging of RQOS, consist of
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enzymatic and: non-enzymatic antioxidants (Bartosz, 1997; Gill and Tuteja,

2010). ROS can act as the signal molecule to the defense mechanisms system,
resulting in the enhancement or suppression of the antioxidant enzyme activity
(Wang et al., 2009). SOD is metalloenzyme that has been known as the first
line defense mechanism againts the ROS, convert O, become H,0, (Apel.and

Hirt, 2004). SODs locate in cytosols, chloroplasts, mitochondria, apoplast and

UNIVERSITAS

peroxisomes (Hasanuzzaman et al., 2012). In this present study, SOD activities
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were increased under highest concentration of OP exposure. Similiar result was

&

also reported that SOD activity increased under OP treatments in A. thaliana,
mainly CuzZnSOD (Chen et al., 2013). In addition, the increasing of SOD
activity -was also reported in. C. demersum-under. various. stress, such as
brominated flame retardant (Sun et al., 2008), heavy metal (Rama Devi and
Prasad; 1998; Mishra et al., 2006) and PAH (Yin et al., 2008). The induction

of SOD can occur during high productionof O,™, therefore, an increase of SOD
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activity indicates an. increase at Oy" . production  (Orug and-Uner, 2000).
According to Fig. 10A and Fig. 11B, the result is similiar to the paper that the
SOD activity showed elevated activity in response to the increase of O, levels.
There are at least three major forms of SOD (Fe-SOD, Cu/Zn-SOD or Mn-
SOD) in plant kingdom (Mishra et al., 2006). In this study, the increases of
three  SOD 'isoenzymes activities, CuZnSOD; FeSOD 1 ‘and FeSOD 2 were
identified by zymogram staining (Fig. 11A), suggesting that three SOD
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isoenzymes were activated in C. demersum under OP exposure.

Further detoxification for SOD. product, H.O, was conducted by other
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enzymatic and non-enzymatic antioxidants in-all compartments in-plant. CAT
and POD have responsibility to detoxify H,O, become water and oxygen. CAT
is distributed mainly in peroxisomes and mitochondria (Willekens et al.; 1995),
while POD can be found mostly in cytosol, cell wall, vacuole and extracellular
spaces (Mishra et al., 2006). In this present study, the enzyme activities of CAT
and POD were increased under OP treatments concomitant with the increase of
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H»O; level. OP-exposure has been reported that can induced CAT activity in A.
thaliana (Chen et al., 2013). The activities of CAT and POD in C, vulgaris and

S. capricornutum were also induced under NP treatment (Gao and Tam, 2011).

C. demersum also have been reported to employ the CAT and POD to cope
with ~various stress; like salt stress, heavy metals rand - organobromine
compounds (Mishra et al., 2006; Sun et al., 2008; Cheng, 2011). Peroxidases

(PODs) have been reported as the primal enzymes on endocrine disrupting
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chemicals (EDCs) degradation. Oxidation of most phenolic EDCs (include

&

OP) catalyzed mainly by peroxidases or biological Fenton reaction through the
utilization of H,O, (Reis and Sakakibara, 2012). Histochemical localization
using guaiacol and H,O2 shown the oxidation sites of EDCs by peroxidases in

C. demersum cells and have been proposed to degradation mechanism of EDCs
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in aquatic plant. Further, in.C.. demersum, which has a high POD activity also
showed higher removal efficiencies of most EDCs in the enzymatic in vitro
treatments (Reis et al., 2014). In this present study, the H,O, and POD activity
were increased significantly, these findings might indicate the role of 'H,0 and
POD in removal mechanisms of OP in C. demersum.

APXs' are 'heme-containing enzymes involved in' scavenging Hz0O; in
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water-water and AsA-GSH cycles (Asada, 1992). APX isoenzymes  are
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distributed in“at least five distinct cellular 'compartments: mitochondrial
(mAPX), thylakoid (tAPX) and glyoxisome membrane forms, (gmAPX), as
well ‘as' chloroplast stromal soluble form  (SAPX), cytosolic form (CAPX)

(Noctor and Foyer, 1998). In this present study, the enzyme activity of APX
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was ‘significantly increased under OP-treatments. Increased APX was also
detected in leaves of A. thaliana under OP and NP treatment (Chen et al., 2013;
Chenand Yen, 2013). APX activity is-enhanced in C. demersum in response to
during different abiotic stress conditions (Rama Devi and Prasad, 1998; Mishra
et al., 2006). Together with APX, GR plays an essential role in the defense
system against ROS through AsA-GSH cycles. Increased GR activity confers
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stress tolerance and- has the ability to alter the redox state of important

components of the electron transport chain (Gill et al., 2013). Thus, an
increased activity. of GR:in the present observation might have contributed to
maintain the homeostasis in the plant cells under OP exposure.

As mentioned above, APX and GR are well known as two key enzymes
in AsA-GSH cycles. AsA is utilized by APX to-detoxify H,O, become water,
resulting in. generation: of MDHA. MDHA has a short life span, that can
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disproportionate into DHA and AsA (Hasanuzzaman et al., 2012). In this

&

present study, both enzymes activities were enhanced under OP treatments. The
increase of APX activity was accompanied by AsA and DHA enhancement,
resulting in-the decrease of AsA/DHA ratio in the higher concentration of OP

treatment.  In the normal conditions, the plants will maintain the redox status
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homeostatis. through keeping the ratio of ASA/DHA remains high. While the
changes in AsA/DHA ratio are considered to be a redox status indicator (Brossa
et al., 2013). In plant cells, AsA has been known as the major metabolite that
can act as antioxidant by scavenging ROS directly or inassociation with other
antioxidant to protect from oxidative stress damage (Smirnoff, 1996).

