LEMBAR PENGESAHAN

PENGARUH PEMBERIAN EKSTRAK BIKOTANS TERHADAP GAMBARAN MIKROSKOPIS ORGAN HATI DARI MENCIT (*Mus Musculus*) YANG TERPAPAR RADIASI GAMMA

Oleh:

Maria Yasintha Vega Dhara 135090307111010

Pembimbing I

Pembimbing II

<u>Drs. Unggul P. Juswono, M.Sc</u> NIP. 196501111990021002

Gancang Saroja, S.Si., M.T NIP. 197711182005011001

Mengetahui, Ketua Jurusan Fisika Fakultas MIPA Universitas Brawijaya

<u>Prof. Dr. Rer.Nat. Muhammad Nurhuda</u> NIP. 196409101990021001

LEMBAR PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama : MARIA YASINTHA VEGA DHARA

NIM : 135090307111010

Jurusan : FISIKA Penulisan Skripsi berjudul:

PENGARUH PEMBERIAN EKSTRAK BIKOTANS TERHADAP GAMBARAN MIKROSKOPIS ORGAN HATI DARI MENCIT (*Mus Musculus*) YANG TERPAPAR RADIASI GAMMA

Dengan ini menyatakan bahwa:

- 1. Isi dari Skripsi yang saya buat adalah benar-benar karya sendiri dan tidak menjiplak karya orang lain, selain nama-nama yang termaktub di isi dan tertulis di daftar pustaka dan Tugas Akhir ini.
- 2. Apabila dikemudian hari ternyata Skripsi yang saya tulis terbukti hasil jiplakan, maka saya akan bersedia menanggung resiko yang akan saya terima.

Demikian pernyataan ini dibuat dengan segala kesadaran.

Malang, 9 Mei 2018 Yang menyatakan

(Maria Yasintha Vega Dhara) NIM. 135090307111010

PENGARUH PEMBERIAN EKSTRAK BIKOTANS TERHADAP GAMBARAN MIKROSKOPIS ORGAN HATI DARI MENCIT (*Mus musculus*) YANG TERPAPAR RADIASI GAMMA

ABSTRAK

Radiasi gamma sering digunakan baik untuk radiografi dan radioterapi. Sinar gamma memiliki energi yang besar dibandingkan dengan radiasi elektromagnetik lain sehingga dapat menembus iaringan manusia cukup jauh dan membunuh sel kanker. Namun di sisi lain, penyerapan energi radiasi ke dalam tubuh biologis dapat menyebabkan radikal bebas pada organ hati. Tujuan dari penelitian ini adalah mengetahui pengaruh dari radiasi gamma terhadap gambaran mikroskopis organ hati mencit dan pengaruh pemberian ekstrak beluntas, kenikir, mahkota dewa, daun katuk dan bunga sepatu (Bikotans). Penelitian ini dilakukan dengan cara mencit dipapari radiasi gamma tanpa pemberian ekstrak dengan 5 variasi waktu untuk mendapatkan dosis paparan maksimumnya. Kemudian, mencit diberi ekstrak dengan variasi dosis 3,18 mg, 4,18 mg, 5,18 mg, 6,18 mg dan 7,18 mg dengan durasi paparan 40 menit. Mencit kemudian dibedah dan dibuat preparat organ hati. Kerusakan organ dapat dilihat dari gambaran mikroskopis dengan perbesaran 400x. Hasil penelitian menunujukkan sebelum diberi ekstrak Bikotans, kerusakan total sel hepatosit adalah 54,43%. Setelah diberi ekstrak Bikotans kerusakan total sel hepatosit adalah 18,14%. Dosis ekstrak 3,18 mg merupakan dosis efektif, karena pada dosis tersebut persentase kerusakan sel berkurang paling besar yaitu 28,81%.

Kata kunci: Radiasi Gamma, Ekstrak Bikotans, Organ Hati, Mencit (*Mus musculus*), Gambaran Mikroskopis.

THE EFFECT OF GIVING BIKOTANS EXTRACT TO MICROSCOPIC IMAGE OF MICE (*Mus musculus*) LIVER EXPOSED BY GAMMA RADIATION

ABSTRACT

Gamma radiation is frequently used for radiographic and radiotherapy. The gamma rays have greater energi than any other kind of electromagnetic radiations, that it can penetrate human tissue deep enough. On the other hand, the radiation energi that absorbed by the body may generate free radicals. The purpose of this study is to analyze the effects of gamma radiation on microscopic image of mice's liver and also the effects of indian fleabane, kenikir, god's crown, star gooseberry, and hibiscus (Bikotans) extract. This research was conducted by exposing mice to gamma radiation without giving extract with 5 variant time dose to get maximum doses of gamma radiation. Afterward, the mice were given extract with 5 variant dose: 3,18 mg, 4,18 mg, 5,18 mg, 6,18 mg and 7,18 mg, under 40 minutes of gamma radiation exposure. The mice then dissected and the liver preparations were made. The structural damaged of liver cells were observed through microscope with 400x magnification. The result showed that before being given Bikotans extract, the total of hepatocyte cell damage was 54.43%. After being given Bikotans extract, the total damage of hepatocyte cells was 18.14%. The most effective dose was 3,18 mg, because after being given 3,18 mg of extract the percentage of cell damage decreases considerably i.e 28,81%.

