Kekonvergenan Deret Ganda

Nafia, Ilman (2019) Kekonvergenan Deret Ganda. Sarjana thesis, Universitas Brawijaya.


Pada skripsi ini dibahas sifat-sifat kekonvergenan barisan tunggal, deret tunggal, barisan ganda dan deret ganda bilangan real. Jenis kekonvergenan deret ganda terdiri dari tiga jenis, yakni kekonvergenan Pringsheim, Sheffer dan Reguler. Kekonvergenan Reguler merupakan jumlahan deret berulang dan deret tunggal dari barisan jumlah parsialnya yang konvergen. Dalam skripsi ini juga dibahas syarat cukup dan perlu agar memiliki kekonvergenan yang sama ketika urutan deret berulangnya ditukar

English Abstract

This thesis discusses convergence properties of a single sequence, single series, double sequence, and double series of real number. There are forms of Pringsheim, Sheffer, and Reguler convergence. The type of Regular convergence where are the summation of iterated series and single series from partial sum of sequence are convergence. This iterates series also discusses a sufficient and necessity conditions to have same value when the order of summation is exchanged

Other obstract


Item Type: Thesis (Sarjana)
Identification Number: SKR/MIPA/2019/227/051911007
Uncontrolled Keywords: Barisan, deret, barisan ganda, deret ganda. Sequence, series, double sequence, double series.
Subjects: 500 Natural sciences and mathematics > 543 Analytical chemistry > 543.2 Classical methods
Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika
Depositing User: Budi Wahyono Wahyono
Date Deposited: 10 Aug 2020 08:14
Last Modified: 10 Aug 2020 08:14
Full text not available from this repository.

Actions (login required)

View Item View Item