GSH play an important role as a substrate for DHAR in the AsA-GSH
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pathway, it also can directly scavenges OH" and 1O, and may protect enzyme
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thiol ‘groups and also ‘known to' involve in 'signal ‘transduction (Foyer-and
Shigeoka, 2011). In this present study, total glutathione contents were increased
significantly under OP-treatments, concomitant with the increase of reduced
glutathione (GSH) and decrease of oxidized glutathione (GSSG), resulting in
the elevation of GSH/GSSG ratio. The decreased of GSSG and the high ratio
of GSH/GSSG may be ascribed to the increase of GR activity. GR converts
oxidized glutathione (GSSG) to reduced glutathione: (GSH) thus helps in
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maintaining high ratio of GSH/GSSG under various abiotic stresses (Trivedi et
al.; 2013). GSSG consists-of two GSH linked by a disulphide bridge which can
be converted back to GSH by GR (Halliwell, 2006). Thereby, GR helps in
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maintaining GSH pool and reducing environment'in the cell, which is-crucial

for the active functioning of proteins. However, we also found that the tGSH
of C. demersum still-high even the GR activity has already declined under 3 mg
L OP treatment. We suggested the GSH biosynthesis might play an important
role 'in C. . demersum under OP. exposure. Generation and maintenance of

reduced GSH, can occur either by de novo synthesis and via recycling by GR

UNIVERSITAS

(Pessarakli, 2014). Its de novo, synthesis occurs two well-characterized steps:

* ' BRAWIJAYA

the first involving the formation of y-glutamylcysteine from glutamate and

&

cysteine is catalyzed by enzyme y-glutamylcysteine synthase; second step the
y-glutamylcysteine is —converted to. glutathione by glutathione synthase
catalyzing the reaction (Noctorand Foyer,1998). The induction of cysteine and

glutathione synthesis during salt stress in the wildtype plants of Brassica napus
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as reported by ‘Ruiz and Blumwald- (2002) suggests-a possible protective
mechanism by GSH.

To confirm ~the rinvolvement -of “\GSH' in " C. ~demersum ' defense
mechanisms.under OP exposure, C. demersum leaves were pretreated with
BSO; a specific'and potent inhibitor of y-ECS,; the first enzyme that play role
in biosynthesis of GSH. for 8 h (Chao et al., 2011) then transferred to hoagland
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solution with or without OP and cultivated for 5 days. After 5 days, under BSO
pretreatment, the tGSH were decreased. The decreasing of tGSH was followed
by the decreasing of tAsA contents and also GR and APX enzyme activity. C.
demersum also showed much more severe phenotype damage under OP

exposure with BSO pretreatment. Exogenous application of BSO also has been
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reported that can reduce GSH and AsA content, also decreased the activities of
GR and APX in Cd tolerance of rice seedlings (Chao et al;; 2011). Based on the
data obtained in this study, it could be concluded that GSH biosyntheis plays
an-important role in-C. demersum to cope with the OP-induced oxidative stress.

In the present study, we found that OP was able to cause oxidative stress
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in aquatic plant C. demersum, and to induce production of a large number of
51

¥ BRAWIJAYA




SITORY.UB.ACID |

free ‘radicals. OP: also caused growth inhibition and reduced photosynthesis

REPO

pigments, chlorophyll a and b. Aditionally, the changes of antioxidant defense
systems were observed. Among these parameters, both enzymatic and non-
enzymatic antioxidants were enhanced under OP treatments. SOD, APX, GR,
CAT and POD were increased, while GSH and AsA levels were also elevated.

BSO pretreatment were conducted to confirm the role of GSH biosynthesis in

BRAWIJAYA
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C.-demersum ~under. OP. exposure. The decreasing of tGSH -after BSO
pretreatment indicated that the synthesis of GSH has been blocked by BSO, it

&

was followed by the decreasing of tAsA content and also GR and APX enzyme
activity. Interestingly, C. demersum with BSO pretreatment showed the worst

conditions under OP. exposure. These results suggest that antioxidative system

[_ReposiTORY.B.ACID |

were actively regulated by plants C. demersum especially GSH biosynthesis to
against OP-induced oxidative stress, but it could not prevent the increase levels
of ROS or damage of the photosynthetic system in plants exposed to higher
concentrations of OP. In the highest concentration (3 mg L), C.. demersum
showed the worst physiological features because the increase production of
ROS (O, and H20,) might exceed the management capacity of antioxidant

defense system and caused exacerbating damage to cellular components, while
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in_the lower concentration, C. demersum can cope with the OP-induced

oxidative stress by modulating the antioxidant defense system to scavenging

the ROS and maintain the equilibrium status.
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6. CONCLUSIONS

=

These studies show that the toxicity of 4 tert-octylphenol (OP) induces
oxidative stress-and alters: the antioxidant machinery in- Ceratophyllum
demersum- plants. The main findings -and conclusions of this study are

summarized as follows:

BRAWIJAYA
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1) ~OP was able to cause oxidative stress in-aquatic plant C. demersum,.and
to induce production of a large number of free radicals.

2) - OP also caused growth-inhibition and reduced photosynthesis pigments,
chlorophyll'a and b.

| REPOSITORY.UB.AC.D |

3) ~Both enzymatic and non-enzymatic antioxidants were-enhanced under
OP treatments. SOD, APX, GR, CAT and POD were increased, while
GSH and-ASC levels were also elevated.

4) Antioxidative system were actively regulated by C. demersum in
response to the OP stress, mainly GSH biosynthesis. BSO pretreatment

confirmed the important role of GSH biosynthesis in C. demersum to

UNIVERSITAS

against OP-induced oxidative stress.
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Overall, this study has been shown that at concentration 0.5 mg Lt of OP,
C..demersum can cope with the stress and activate the defense mechanism to

againt the OP-induced oxidative stress. Considering the ability of C. demersum
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to cope with the stress-under OP exposure, we propose C. demersum.as the

phytoremediator in aquatic environment to eliminate the pollutant'such as, OP,

[

but until now we lack an important data about absorption. Further work is

necessary to evaluate the accumulation of OP in C. demersum.
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Appendix I. Hoagland’s Solution Recipe

The composition of Hoagland’s solution was shown-in the Table 2,

<L
zt' and the detail procedures were as follows:
e
= ; Table 2. Hoagland’s solution recipe
[
i g —
>
oo s Components Formula Mol. Wt e |_n aifes (?f
S0 conc. nutrient solution
i 1M | Ammonium acid | NH;H,PO, 115.02 1
phosphate
1M Potassium KNOs3 101.1 6
B nitrate
H 1M | Calcium nitrate | Ca(NO3); 236.15 4
H 1M, | Magnesium MgSO;, 246.47 2
;g Sulfate
- 59 L | Iron chelate Fe-EDTA 1
< Micronutrient stock solution 1
2 : . " Gram dissolved
T Micronutrient stock composition 0 1 litre O
< = in 1 litre H2
2 Boric Acid HsBO3 61.84 2.86
£ Manganese MnCI. 197,91 1.81
=) Chloride 4H,0
& Zinc Sulfate ZnSO,. 287.54 0.22
, 7H,0
Copper Sulfate .. | CuSOu: 249.69 0.08
= 5H,0
< Molybdic Acid | H:Mo00Oy. 0.02
H:O

1. Use RO water to prepare the stock solution as shown in Table 2
2. Autoclave all solutions using a cycle with 15 min at 121°C.
3. Store Fe-EDTA and MgSO, at 4°C and all others at

room temperature.
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Appendix I1. Biochemical Analysis Protocol

[7&

4+ Prepare Sodium Phosphate Buffer
1. Prepare separate stock solutions of (a) disodium hydrogen
phosphate (Na;HPO,4, FW 141.96 ) and (b) sodium dihydrogen
phosphate (NaH,PO4, FW 137.99), both at'1 M concentration in
500 ml ddH-O0.
2. Buffer solutions (at 1 M) are then prepared at the required pH by

UNIVERSITAS

# BRAWIJAYA

mixing together the volume of each stock solution shown in the
Table 3.