Keywords: Microscopic Image, Bikotans Extract, Liver, Gamma radiation, Mice (*Mus musculus*)

RAWIJAYA

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa yang telah memberikan rahmat, taufik dan hidayah-Nya atas terselesaikannya skripsi yang berjudul "Pengaruh Ekstrak Bikotans Terhadap Gambaran Mikroskopis Organ Hati Mencit (*Mus muculus*) yang Terpapar Radiasi Gamma" di bawah bimbingan Drs. Unggul P. Juswono, M. Sc dan Gancang Saroja, S.Si., M.T.

Penulis bermaksud menyampaikan terima kasih kepada seluruh pihak yang telah membantu penulis dalam menyelesaikan skripsi ini. Maka dari itu, penulis menyampaikan terima kasih kepada:

- 1. Drs. Unggul P. Juswono, S.Si., M.Sc selaku dosen pembimbing utama yang telah penuh kesabaran memberikan bimbingan dalam pembuatan skripsi ini.
- 2. Gancang Saroja, S.Si, M. T. selaku dosen pembimbing pendamping yang banyak memberikan bimbingan dalam penulisan skripsi ini.
- 3. Keluarga saya, yang telah mendukung dan senantiasa selalu mendoakan.
- 5. Marcelino Bayu Bagus, teman berdiskusi dalam menyelesaikan skripsi ini
- 6. Septi, Tya dan Nadia, teman sekelompok penelitian yang selalu berjuang bersama-sama.
- 7. Teman-teman sebimbingan yang selalu memberi semangat.
- 8. Fenia dan Safira teman yang selalu menghibur dan memberi motivasi.
- 9. Teman-teman Fisika Universitas Brawijaya 2013 yang selalu memberi semangat.
- 10. Semua keluarga Laboratorium Fisika Lanjutan Universitas Brawijaya dan Laboratorium Fisiologi Hewan UIN atas bimbingan dan bantuannya.
- 11. Semua pihak yang tidak dapat kami sebutkan satu persatu, atas bantuannya baik fisik maupun pikiran.

Penulis mengakui penulis tidaklah sempurna seperti kata pepatah tak ada gading yang tak retak begitu pula dalam penulisan ini, apabila nantinya terdapat kekeliruan dalam penulisan skripsi ini penulis sangat mengharapkan kritik dan sarannya.

Akhir kata semoga skripsi ini dapat memberikan banyak manfaat bagi kita semua.

Malang, 9 Mei 2018

Penulis

DAFTAR ISI

LEMBAR PENGESAHAN	i
LEMBAR PERNYATAAN	iii
ABSTRAK	
ABSTRACT	
KATA PENGANTAR	
DAFTAR ISI	
DAFTAR GAMBAR	
DAFTAR TABEL	
DAFTAR LAMPIRAN	
PENDAHULUAN	
1.1 Latar Belakang	
1.2 Rumusan Masalah	
1.3 Batasan Masalah	3
1.4 Tujuan Penelitian	3
1.4 Tujuan Penelitian1.5 Manfaat penelitianTINJAUAN PUSTAKA	3
TINJAUAN PUSTAKA	5
2.1 Radiasi	5
2.2.1 Radiasi Pengion	
2.2.2 Radiasi Non-pengion	
2.3 Interaksi Radiasi Elektromagnetik dengan Materi	
2.3.1 Efek Fotolistrik	
2.3.2 Efek Compton	
2.3.3 Efek Produksi Pasangan	
2.4 Interaksi Radiasi di dalam Tubuh	
2.5 Dosis Radiasi	
2.6 Penggunaan Radiasi	
2.6.1 Radioterapi	
2.7 Efek Radiasi	
2.8 Mencit (Mus musculus)	
2.9 Hepar (Hati)	
2.9.1 Fungsi Hati	
2.9.2 Histologi Organ Hati	
2.10 Antioksidan	
2.10.1 Jenis- jenis Antioksidan	
2.11 Mahkota Dewa	
2.12 Katuk	27

2.13 Bunga Sepatu	28
2.14 Kenikir	29
2.15 Beluntas	
METODOLOGI PENELITIAN	33
3.1 Waktu dan Tempat Penelitian	33
3.2 Alat dan Bahan Penelitian	
3.2.1 Alat Penelitian	33
3.2.2 Bahan Penelitian	33
3.3 Prosedur Penelitian	33
3.3.1 Persiapan Alat dan Bahan	
3.3.2 Persiapan Ekstrak Antioksidan	34
3.3.3 Persiapan Hewan Coba Mencit	34
3.3.4 Pemberian Perlakuan	35
3.4 Pengamatan dan Pembedahan	36
3.5 Analisis Data	37
3.6 Diagram Alur Penelitian	39
ANALISA DAN PEMBAHASAN	41
4.1 Hasil Penelitian	
4.1.1 Pengamatan pada organ hati mencit	41
4.1.2 Pengaruh Waktu Paparan Radiasi Gamma terhadap	
Kerusakan Organ Hati Mencit	46
4.1.3 Pengaruh Dosis Ekstrak Bikotans terhadap Organ Hati	
Mencit.	51
4.2 Pembahasan	
4.3 Pengaruh Radiasi Gamma terhadap Organ Hati Mencit	56
4.3.1 Pengaruh Dosis Radiasi dengan Organ Hati	56
4.3.2 Interaksi Radiasi dengan Organ Hati Mencit	59
4.3.3 Pengaruh Antioksidan terhadap Radikal Bebas	
4.4 Pengaruh Radiasi Gamma terhadap Organ Lain	
PENUTUP	65
5.1. Kesimpulan	65
5.2. Saran	
DAFTAR PUSTAKA	
DAFTAR LAMPIRAN	71
Lampiran 1	
Lampiran 2	
Lampiran 3	85
Lampiran 4.	86

