Utilization of indigenous phosphate-solubilizing bacteria to optimize the use of coal fly ash for increasing available-P in an Ultisol

Budi Purnomo, - Utilization of indigenous phosphate-solubilizing bacteria to optimize the use of coal fly ash for increasing available-P in an Ultisol.

Abstract

Coal fly ash (CFA) is a coal-burning by-product containing macro and micronutrients, and it is the potential material for improving available P in Ultisols. Phosphate-solubilizing bacteria (PSB) play a role in phosphorus solubilization. This study aimed at elucidating the potential use of phosphate-solubilizing bacteria to optimize the use of coal fly ash for increasing soil available P. This study was conducted in two stages, namely isolation of indigenous PSB from an Ultisol and application of the PSB and CFA to improve soil available P. Five indigenous PSB isolated from the soil had the ability to dissolve phosphate. Isolate B5 could dissolve 9.89 ppm P and had a 99.57% closeness to Pseudomonas stutzeri. The application of 20 and 40 t CFA ha-1 increased the soil pH by 4.2% and 7.2%, respectively. Increasing the dose of CFA decreased the content of available P by 50.6%. However, the combination of PSB and 20 t CFA ha-1 increased soil available P, plant growth, plant dry biomass, and P-uptake by plant.

English Abstract

Coal fly ash (CFA) is a coal-burning by-product containing macro and micronutrients, and it is the potential material for improving available P in Ultisols. Phosphate-solubilizing bacteria (PSB) play a role in phosphorus solubilization. This study aimed at elucidating the potential use of phosphate-solubilizing bacteria to optimize the use of coal fly ash for increasing soil available P. This study was conducted in two stages, namely isolation of indigenous PSB from an Ultisol and application of the PSB and CFA to improve soil available P. Five indigenous PSB isolated from the soil had the ability to dissolve phosphate. Isolate B5 could dissolve 9.89 ppm P and had a 99.57% closeness to Pseudomonas stutzeri. The application of 20 and 40 t CFA ha-1 increased the soil pH by 4.2% and 7.2%, respectively. Increasing the dose of CFA decreased the content of available P by 50.6%. However, the combination of PSB and 20 t CFA ha-1 increased soil available P, plant growth, plant dry biomass, and P-uptake by plant.

Item Type: Article
Depositing User: soegeng sugeng
Date Deposited: 16 Dec 2021 03:24
Last Modified: 16 Dec 2021 03:24
URI: http://repository.ub.ac.id/id/eprint/187292
Full text not available from this repository.

Actions (login required)

View Item View Item