Table 3. Preparation of sodium-phosphate buffer solutions for use at

| REPOSITORY.UB.AC.ID |

;
,
|
|
i
|
|
|
|

25°C
Required pH at | Volume of stock | Volume of stock
< 25°C NazHPO4 (ml) | | NaH:POa(ml)
E 6.0 6.2 43.8
2= 6.2 9.3 40.7
%, = 6.4 133 36.7
S 6.6 18.8 31.2
S 6.8 245 255
& 7.0 305 19.5
7.2 36.0 14,0
7.4 40.5 9.5
3l 7.6 435 6:5
7.8 45.8 4.2
H 8.0 474 26
|8
{ &
&
S
<L
s =
20
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4+ Determination of superoxide radical (O2"7) activity
Materials:

1.:0.1.g leaves
2. 65 mM pH 7.8 phosphate buffer
3. 110 mM hydroxylamine
4. 17 mM sulfanilic acid
5
6

UNIVERSITAS

# BRAWIJAYA

.1 7. mM a-naphthylamine (dark)
. Ether

Method:
1. Take the sample (about 0.1 g), put into.the mortar; take 1 mL
sodium phosphate ‘buffer (65mM, pH 7.8), grind the mixture in

| REPOSITORY.UB.AC.ID |

the cold area

2. Centrifuge 12,000 g for 20 minutes under 4°C

3. Take supernatant 0.5 mL, add 0.45 mL sodium phosphate buffer
(65 mM, pH 7.8) and 0.05 mL hydroxlamine, put in the room
temperature for 20 minutes

4. After:20 minutes, take liquid 0.5 mL, add 0.5 mL sulfanilic acid
(17 mM) and 0.5 mL a-naphthylamine (7 mM), put in the room
temperature for 20 -minutes

5.  After 20 minutes, take 0.7 ml liquid and mix with 0.7 mL ether,

<
<
S
<
oc
(8]

UNIVERSITAS

L)
go

centrifuge at 1,500 g for 5 minutes under 25°C
6. Take the bottom liquid and measure in the spectrophotometer at
530.nm [use 0,1, 2,5, 10, and 20 1M sodium nitrite for standard

curve line].

| REPOSITORY.UB.AC.ID |
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Chemicals:

» 17 mM sulfanilic acid
0.825 g sulfanilic-acid.in 187.5 mL H,O + 62.5 mL glacial acetic
acid, exactly to 250 mL

» 7 mM a-naphthylamine: (M)
0.25 g a-naphthylamine in 50 mL boiling H,O + 62.5 mL glacial

UNIVERSITAS

* BRAWIJAYA

acetic acid, exactly to 250 mL.

4+ Determination of photosynthetic pigments

| REPOSITORY.UB.AC.D ‘

1. The leaves sample is ground in extraction buffer (sodium phosphate
buffer 50 mM, pH =6,8)
PS : plant material (mg) : extraction buffer (ml) =1.g: 4 ml

2. Take 40 pl from the ‘mixture and put into 1,5 ml eppendorf tube +
add 960 pul ethanol (100%), and mix them together.

3. Put the'mixture in the dark chamber at 4°C and wait until 30 minutes.

4, Centrifuge at 1,000 g for 15 minutes under 4°C,

5. Measure the absorbance in the spectrophotometer at 649 ad 665 nm

<
=
s
<
e
o0

UNIVERSITAS

and calculated the chlorophyll content using these formula:
Chlorophylla = =/(13.7x Aces) <(5.76 x Asag) [1g Chl (40 pl)]
Chlorophyllb. - = (25.8 x Asag) — (7.6 x Asss) [g Chl (40 pl) ]
Total Chlorophyll ='(6.1 x Agss) + (20.04 x-Asso) [Lig Chl (40 pbh)*]
Chlorophyll a content (mg g* FW)

e Chlorophylla x50 (dilution) = 1000 + FW (g)
Chlorophyll-b.content (mg g* FW)

e Chlorophyll'b x50 (dilution) = 1000 +~ FW (Q)
Total Chlorophyll content (mg g FW)

e Total Chlorophyll x 50 (dilution) = 1000 = FW (g)

4
&

| REPOSITORY.UB.AC.ID |
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4+ Determination of Lipid Peroxidation (MDA contents)

Extraction buffer:
5% TCA (trichloroacetic acid)

Procedure :
1.- The leaves sample is extracted in 5% TCA
PS : plant materials (g) : 5% TCA (ml)=0.1:1
2. Centrifuge at 12,000 g for 10 min under 4°C

3. Collect the supernatant (keep supernatant under.4°C)

UNIVERSITAS
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4. Add the following chemicals in-the covered test tube and mix
well (Table4)

Table 4. Chemicals composition for MDA measurement

| REPOSITORY.UB.AC.ID |

;
l
!
i
|
|
F
!

PS : “blank™ = 0.5 ml supernatant is replaced by 0.5 ml 5% TCA

5. Incubate the mixture at water bath under 95°C for 30-min

Add volume (ml) total : 2.5 ml Final
conc.
S
< Supernatant 0.5
E 0.5% Thiobarbituric 2
acid (TBBA)
<L
o
(8]

UNIVERSITAS
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Q‘:o
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. Terminate the reaction after transferred to ice box

7. Take 2 ml of the -above reaction solution-and: centrifuge it at
12,000 g for 10 min-under 4°C

8. Collect the 'supernatant and- incubate it for 20 min under room

temperature

| REPOSITORY.UB.AC.ID |

9. Determine the absorbency at 532 nm and 600 nm
10.E =155 mM*tcm?
11.MDA contents (umol/g FW) = [(Asz2-As0)*5)}/(155*FW)*1000
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Chemicals :
a. 5% TCA :5g TCA /100 mldist. H,O
b. 0.5% TBBA 0.5 g TBBA/.100-ml 20% TCA

[7&

+ . Determination of Hydrogen Peroxide (H202) Activity

1..A'0.1 g leaves sample is extracted in 2 ml 50 mM sodium

UNIVERSITAS

# BRAWIJAYA

phosphate buffer pH 6.8 containing 1. mM hydroxylamine under
4°C.