DAFTAR GAMBAR

Gambar 2.1 Radiasi Alfa	6
Gambar 2.2 Radiasi Beta	6
Gambar 2.3 Mekanisme Efek Fotolistrik	8
Gambar 2.4 Efek Compton	9
Gambar 2.5 Efek Produksi Pasangan	10
Gambar 2.6 Struktur Hati	
Gambar 2.7 Gambaran Mikroskopis Organ Hati Sehat	21
Gambar 2.8 Kerusakan pada Organ Hati	22
Gambar 2.9 Degenerasi hidropik pada Organ Hati	
Gambar 2.10 Sikrosis dan Fibrosis pada Organ Hati	23
Gambar 2.11 Nekrosis pada Organ Hati	
Gambar 2.12 Mahkota dewa (Phaleria macrocarpa)	
Gambar 2.13 Daun katuk (Saoropus androgynus)	
Gambar 2.14 Bunga sepatu (Hibiscus rosasinensis)	
Gambar 2.15 Kenikir (Cosmos caudatus)	
Gambar 2.16 Beluntas (Pluchea indica)	31
Gambar 3.1 Sonde lambung pada mencit	34
Gambar 3.2 Diagram Alur Penelitian	
Gambar 4.1 Gambaran mikroskopis organ hati mencit	42
Gambar 4.2 Gambaran mikroskopis hati mencit	44
Gambar 4.3 Gambaran mikroskopis hati mencit dengan dosis	
antioksidan	
Gambar 4.4 Grafik hubungan antara persentase kerusakan binukl	
dengan lama paparan radiasi	
Gambar 4.5 Grafik hubungan antara persentase kerusakan piknos	
dengan lama paparan radiasi	
Gambar 4.6 Grafik hubungan antara persentase kerusakan degene	
hidropik dengan lama paparan radiasi	
Gambar 4.7 Grafik hubungan antara persentase kerusakan total	
dengan waktu radiasi	50
Gambar 4.8 Grafik hubungan antara persentase kerusakan binukl	eus
dengan dosis antioksidan	
Gambar 4.9 Grafik hubungan antara persentase kerusakan piknos	
dengan dosis antioksidan	52
Gambar 4.10 Grafik hubungan antara persentase kerusakan	
degenerasi hidropik dengan dosis antioksidan	53

Gambar 4.11 Grafik hubungan antara persentase kerusakan total	
dengan dosis antioksidan	54
Gambar 4.12 Interaksi Radiasi dengan Molekul Air	59
Gambar 4.13 Struktur Kimia Flavonoid	
Gambar 4.14 Proses Scanvenging oleh Flavonoid	62
Gambar 7.1 Kandang Mencit	83
Gambar 7.2 Sonde Lambung	83
Gambar 7.3 NaCl	83
Gambar 7.4 Formalin 10%	83
Gambar 7.6 Masker	84
Gambar 7.5 Tempat Bedah	84
Gambar 7.7 Pemaparan radiasi pada mencit	
Combon 7 9 Dombonion Antickeiden	

DAFTAR TABEL

Tabel 2.1 Faktor Bobot Radiasi	13
Tabel 2.2 Faktor Bobot Jaringan	14
Tabel 2.3 Anatomi dan Fisiologi Mencit	
Tabel 3.1 Pengelompokan Mencit Berdasarkan Perlakuan	35
Tabel 3.2 Pengelompokan Dosis Paparan Radiasi dan Pemberian	
Ekstrak	• -
Tabel 4.1 Dosis yang Diterima Mencit Selama 14 Hari	56
Tabel 4.2 Energi Ikat Antar Atom	63
Tabel 7.1 Kontrol Negatif	71
Tabel 7.2 Perlakuan 1 (10 menit)	
Tabel 7.3 Perlakuan 2 (20 menit)	73
Tabel 7.4 Perlakuan 3 (30 menit)	74
Tabel 7.5 Perlakuan 4 (40 menit)	75
Tabel 7.6 Perlakuan 5 (50 menit)	76
Tabel 7.7 Kontrol Positif	77
Tabel 7.8 Perlakuan 1 (3,18 mg)	78
Tabel 7.9 Perlakuan 2 (4,18 mg)	79
Tabel 7.10 Perlakuan 3 (5,18 mg)	80
Tabel 7.11 Perlakuan 4 (6,18 mg)	
Tabel 7.12 Perlakuan 5 (7,18 mg)	82

DAFTAR LAMPIRAN

Lampiran 1 Data kerusakan sel	71
Lampiran 2 Alat dan bahan	83
Lampiran 3 Surat keterangan laik etik	85
Lampiran 4 Surat keterangan plagiasi	86

BAB I PENDAHULUAN

1.1 Latar Belakang

Teknologi nuklir merupakan salah satu teknologi yang sangat penting dan berkembang sangat pesat dalam beberapa dekade terakhir. Penerapannya telah mencangkup berbagai bidang, salah satunya dalam bidang kesehatan. Dalam bidang kesehatan, teknologi nuklir sering digunakan baik untuk radiografi ataupun radioterapi.