2.1 The homogenate is centrifuged at 12,000 g for 10 min-.under 4°C.
3. A'sample of 0.5 mlof the supernatant is mixed with 0.5 ml TiCl,
[Titanium Chloride (0.1%, v/v) diluted in 20% (v/v) H2SO4]

4. Centrifuged at 12,000 g for 10 min under 25°C. The absorbance

of supernatant is measured at 410 nm. The content of H,O, was

| REPOSITORY.UB.AC.ID |

calculated using an extinction coefficient of 0.28 pmolZem,

H,0, contents = Agjo + 0.28 (K, umol*cm™) x 1.5 (dilution) ~ FW ()

<
<
=
<
e
o0
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Chemicals :
a.  20% H,S04:. 200 ml H,SO4/ 1000 ml dist. H.O
b. TiCly: 1.g TiCs/ 12000 ml 20% TCA

4

| REPOSITORY.UB.ACID |
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Appendix 1. Enzymatic Antioxidant Assay Protocol

1. Spectrophotometric measurement

4+ Ascorbate Peroxidase (APX; EC 1.11.1.11) Assay

Extraction buffer:
1 ml 50 mM NaPOy (pH 7) + 2 mM Na,EDTA + 1 mM PMSF + 0.5

mM ascorbate

UNIVERSITAS
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Procedure :
1. The algae sample is and extracted in extraction buffer
PS : plant material (g) ; extraction buffer (ml) =0.1:1
2. Centrifuge at 12,000 g for 10 min-under 4°C
3. Collect the supernatant and assay. APX activity within 2 h (keep

| REPOSITORY.UB.AC.ID |

;
l
!
i
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!

g supernatant under 4°C)
9 g 4. Add the following chemicals-in the cuvette and mix well (Table 5)
2 ; Table 5. Chemicals composition for APX Activity Assay
(58]
gé Add volume (ml) total : 1 ml Final
S| conc.
RN Supernatant 0.1
0.1'M phosphate 0.5 50 mM
buffer pH'=7
Fl 5mM ascorbate 0.1 0.5mM
'§’ 0.5 mM Na,EDTA 0.2 1.5 mM
B 10 mM H,0, | 0.1 (add at last and then 0.25 mM
H measure)
= PS : “blank’ = 0.1 ml supernatant is replaced by 0.1 ml extraction

buffer

5. Determine the decrease of absorbance at 290 nm within-1.min at
room temperature as compared with the blank

6. E=2.8 mM'ecm?
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An-unit of APX is defined as decrease in-1 nmol ascorbate/min

[7&

Specific activity = unit of APX activity/mg protein

Chemicals :

a. 0.1 M phosphate buffer (50 ml, pH =7)
5ml'1 M NaPO4 pH 7 /50 ml H,O

b. 5. mM ascorbate (1 ml, FW 176.13, fresh prepared)
0.05'ml 0.1'M ascorbate (stock) / 1 ml dist. H,O

c. 0.5 mM NaEDTA (15 ml, F\W 372.24)
0.0028 g / 15 ml dist. H,O

d. 10 mM H»0> (1 ml, 9.7912 M, fresh prepared)
1 ul9.7912 H,0, /-1 ml dist. H,0

UNIVERSITAS
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4+ Catalase (CAT; EC 1.11.1.6) Assay

Extraction buffer:
1 ml 50 MM NaPOy (pH 7) + 2 mM Na;EDTA + 1. mM PMSF

Procedure :

1. The algae sample is and extracted. in extraction buffer

UNIVERSITAS

# BRAWIJAYA

PS . plant material (g) : extraction buffer (ml) =0.1:1

2. Centrifuge at 12,000 g for 10-min under 4°C

3. Collect the supernatant and assay CAT activity within 2 h (keep
supernatant under 4°C)

4. Add the following chemicals in the cuvette and mix well (Table 6).

| REPOSITORY.UB.AC.ID |
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Table 6. Chemicals.composition for CAT Activity Assay

Add volume (ml) total : 1 ml Final
§ conc.
s ﬂ Supernatant 0.1
§§ 31.25 mM phosphate 0.8 25 mM
§ P2 buffer pH =7
= % 200 mM H.0.| 0.1 (addat lastand then 20 mM
measure)
o PS : “blank™ = 0.1 ml supernatant is replaced by 0.1 ml extraction

buffer

5. Determine the decrease of absorbance at 240 ‘nm within-2 min at
room temperature as compared with the blank

6. E=4.0 mMtcm?

An unit of CAT is defined as decrease in. 1 nmol H>O, /min.

| REPOSITORY.UB.AC.ID |

Specific activity = unit of CAT activity/mg protein
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Chemicals :
a. 31.25 mM phosphate buffer (50 ml, pH =7)
1.5625 ml 1 M NaPOy4 pH 7./ 50 ml dist: H,O
b. 200 mM H>0> (1 ml, 9.7912 M, fresh prepared)
200 pl 9.7912 H,0,/ 1 mldist, H;0

BRAWIJAYA
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4+ Glutathione Reductase (GR; EC 1.8.1.7 or EC 1.6.4.2) Assay.

Extraction buffer:
1'mlI'50 mM NaPO, (pH 7) + 2 mM Na,EDTA + 1 mM PMSF

Procedure :

1. The algae sample is and extracted in extraction buffer

UNIVERSITAS
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PS : plant material (g) : extraction buffer (ml) = 0.1 : 1
2. Centrifuge at 12,000 g for 10 min under 4°C
3. Collect. the. supernatant and assay GR activity within:- 2 h (keep

r
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supernatant under 4°C)

4. Add the following chemicals in the cuvette and mix well (Table 7)

Table 7. Chemicals composition for GR Activity Assay

Add volume (ml) total : .1 mi Final
<L conc.
5 E Supernatant 0.1
o 04M phosphate 0.5 0.2M
% ; buffer pH =75
§§ 2 mM Na,EDTA 0.1 0.2 mM
=)= 15 mM MgCl; 0.1 1.5 mM
& 2.5 mM GSSG 0.1 0.25 mM
0.25 B-NADPH 0.1 (addat last and then 25 UM
mM measure)
PS : “blank™="0.1 ml supernatant is replaced by 0.1 ml extraction

buffer

5. Determine the decrease of absorbance at 340 ‘nm within 2 min at

| REPOSITORY.UB.AC.ID |

room temperature as compared with the blank

6. E='6.2 mM*cm?
An unit of GR is defined as decrease in 1 nmol B-NADPH /min
Specific activity = unit of GR activity/mg protein
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Chemicals :

a. 0.4 M phosphate buffer (50 ml, pH =7.5)
20 ml- 1 M NaPOQOy4 pH 7.5 /50 ml dist. H,O

b 2 mM Na;EDTA (50 ml, FW 372.24)
0.0372 g./.50 ml dist.-H,O

c. 10 MM MqCl; (50 ml, FW 203,3)
0.1525 g/ .50 ml dist. H,O

d. 25 mM GSSG stock (5 ml, FW 656.6, stored in -20 °C)
0.082 g /5 ml dist. H,O
PS':'each eppendorf has 0.15 ml 25 mM GSSG

e. 2.5 mM GSSG
Add'1.35 mldist. H,0O in each'eppendorf

f. 0.25 mM B-NADPH (30 ml, FW.833.4, stored in -20 °C)
6.25'mg /-30 ml dist. H,O
PS : each eppendorf has 1.5 ml 0.25 mM B-NADPH

[7&
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+ Peroxidase (POD; EC 1.11.1.7) Assay

Extraction buffer:
1 ml 50 mM NaPOy (pH 7) + 2 mM Na;EDTA + 1. mM PMSF

Procedure :

1. The algae sample is and extracted in extraction buffer

UNIVERSITAS

# BRAWIJAYA

PS . plant material (g) : extraction buffer (ml) =0.1:1

2. Centrifuge at 12,000 g for 10-min under 4°C

3. Collect the supernatant and assay POD activity within 2 'h (keep
supernatant under 4°C)

4. Add the following chemicals in the cuvette and mix well (Table 8)

| REPOSITORY.UB.AC.ID |
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Table 8. Chemicals composition for POD Activity Assay

Add volume (ml) total : 1.3 ml Final
§ conc.
v g Supernatant 0.1
= ; 0.1 M phosphate 1 7.7.mM
§ P2 buffer pH = 6.8
= % 10 mM guaiacol 0.1 0.77.mM
150 H20; 0:1(add at last'and then 11.54 mM
o mM measure)
PS : “blank™ = 0.1 ml supernatant is replaced by 0.1 ml extraction
buffer

5. Determine the increase of absorbance at 470 nm within'5 min at

room temperature as compared with the blank

| REPOSITORY.UB.AC.ID |

PS :guaiacol —  tetraguaiacol
6. E=26.6 mM*cm’
An unit of POD is defined as 1 pmol tetraguaiacol formation/min
Specific activity = unit of POD activity/mg protein
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Chemicals :
a. 0.1 M phosphate buffer (50 ml, pH =6.8)
5ml-1 M NaPO, pH 6.8 / 50 ml dist. H,O
b. 10 mM guaiacol (50 ml, 8.9576 M)
0.558 ml. 8.9576 M./ 50 ml dist.-H,O
c.- 150 mM H207 (1 ml, 9.7912 M, fresh prepared)
15 pl.9:7912 M / 1 ml dist. H,O
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4+ Superoxide dismustase (SOD; EC 1.15.1.1) Assay

Extration buffer:
1 mlI'50 mM NaPO, (pH 7) + 2 mM Na,EDTA + 1 mM PMSF

Procedure :

1. The algae sample is and extracted in extraction buffer

UNIVERSITAS
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PS : plant material (g) : extraction buffer (ml) = 0.1.: 1
2. Centrifuge at 12,000 g for 10 min under 4°C
3. Collect the supernatant and assay SOD activity within. 2 h (keep
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supernatant under 4°C)

4. Add the following chemicals in the test tube and mix well (Table 9)

Table 9. Chemicals composition for SOD Activity Assay

Add volume (ml) total : 0.475 ml | - Final conc.
% Supernatant 0.02
1 - 0.15'M || phosphate buffer 0.25 79 mM
= -
2 pH=7.8
S < 130 mM methionine 0.075 20.52 mM
= % 1 mM Na;EDTA 0.075 0.16 mM
& 0.63 MM NBT 0.075 99.5 uM
7.5 uM riboflavin 0.15 (add at last and then 2.34 uM
measure)

PS 1 “blank”=0.02 -ml supernatant is:replaced by 0.02 ml

extraction buffer

| REPOSITORY.UB.AC.ID |

5. Reaction is carried out in test tubes at room temperature under

illumination in incubator and run for 10 min

6. Determine the absorbance at 560 nm
7. An unit of SOD activity is defined as a 50% inhibition of the nitro
blue tetrazolium (NBT).
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Specific activity = unit of SOD activity/mg protein/h

[7&

(Blank-sample)/(blank/2)*6/mg protein

Chemicals :

a. 0.15 M phosphate buffer (50 ml, pH =7.8)
7.5 ml 1 M NaPO4 pH 7.8 /.50 ml dist. H,O

b. 130 mM methionine (50 mi, FW 149.2, stored in"-4°C)
0.9698 g./ 50 ml dist. H,O

c.. 1 mM NaEDTA (50 ml, FW 372.24)
18.612 mg/ 50 ml dist. H,O

d. 0.63' mM NBT stock (30 ml, FW 817.6, stored in -4°C)
25,75 g/ 30 ml dist. H,O

e. 7.5 mM riboflavin stock (10 ml, FW 376.4, stored in -20 °C)
28.23 mg./ 10 ml dist. H,O

f.. 7.5 uM riboflavin
10 pl 7.5 mM riboflavin/ 10 ml dist. H,O
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2. Zymography Assay

[7&

+ Zymography assay of GR activity

Principle: GR
NADPH + GSSG + H* + DCIP = 2 GSH + NADP* + DCIP

(reduced form)

UNIVERSITAS
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Reduced DCIP
MTT »'Formazan (purple-blue color)