Radiasi gelombang berenergi tinggi seperti sinar-X, alfa, beta atau gamma merupakan radiasi pengion yang sering digunakan untuk menghancurkan atau merusak sel kanker (Lusiyanti, 2008). Sinar gamma memiliki energi yang besar dibandingkan dengan radiasi elektromagnetik lain sehingga dapat menembus jaringan manusia cukup jauh (Farb, 2009). Penggunaan radiasi pengion dalam bidang kesehatan terbilang sangat efektif karena dapat merusak sel kanker dan tumor yang terdapat di dalam tubuh tanpa operasi. Namun di sisi lain, penggunaan radiasi pengion memiliki efek negatif, diantaranya penyerapan energi radiasi ke dalam tubuh biologis menyebabkan eksitasi atau ionisasi. Eksitasi sinar gamma dapat merusak DNA, mengakibatkan luka bakar, merusak jaringan sel sehat dan mengakibatkan kerusakan organ dan menyebabkan kematian (Ermawati, 1999). Radiasi juga dapat berinteraksi dengan atom atau molekul lain dalam sel (terutama air) untuk menghasilkan radikal hebas

Radikal bebas merupakan molekul atau atom tidak stabil yang mempunyai sekelompok atom dengan elektron yang tidak berpasangan sehingga memiliki kecenderungan menarik elektron dari molekul lain. Ketika radikal bebas menarik elektron, ia akan memicu reaksi berantai yang menambah jumlah radikal bebas. Radikal bebas ini kemudian akan berinteraksi dengan materi biologis sel. Jika radikal bebas tidak diinaktivasi, reaktivitasnya dapat merusak seluruh tipe makromolekul seluler, termasuk karbohidrat, protein, lipid dan asam nukleat (Dawn, 2000). Radikal bebas akan berinteraksi dengan protein yang ada di dalam tubuh sehingga menyebabkan zat-zat yang ada di dalam tubuh bersifat racun (toksik) (Sari, 2015). Radikal bebas juga dapat berinteraksi dengan organ-organ di dalam tubuh, salah satunya organ hati.

Hati adalah organ metabolik terbesar di tubuh. Pada penelitian ini digunakan organ hati karena ia memiliki fungsi untuk detoksifikasi, sintesis berbagai protein plasma, pengeluaran bakteri dan sel darah merah yang usang dalam bentuk bilirubin dan kolesterol (Fitri, 2008). Apabila sel hati tersebut terkena radikal bebas, maka sel akan rusak dan sistem kekebalan tubuh menurun, sehingga virus dan bakteri akan mudah menyerang (Junqueira, 1995). Selain itu, radikal bebas yang terakumulasi di dalam hati dapat menyebabkan pembengkakan sel, kanker hati, apoptosis, nekrosis, fibrosis serta sirosis (Sianturi, 2011). Untuk meminimalisir dampak radikal bebas pada organ hati, dapat digunakan antioksidan.

Antioksidan merupakan senyawa yang dapat mendonorkan elektron pada radikal bebas sehingga menjadi stabil. Senyawa antioksidan seperti flavonoid banyak ditemukan pada tumbuhan hijau dan buah-buahan. Beberapa jenis tumbuhan hijau dan buah-buahan yang memiliki antioksidan yang baik yaitu mahkota dewa (Phaleria macrocarpa), daun katuk (Sauropus androgynus), bunga sepatu (Hibiscus rosasinensis), kenikir (Cosmos caudatus) dan beluntas (Pluchea indica) yang disingkat menjadi Bikotans. Kandungan saponin dan polifenol yang terdapat pada kenikir, katuk, mahkota dewa dan bunga sepatu berfungsi sebagai antioksidan, meningkatkan respon imun, memperlancar peredaran darah, dan anti kanker. Selain itu, kandungan tannin yang terdapat pada daun katuk, beluntas dan bunga sepatu dapat mengikat radikal bebas, antibiotik dan penawar racun. Flavonoid yang terdapat pada seluruh bahan dapat melindungi sel dari radikal bebas, anti alergi, antibiotik dan pencegah trombus. Sedangkan kandungan minyak atsiri sebagai antibiotik antioksidan tubuh (Danusantoso, 2003).

Penelitian ini dilakukan untuk untuk mengetahui efek antioksidan Bikotans terhadap paparan radiasi gamma pada organ hati. Ekstrak Bikotans yang digunakan merupakan kombinasi dari lima antioksidan di atas. Pada penelitian ini digunakan hewan uji mencit (*Mus musculus*). Mencit digunakan sebagai hewan uji karena fungsi dan anatomi tubuhnya sebagian besar mirip dengan manusia.

Pada penelitian sebelumnya, belum dilakukan analisis mengenai dampak radikal bebas terhadap organ hati dan hanya sebatas organ lain saja seperti kulit, limpa, paru-paru, ginjal dan darah. Oleh sebab itu, penulis ingin menganalisis kerusakan pada organ hati akibat

radikal bebas dan membandingkannya dengan persentase kerusakan organ yang lain berdasarkan data kuantitatifnya.

1.2 Rumusan Masalah

Rumusan masalah dalam penelitian ini adalah bagaimana pengaruh dari radiasi gamma terhadap gambaran mikroskopis organ hati mencit dan pengaruh pemberian ekstrak Bikotans sebagai antioksidan.

1.3 Batasan Masalah

Dalam penelitian ini tidak menguji kandungan kimia ekstrak Bikotans. Selain itu, tidak digunakan mencit berkelamin betina dan usianya tidak di atas maupun di bawah 2 bulan.

1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah mengetahui pengaruh dari radiasi gamma terhadap gambaran mikroskopis organ hati mencit dan pengaruh pemberian ekstrak Bikotans sebagai antioksidan.

1.5 Manfaat penelitian

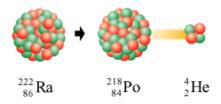
Manfaat dari penelitian ini adalah untuk mengkaji dampak radikal bebas yang ditimbulkan oleh radiasi sinar gamma. Selain itu penelitian ini diharapkan dapat digunakan sebagai kajian ilmiah pemanfaatan ekstrak Bikotans sebagai antioksidan, memberikan informasi bahwa kandungan ekstrak Bikotans mempunyai banyak manfaat bagi tubuh manusia khususnya organ hepar dan dapat mencegah munculnya radikal bebas, kanker, maupun tumor yang dapat timbul karena terpapar radiasi gamma.

repository.up.a

BAB II TINJAUAN PUSTAKA

2.1 Radiasi

Radiasi adalah pemancaran/pengeluaran dan perambatan energi menembus ruang atau sebuah substansi dalam bentuk gelombang atau partikel, partikel radiasi terdiri dari atom atau subatom dimana mempunyai massa dan bergerak, menyebar dengan kecepatan tinggi menggunakan energi kinetik. Pada saat radiasi terjadi, energi dilepaskan oleh atom dan merambat dalam bentuk partikel atau gelombang elektromagnetik. Radiasi sendiri terjadi karena elektron-elektron terlepas dari atom, atau adanya pergerakan elektron di dalam kulit-kulit atom. Peristiwa berpindahnya elektron dalam kulit atom ini disebut dengan eksitasi. Sedangkan pada peristiwa terlepasnya elektron, elektron yang meninggalkan atom akan berikatan dengan atom netral lain membentuk ion negatif dan atom yang ditinggalkan menjadi bermuatan positif. Peristiwa pembentukan ion negatif dan positif ini disebut dengan ionisasi (Gabriel, 2005). Dalam poses aktifasi inti ini, unsur-unsur yang awalnya tidak radioaktif akan menjadi bersifat radioaktif sehingga tidak stabil dan berdisintegrasi spontan dengan melepaskan energi. Terdapat 2 jenis radiasi, yaitu radiasi pengion dan radiasi nonpengion.

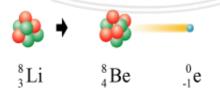

2.2.1 Radiasi Pengion

Radiasi pengion adalah jenis radiasi yang dapat menyebabkan proses ionisasi (terbentuknya ion positif dan ion negatif) apabila berinteraksi dengan materi. Yang termasuk dalam jenis radiasi pengion adalah partikel alfa, partikel beta, sinar gamma, sinar-X dan neutron. Setiap jenis radiasi memiliki karakteristik khusus.

1. Radiasi Alfa (α)

Nuklida yang tidak stabil (kelebihan proton atau neutron) dapat memancarkan nukleon untuk mengurangi energinya. Partikel alfa tersusun dan 2 neutron dan 2 proton, 2 nomor atom dan nomor massa 4, memiliki energi ikat kirakira

28 MeV. Inti atom memancarkan partikel alfa akan berkurang nomor atomnya sebesar 2 dan massanya 4 (Gabriel, 2005).



Gambar 2.1 Radiasi Alfa Sumber: EMSD, 2006

Oleh karena bermuatan positif partikel α dibelokkan oleh medan magnet maupun medan listrik. Partikel-partikel alfa bergerak dengan kecepatan antara 2.000 – 20.000 mil per detik, atau 1 –10 persen kecepatan cahaya. Partikel alfa adalah partikel terberat yang dihasilkan oleh zat radioaktif. Karena memiliki massa yang besar dan daya tembus sinar alfa paling lemah diantara diantara sinar-sinar radioaktif, diudara ia hanya dapat menembus beberapa cm saja dan tidak dapat menembus kulit. Sinar alfa dapat dihentikan oleh selembar kertas bisaa. Sinar alfa segera kehilangan energinya ketika bertabrakan dengan molekul media yang dilaluinya (Akhadi, 2000).

2. Radiasi Beta (β)

Suatu proses peluruhan radioaktif yang tidak mengubah nomor massanya tetapi mengubah nomor atomnya digolongkan sebagai peluruhan beta.

Gambar 2.2 Radiasi Beta Sumber: EMSD, 2006

Ada dua macam radiasi beta yaitu radiasi beta negatif dan radiasi beta positif. Radiasi beta negatif merupakan radiasi yang terdiri dari elektron yang mempunyai energi besar. Pada radiasi ini neutron akan menjadi proton dengan melepaskan partikel beta dan anti neutrino. Radiasi beta positif terjadi ketika proton diubah menjadi neutron, serta memancarkan partikel beta dan neutrino.