Extraction buffer for GR
50 mM NaPO,pH 7.0 containing 2 mM Na,EDTA, 1 mM PMSF

Table 10. 10 mL Extraction Buffer for Enzyme (GR, SOD, POD) and
Protein Assay

| REPOSITORY.UB.AC.ID |
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§ Volume Final conc.
2 < 1M NaPO, pH 7.0 05 mL 50 mM
2 0.5 M N&:EDTA " 40 pl 2 mM
§§ 0.1 PMSF 10-100 il 0.1-1mM
> H,0 9,36 ml
\ Total 10 ml

| REPOSITORY.UB.ACID |

Sample Extraction

Take 0.3 g leaf tissue
Extract with 0.5 ml extraction buffer;
Centrifuge-in 12,000 g at 4°C for. 10 min;

Collect the supernatant and repeat centrifugation at least 3 times;

Determine the protein. content;
Add 10X protein dye and mix well;
Store in-80°C for NATIVE PAGE.

NO@ QO IY ONY &
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Native PAGE (Run-at 4°C) 10% Resolving Gel (Table 1)
Using 1X TG buffer as running buffer;
Prerun at 80V for. 30 min to eliminate APS;

Change freshly running buffer in the inner tank;
Loading sample (5. pug/well);

Run at 80V until the sample into resolving gel for 75 min;

UNIVERSITAS
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Change voltage to 120V, run for 115 min;

Q DOWD POWD DO

The gel is ready for staining.
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Staining procedure (Method I, All steps are performed at RT.)
Immersed. gel in Staining -buffer. (0.25 M Tris-HCI (pH 7.5)

containing 3" "mM ' ‘Na;EDTA, 0.4 'mM NADPH, 0.68 ' mM 2,6

dichlorophenolindophenol . (DCIP), .0.48 mM _ 3-(4,5-dimethyl-2-

§ thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and 3.4 mM
2§ GSSG) (Table 5)-in the dark for 1 hr. (Duplicate control gels were
§§ stained 'in the ‘absence of GSSG.). Use 10% acetic acid to stop the
g § reaction. Store gel in 10% acetic acid at 4°C up for several month.
Sl Table11. Composition of Staining Buffer for GR Activity

4
Staining buffer Volume (ml) Final conc.
0.5 M Tris-HCI pH 7.5 5 7.5 250 mM
0.5M Na;EDTA 0.06 0.09 3mM
H 40 mM NADPH 0.1 0.15 0.4 mM
lS; 34 mM DCIP 0.2 0.3 0.68 mM
16 mM MTT 0.3 0.45 0.48 mM
< 85 MM GSSG 04 056 34mM
v S\ H,O 3.94 591
é e
& 3 Total 10 ml 15ml
S5
S
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Chemicals
1. 0.5 M Tris-HCI pH 7.5 (MW 121.14, 24.288g/400 ml)
2.40 mM NADPH (MW 833.35, 0.034g/1ml, 100 pl per tube)
(stored in-20 °C)
3. 85 mM GSSG (MW612.63, 0.1044g/2ml, 1 ml per tube)
4. 34 mM DCIP (MW290.08, 0.0986g/10ml, 1 -ml per tube)
5.16 MM MTT (MW414.32,.0.069/9ml, 1 ml per tube)
6. 10X protein dye (dissolved in water): 0.01% Bromophenol Blue

[

BRAWIJAYA

UNIVERSITAS

ﬂiy

+ 50% glycerol

7. 10X TG buffer (pH 8.3): (30.28g Tris + 144.13g Glycine)/1000
ml H,O

8.-500 ml 1X TG: 50 ml 10X TG diluted to 500 ml with Qwater.
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+ Zymography: assay of APX activity

E,
<L I
> Principle:
2 g NBT | _ASCTTEVED » formazan (purple-blue)
= ; APX
%) = H,O + ASC » - H,O .+ DHA
% oc So, if there’s no ASC, there’s no purple-blue color-on the gel
S0
=
Extraction buffer for APX
50 mM NaPO4pH 7.0 containing 2 mM Na;EDTA, 1 mM PMSF, 5 mM
E ASC
H
&
Eg Table 12, 10 mL Extraction Buffer for APX
5] Volume Final conc.
§ 1 M NaPQO4 pH.7.0 0.5 mL 50 mM
< 0.5 M Na;EDTA 40 pl 2’mM
e
2; 1M ASC 50 pl 5 mM
£ 0.1 PMSF 10-100 pl 0.1-1 mM
S H,0 9.36 ml
o Total 10 ml

Sample Extraction

|

9.
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Take 0.3 g leaf tissue
Extract with 0.5 ml extraction buffer;
Centrifuge in 12,000 g at 4°C for 10.min;

Collect the supernatant and repeat centrifugation at least 3 times;

Determine the protein content;
Add 10X protein dye-and mix well;
Store in -80°C for NATIVE PAGE.
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Native PAGE (Run-at 4°C) 10% Resolving Gel (Table 1)
Using 1X TG buffer as running buffer containing 2’ mM ASC
Prerun at 80V for. 30 min to eliminate APS;

Change freshly running buffer in the inner tank;
Loading sample (5. pug/well);

Run at 80V until the sample into resolving gel for 99 min;

UNIVERSITAS
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Change voltage to 120V, run for, 160 min;

The gel is ready for staining.

DO @OW BROW DO

S. prepare 500 ml.running buffer per run

| REPOSITORY.UB.AC.D ‘

Staining _procedure (All steps-are performed at RT and gentle

shaking)

1. Equilibrate with 50 mM NaPOQO, pH 7.0 containing 2 mM ASC for
10 min‘(3 times)

2. Incubate with 50 mM NaPO4 pH 7.0 containing 4 mM-ASC and 2
mM H,0, for 20 min.

3. Wash with 50 mM NaPO, pH 7.0 for 1 min.

4. Incubate with 50 mM NaPO, pH 7.8 containing 28 mM TEMED
and 2.45 mM NBT for 3-5 min in the dark (stop while the bands are
disguisable). Use 10% acetic acid to stop the reaction.

(10 ml — 42 ul TEMED, 0.02 g NBT)
5. Store the gel in 10% acetic acid at 4°C:up for several - month.,
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Chemicals
1. Ascorbate; 1M stock stored-in -20°C  (disending -into: 0.5

ml/valve)
2. 500 ml 21X TG: 50 ml 10X TG-diluted 'to 500 ml-with. Qwater,
andadd 1 ml'1 M ASC

BRAWIJAYA

UNIVERSITAS

88

.v
(_"“-:'.