3. Radiasi Gamma (γ)

Radiasi gamma merupakan radiasi yang timbul karena unsur radioaktif meluruh dengan memancarkan gamma.

Radiasi gamma merupakan radiasi berenergi tinggi dari radiasi elektromagnetik yang diproduksi oleh aktivitas radioaktif. Radiasi gamma dapat menembus suatu materi lebih dalam dari pada radiasi alfa maupun beta. Hal ini dikarenakan radiasi gamma mempunyai energi yang besar. Radiasi gamma bisa dihentikan dengan menggunakan bahan dengan nomor atom tinggi, misalnya timbal. Ketika sinar gamma berinteraksi dengan materi maka radiasi gamma akan cenderung masuk menembus materi. Energi ionisasi radiasi gamma lebih kecil dibandingkan dengan radiasi alfa dan beta.

2.2.2 Radiasi Non-pengion

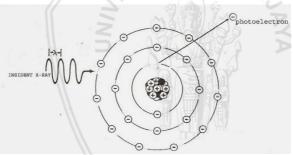
Radiasi non-pengion merupakan radiasi yang tidak dapat mengionisasi saat berinteraksi dengan materi (Alatas, 2001). Radiasi non-pengion mempunyai energi yang lebih rendah dari radiasi elektromagnetik. Contoh radiasi non-pengion adalah radiasi gelombang radio, cahaya inframerah, dan cahaya tampak. Ketika radiasi non-pengion berinteraksi dengan materi maka radiasi non-pengion hanya mampu mengubah rotasi, getaran atau elektron konfigurasi dari molekul atau atom (Alatas, 2010).

2.3 Interaksi Radiasi Elektromagnetik dengan Materi

Ada 2 kemungkinan yang dapat terjadi apabila radiasi mengenai tubuh manusia yakni berinteraksi dengan tubuh manusia atau hanya melewati saja. Jika berinteraksi, radiasi dapat mengionisasi atau dapat pula mengeksitasi atom. Setiap terjadi proses ionisasi atau eksitasi, radiasi akan kehilangan sebagian energinya. Energi radiasi yang hilang tersebut akan menyebabkan peningkatan temperatur (panas) pada bahan (atom) yang berinteraksi dengan radiasi. Dengan

epository.ub.a

kata lain, semua energi radiasi yang terserap di jaringan biologis akan muncul sebagai panas melalui peningkatan vibrasi (getaran) atom dan struktur molekul. Peristiwa ini merupakan awal dari perubahan kimiawi yang selanjutnya dapat mengakibatkan efek biologis yang merugikan (Akhadi, 2000).


Ada tiga fenomena ketika radiasi (foton) berinteraksi dengan suatu bahan (materi), di antaranya efek fotolistrik, efek Compton dan produksi pasangan.

2.3.1 Efek Fotolistrik

Efek fotolistrik merupakan interaksi yang terjadi ketika foton menumbuk elektron yang berada di bagian kulit atom terdalam. Foton tersebut memberikan seluruh energinya ke elektron sehingga elektron akan keluar dari lintasannya. Menurut hukum kekekalan energi, besar energi foton adalah:

$$E_f = E_k + E_b \tag{2.1}$$

Dimana E_f adalah besar energi foton (eV), E_k adalah besar energi kinetik elektron (eV) dan E_b adalah besar energi ikat elektron (eV).

Gambar 2.3 Mekanisme Efek Fotolistrik Sumber: Bushong, 2001

2.3.2 Efek Compton

Efek Compton merupakan interaksi yang terjadi ketika foton menumbuk elektron yang berada di bagian kulit atom terluar. Berbeda dengan kasus efek fotolistrik, pada efek Compton, foton memberikan sebagian energinya ke elektron sehingga menyebabkan elektron keluar dari lintasannya dan muncul foton hambur. Menurut hukum kekelan energi, besar energi foton adalah:

$$E_f = E_{f'} + E_k + E_b (2.2)$$

Dengan energi ikat (E_b) sebesar:

$$E_b = \frac{z^2}{n^2} (-13.6 \text{ eV}) \tag{2.3}$$

Dimana Z adalah jumlah proton (jumlah elektron) dari suatu atom dan n adalah kulit tempat elektron berada. Oleh karena elektron berada pada kulit terluar, maka energi ikat yang terbentuk sangat lemah ($E_b \approx 0$), sehingga diperoleh rumusan:


$$E_f = E_{f'} + E_k \tag{2.4}$$

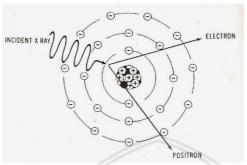
Menurut hubungan $E = \frac{hc}{\lambda}$, pada efek Compton, E > E' dan $\lambda < \lambda'$, sehingga diperoleh persamaan :

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$$
 (2.5)

Dimana besarnya $\frac{h}{m_0c}$ = 0,0243 Å, yang disebut dengan panjang gelombang Compton.

 \triangleright Δλ bernilai maksimum jika $\theta = 180^{\circ}$

Gambar 2.4 Efek Compton Sumber: Bushong, 2001


2.3.3 Efek Produksi Pasangan

Efek produksi pasangan terjadi karena interaksi anatara foton dengan medan listrik dalam inti atom berat. Dalam produksi pasangan, dapat dianggap bahwa foton berinteraksi dengan atom secara keseluruhan. Jika interaksi itu terjadi, maka foton akan lenyap dan sebagai gantinya timbul sepasang elektron-positron. Karena massa diam elektron /positron ekuivalen dengan 0,51 MeV, maka produksi pasangan hanya dapat terjadi pada energi foton datang \geq 1,02 MeV. Proses terjadinya produksi pasangan ditunjukkan pada Gambar 2.4.

repository.up.ac

Energi kinetik total pasangan elektron-positron dapat dihitung melalui persamaan sebagai berikut:

$$h\nu = (E_e + m_0 c^2) + (E_p + m_0 c^2)$$

 $E_e + E_p = h\nu + m_0 c^2$

Gambar 2.5 Efek Produksi Pasangan Sumber: Bushong, 2001

Kedua foton tersebut kemudian dapat berinteraksi dengan bahan melalui proses fotolistrik maupun hamburan Compton. Produksi pasangan hanya penting untuk radiasi elektromagnetik berenergi tinggi. Produksi pasangan meningkat dengan meningkatnya energy radiasi elektromagnetik yang datang. Proses ini juga proporsional dengan Z² bahan penyerap. Oleh sebab itu, produksi pasangan ini lebih sering terjadi pada bahan dengan nomor atom tinggi (Akhadi, 2000).

2.4 Interaksi Radiasi di dalam Tubuh

Radiasi merupakan pancaran energi dalam bentuk partikel atau gelombang elektromagnetik. Penyerapan energi dari radiasi ke dalam sel biologis menyebabkan adanya eksitasi dan ionisasi. Efek dari eksitasi dan ionisasi tersebut dapat menyebabkan timbulnya radikal bebas dan mengarah ke karsinogenik, sehingga memicu terjadinya stress oksidatif yang dapat menyebabkan kerusakan sel dan berakibat menurunnya fungsi dan kerja organ yang terpapar radiasi. Radikal bebas merupakan atom atau molekul yang tidak stabil dan sangat reaktif karena pada orbital terluarnya terkandung satu atau lebih elektron yang tidak berpasangan. Sehingga memiliki kecenderungan menarik elektron dari molekul lainnya dan memicu reaksi berantai yang mengakibatkan jumlah radikal bebas akan meningkat (Sibuea, 2003).

Bila radiasi pengion melalui tubuh manusia maka akan terjadi interaksi dengan senyawa air di dalam tubuh, sel, kromosom maupun DNA.

1) Interaksi dengan Molekul Air (Radiolisis Air)

Penyerapan energi radiasi oleh molekul air dalam proses radiolisis air akan menghasilkan radikal bebas (H* dan OH*). Radikal bebas adalah suatu atom atau molekul yang bebas, tidak bermuatan dan mempunyai sebuah elektron yang tidak bermuatan dan mempunyai sebuah elektron yang tidak berpasangan pada orbit terluarnya. Keadaan ini menyebabkan radikal bebas menjadi tidak stabil, sangat reaktif dan toksik. Sesama radikal bebas yang terbentuk dapat saling bereaksi menghasilkan molekul hidrogen peroksida yang toksik. Perlu diingat bahwa sekitar 80% dari tubuh manusia terdiri dari air. Sinar radioaktif jika mengenai jaringan akan menimbulkan ionisasi molekul air, kemudian akan megokisidasi gula dalam DNA sehingga rangkaian nukleotidanya akan putus.

2) Interaksi dengan DNA

Interaksi radiasi dengan DNA dapat menyebabkan terjadinya perubahan struktur molekul gula atau basa, putusnya ikatan hidrogen antar basa, hilangnya basa, dan lainnya. Radiasi juga dapat mengakibatkan terjadinya perubahan dalam komposisi basa dan juga putusnya rantai DNA (Devy, 2006). Kerusakan yang lebih parah dapat terjadi berupa putusnya salah satu untai DNA (single strand break), atau putsnya kedua untai DNA (double strand breaks). Kerusakan pada DNA dapat menyebabkan kelainan atau mutasi.

3) Interaksi dengan Kromosom

Radiasi dapat menyebabkan aberasi kromosom, yakni perubahan pada jumlah kromosom maupun strukturnya sehingga memungkinkan timbulnya kelainan genetik. Perubahan jumlah kromosom misalnya menjadi 47 buah pada sel somatik yang memungkinkan timbulnya kelainan genetik. Kerusakan struktur kromosom berupa patahnya lengan kromosom terjadi secara acak dengan peluang yang semakin besar dengan meningkatnya dosis radiasi. Efek radiasi terhadap basa lebih penting dan berperan secara langsung

dalam proses mutasi gen, seperti terjadinya substitusi, penambahan atau hilangnya basa dalam molekul DNA. Radiasi juga dapat menginduksi perubahan struktur kromosom, yaitu terjadinya pematahan kromosom. Pada dosis rendah dapat menyebabkan terjadinya delesi, dan semakin tinggi dosisnya akan terjadi duplikasi, inversi atau translokasi kromosom (Devy, 2006).