REPOSITORY.UB.AC.ID '

4+ Zymography: assay of SOD activity

Extraction buffer for SOD
50 mM NaPOj pH 7.0 containing 2 mM Na,EDTA, 1 mM PMSF as

shown in Table 10.

UNIVERSITAS
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Sample Extraction

Take 0.3 g leaf tissue
Extract with 0.5 ml extraction buffer;
Centrifuge. in 12,000 g at 4°C for.10-min;

Collect the supernatant and repeat centrifugation at least 3 times;

| REPOSITORY.UB.AC.D ‘

Determine the protein content;
Add 10X protein dye and mix well;
Store in -80°C for NATIVE PAGE.

~NOQ @ U0 B GO O

Native PAGE (Run at 4°C) 10% Resolving Gel (Table 1)

Using 1X TG buffer as running buffer
Prerun at 80V for 30 min to eliminate APS;
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.~ Change freshly running buffer in the inner tank;

4
&

Loading sample (5 pg/well);

. Change voltage to 120V, run-for 60 min;
.~ The gel is ready for staining.

| REPOSITORY.UB.AC.ID |

1
2
3
4
5. Run at 80V until the sample into resolving gel for 99 min;
6
7
Y

S. prepare 500 ml-running buffer per run

Total SOD Staining procedure (All steps are performed at RT.)
1. Immersed the gel in 0.1 % NBT (0.01g /.10 ml) and shake for 15 min
in the dark, rinsed with ddH,O three times.
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2.-Add 20 ml 0.1 M potassium phosphate buffer pH 7.0 containing 66.7
pl TEMED + 74.7 ul 7.5 mM riboflavin, shake for 15 ‘min, and
rinsed with ddH;O three times.

3. Add small amount of 0.1 M potassium phosphate buffer pH 7.0,
gently shake.for:10-20-min until the bands are disguisable.

4. Use 10% acetic acid to stop the reaction.

5. Take a photo.

6. Store the gel in 10% acetic acid at 4°C up for several month.

4 UNIVERSITAS
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MnSOD (Use H>O5, to inhibit CuZnSOD and FeSOD)
1. Immersed the gel in' 20 ml potassium phosphate buffer 16.5 pl H,0,
(9.7 M, final conc. = 8 mM) 30 min.in 4°C.

2. Rinsed with Qwater three times

3. Followed the total SOD staining procedure

MnSOD and FeSOD (Use KCN to'inhibit CuZnSOD))

1. Immersed the gel in 0.1 % NBT (0.01g / 10 ml) and shake for 15 min
in the dark, rinsed with'ddH,O three times.

2. /Add 20 ml 0.1 M potassium phosphate buffer pH 7.0 containing 66.7
pul TEMED + 74.7 ul 7.5 mM riboflavin + 80 pl- KCN (2 M, final

conc. = 8 mM, shake for 15 min, and rinsed with ddH,O three times.
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3:/Add small ‘amount of 0.1 M potassium phosphate buffer pH 7.0,
gently shake for 10-20 min until the bands are disguisable.

| REPOSITORY.UB.AC.ID |

4. Use 10% acetic acid to stop the reaction.

5. Take a photo.
6. Store the gel in/10% acetic acid at 4°C up for several month.
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+ Zymography: assay of POD activity

Extraction buffer for POD
50 mM NaPO, pH: 7.0 containing 2 mM Na;EDTA, 1. mM PMSF as
shown in Table 10.

Sample Extraction

UNIVERSITAS
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Take 0.3 g leaf tissue

Extract with 0.5 ml extraction buffer;
Centrifuge in 12,000 g at 4°C for 10 min;

Collect the supernatant and repeat centrifugation at least 3 times;

| REPOSITORY.UB.AC.D ‘

Determine the protein content;
Add 10X protein dye and mix well;
Store in-80°C for NATIVE PAGE.

SO0 @ ORO® PO IS

Native PAGE (Run at 4°C) 10% Resolving Gel (Table 1)

Using 1X TG buffer as running buffer
Prerun at 80V for 30 min to eliminate APS;
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. Change freshly running buffer-inthe inner tank;
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&

Loading sample (5 pg/well);

.- Change voltage to 120V, run for 5-6 h;
v The gel is ready for staining.

| REPOSITORY.UB.AC.ID |

1
2
3
4
5. Runat 80V until the sample into resolving gel for 60 min;
6
7
Y

S. prepare 500 ml running buffer per run

Total POD Staining procedure (All steps are performed at RT.)

1. The gel was washed with distillated water to remove the buffer.
2. lmmersed the gel in 4.5 mM guaiacol (4.5 ml 10 mM guaiacol).and
22.5 mM H;0, (23.19 ul 9.7 M H;0,) in 100 mM phosphate buffer
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(pH 7.0)- at. 25°C and gently shake (stop while the bands are
disguisable).

3. Use 10% acetic acid to stop the reaction.

4. Take a photo

5. Store the gel. in10% acetic acid at 4°C- up for several month.

UNIVERSITAS
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+ Protein Staining

Extraction buffer for protein staining
50 mM NaPQO, pH 7.0 containing 2 mM Na,EDTA, 1 mM PMSF as

shown in Table 10.

| REPOSITORY.UB.AC.ID |

Sample Extraction

Take 0.3 g'leaf tissue
Extract with 0.5 ml extraction buffer;
Centrifuge in 12,000 g at 4°C for 10 min;

Collect the supernatant and repeat centrifugation at least 3 times;
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Determine the protein content;
Add 10X protein dye and mix well,
Store in-80°C for NATIVE PAGE.
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Native PAGE (Run at 4°C) 10% Resolving Gel (Table 1)
Using 1X TG buffer as running buffer
Prerun at 80V for 30 min to eliminate APS;

| REPOSITORY.UB.AC.ID |

Change freshly: running buffer-in the inner tank;
Loading sample (5 pg/well);
Run at 80V until the sample iinto resolving gel for 60-min;

@ OO0 oOND &

Change voltage to 120V, run for 99 min;
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7. The gel is ready for staining.

p.s. prepare 500 ml running buffer per run

Protein Staining procedure (All steps are performed at RT.)

1. The gel' was washed with distillated water to remove the buffer.

2. Immersed the gel in Coomasie Brilliant Blue R 250, gently shake for

UNIVERSITAS
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30 min.

3. After. 30 min, for destain procedure, the gel is immersed in destain
buffer ' (50% ‘methanol + 10% glacial acetic acid) until ‘the gel
background become transparent light blue.

4. Replace the destain solution I with destain buffer H' (5% methanol +

7% glacial acetic acid). Gently shake until the gel background

| REPOSITORY.UB.AC.ID |
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become transparent and the bands are disguisable.

= 5. Take a picture using scanner (EPSON Perfection VV370) when the
o
<L background turned to transparent. Add water and a small amount of
V) —
§ § destain buffer Il to store the gel at room temperature.
G <L
S0 als
Zm Chemical:
& Coomassie Brilliant Blue R 250 Solution (250 ml)
Coomassie Brilliant Blue R 250 0.625 ¢
0 Acetic acid 25 ml
i. 50% methanol 225 'ml)
8
&
L
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Appendix 4. Non-enzymatic Antioxidant Assay Protocol
+ Ascorbate (ASA) Assay

Extraction buffer:
5% TCA (trichloroaceticacid)

Procedure :

UNIVERSITAS

* BRAWIJAYA

1. The fresh algae sample is extracted in extraction buffer

PS . plant materials (g) : extraction buffer (ml) = 0.1:: 1
2. Centrifuge at 12,000 g for 10 min‘under 4°C
Collect the supernatant and assay ascorbate (keep supernatant
under4°C)
4. Add the following chemicals in the covered test tube and mix
well'(Table 13)
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= Table 13. Chemicals composition for Ascorbate Assay
= E Add volume (ml) Final conc.
e Supernatant | a. 0:2 a. Total
% ; b.0:2 ascorbate
W < b. ASA
Z g 120 mM | phosphate buffer 0.5 60 mM
: pH=7.4
A 15 mM Na,EDTA 0.2 3mM
10 mM DTT 0.1 1'mM
(dithiothreitol) | a. DTT
b. Replaced by H>O
I 25°C 10 min
| 40 mM | N-ethylmaleimide 0.1

a. N-ethylmaleimide
b. Replaced by H,O

| REPOSITORY.UB.AC.ID |

10% TCA 0.4
8 M H3PO4 0.4
0.26 M a,0’-dipyridyl 0.4
7.5 uM FeCls 0.2

Incubate at water bath under 40°C for 1 h

PS : Total Ascorbate = ASA + DHA (dehydroascorbate)
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5. Determine the absorbance at 525 nm

6. A standard curve is prepared based on solutions with different
concentrations. of -L-ascorbate, (MERCK) (0-40 -nmole). - The
difference between total ascorbate and AsA is considered to

represent the content of DHA.

UNIVERSITAS
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Chemicals :

a. 0.12 M phosphate buffer (50 ml, pH =7.4)
6 ml.1 M NaPO, pH 7.4 /50 ml dist. H,O

b. 15 mM Na;EDTA (50 ml, FW 372.24)
0.279 g /.50 ml dist. H,O

c.- 40 mM N-ethylmaleimide (15 ml, FW 125.13, stored in -4°C)
0.075.g/ 15 ml dist. H,O
PS: each eppendorf has 1 ml

d. 100 mM DTT stock (10 ml, FW 154.2, stored in -20°C)
0.1542 g/ 10 ml.dist. H,O
PS: each eppendorf has 0.1 ml 100 mM DTT

e. 10mM DTT
Add 0.9 ml dist H,O in each eppendorf

f. 8 M H3PO4 (50 ml, 14.8316 M, stored in -4°C)
26.97 ml 85% H3PO, /50 ml dist. H,O

g. 0.26 M dipyridyl (100 ml, FW 156.19, stored in =20 °C)
4.06 g/ 100 ml 70% EtOH
PS: each eppendorf has 1 ml

h. 0.19 M FeCls (50 ml, FW 270.3)
2.568 g / 50 ml dist H,O

| REPOSITORY.UB.AC.D ‘
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4+ Glutathione (GSH) Assay

Extraction buffer:
5% TCA (trichloroacetic acid)
Procedure :
1. The fresh-algae sample is extracted in extraction buffer
PS : plant materials (g) : extraction buffer (ml) = 0.1: 1
2. Centrifuge at 12,000 g for 10 min under 4°C
3. Collect the supernatant
4. 'Add 300 pl-0.4'M NaPO,pH 8.0 in 300 pl TCA ‘extracts for

neutralization (keep supernatant under 4°C)

UNIVERSITAS
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5.- /Add the following chemicals in the cuvette and mix well (Table
14)
Table 14. Chemicals composition for Glutathione Assay

| REPOSITORY.UB.AC.ID |
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2 Add volume (ml) Final
V= conc.
2 ; Supernatant 0.2
wi < 250 mM | phosphate buffer 0.4 100 mM
Z % pH =75
& 50 mM Na,EDTA 0.1 5 mM

2 mM B-NADPH 0.1 0.2 mM
6 mM DTNB (prepared 0.1 0.6 mM
in 0.2 M NaPQ4
pH 7.5)
0.5U/ml GR 0.1 START

PS : Total GSH = GSH + GSSG

6. Determine the absorbance at 412 nm within 2 min

| REPOSITORY.UB.AC.ID |

7. A'standard curve is prepared based on solutions with different
concentrations of 1. mM GSSG (SIGMA).(0-20 nmole)
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P

GSSG

2 Ul supernatant / 0.1 ml extract — vortex and incubate in room

[7&

temperature for: 1 h to eliminate. GSH — 'then the extract was for
the determination of GSSG
Chemicals :

a.  0.25 M phosphate buffer (50 ml, pH =7.4)
12.5ml 1 M:NaPO4pH 7.4 / 50 ml dist. H,O

b. 50 MM Na,EDTA (50 ml, FW 372.24)
0.9306 g/ 50 ml dist. H,O

c.- 40 mM B-NADPH (2,9 ml, FW 834 .4 stored in -20°C)
0.1 g /2.9 ml dist. H,O
PS: each eppendorf has 0.1 ml 40 mM B-NADPH

d. 6 MM DTNB (50 ml, FW 396.36, stored in -4°C)
0.119¢g /50 ml 0.2 M NaPO, pH 7.5

e. 1 M 2-vinylpyridine (1 ml, 8.995 M, stored in -20°C)
111.18 pl 2-vinylpyridine /1 ml EtOH

UNIVERSITAS
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