4) Interaksi dengan Sel

Kerusakan yang terjadi pada DNA dan kromosom sel sangat bergantung pada proses perbaikan yang berlangsung. Bila proses perbaikan berlangsung dengan baik dan tepat atau sempurna, dan juga tingkat kerusakan yang dialami sel tidak terlalu parah, maka sel bisa kembali normal seperti keadaannya semula. Bila proses perbaikan berlnagsung tetapi tidak tepat makan sel tetap dapat hidup tetapi mengalami perubahan. Bila tingkat kerusakan yang dialami sel sangat parah atau bila proses perbaikan tidak berlangsung dengan baik, maka sel akan mati. Tingkat kerusakan yang dialami sel akibat radiasi sangat bervariasi bergantung kepada tingkat sensitifitas sel terhadap radiasi. Sel yang paling sensitif adalah sel kelamin, sedangkan sel yang tidak mudah rusak akibat pengaruh radiasi adalah sel kulit. Kerusakan sel akan mempengaruhi fungsi jaringan atau organ bila jumlah sel yang mati/rusak dalam jaringan/organ tersebut cukup banyak. Semakin banyak sel yang rusak/mati, semakin parah perubahan fungsi yang terjadi sampai akhirnya organ tersebut kehilangan kemampuannya untuk menjalankan fungsinya dengan baik (Sari, 2015).

2.5 Dosis Radiasi

Radiasi tidak dapat dideteksi secara langsung dengan pancaindra tetapi harus dengan peralatan khusus yang disebut detector radiasi, misalnya film fotografi, tabung Geiger-muller (*Geiger Muller counter*) dan pencacah sintilasi. Hasil pencatatan dari detektor radiasi ini diinterpretasikan sebagai energi radiasi terserap oleh seluruh tubuh atau jaringan tertentu. Banyaknya energi radiasi pengion terserap oleh tubuh disebut dosis terserap yang dinyatakan dalam satuan Gray (*Gy*), dan untuk satuan yang lebih kecil dinyatakan dengan mili Gray (*mGy*). Besar dosis yang sama untuk setiap jenis radiasi belum tentu punya

efek biologis yang sama karena setiap radiasi pengion memiliki kemampuan yang berbeda-beda dalam merusak jaringan atau organ tubuh manusia. Karena perbedaan tersebut diperlukan besaran dosis yang tidak tergantung dari jenis radiasi yaitu dosis ekivalen dengan satuan Sievert (*Sv*) dan untuk satuan yang lebih kecil digunakan milisievert (*mSv*) (Bandunggawa, 2009).

Dosis radiasi merupakan seberapa banyak paparan radiasi yang akan diterima oleh suatu jaringan (materi). Dosis radiasi ada 3 (tiga) macam, diantaranya dosis serap, dosis equivalen dan dosis efektif.

1) Dosis Serap

Dosis serap merupakan banyaknya energi yang diterima suatu bahan per satuan massa bahan tersebut. Dosis serap dapat dirumuskan sebagai berikut :

$$D = \frac{\Delta E}{\Delta m} \tag{2.6}$$

Satuan dari dosis serap adalah $\frac{J}{kg}$ atau Gy, dengan 1 Gy = 100 rad.

2) Dosis Ekivalen

Dosis ekivalen merupakan dosis terserap dikalikan faktor bobot radiasi. Faktor bobot radiasi untuk elektron (radiasi beta), foton (gamma) dan sinar-X bernilai 1 sedangkan untuk radiasi alfa bernilai 20. Ini berarti bahwa radiasi alfa bisa mengakibatkan kerusakan pada jaringan tubuh 20 kali lebih besar dibandingkan dengan radiasi beta, gamma, dan sinar-X.

Tabel 2.1 Faktor Bobot Radiasi

Jenis	Faktor Bobot
Radiasi	Radiasi (W _R)
A	20
N	5 – 20
P	5
В	1-5
χ, γ	1

Dengan adanya dosis ekivalen ini maka 1 Sv yang berasal dari radiasi alfa akan mengakibatkan kerusakan yang sama dengan dosis 1 Sv dari radiasi sinar beta, gamma dan sinar-X. Dosis ekivalen dapat dirumuskan sebagai berikut :

$$H_T = W_R . D (2.7)$$

Satuan dari dosis ekivalen adalah Sievert (Sv). Dengan 1 Sv=100 rem. Semakin besar nilai W_R dari suatu radiasi, maka akan semakin besar pula daya rusak akibat radiasi tersebut. (Grupen, 2010).

3) Dosis Efektif

Dosis efektif merupakan dosis yang mempertimbangkan faktor bobot jaringan (W_T). Setiap jaringan tubuh juga mempunyai kepekaan masing-masing terhadap radiasi (faktor bobot organ), misalnya sel kelamin punya faktor bobot organ lebih tinggi dari sumsum tulang, ginjal, paru dan lain-lain. Oleh karena itu dibuatlah dosis efektif yang menyatakan jumlah dari dosis ekivalen yang diterima tubuh dikalikan dengan faktor bobot organ (Gabriel, 2005). Dosis efektif dapat dirumuskan sebagai berikut:

$$H_E = H_T.W_T = W_R.D.W_T$$
 (2.8)

Satuan dari dosis efektif adalah Sievert (Sv) dengan 1 Sv = 100 rem. Semakin besar nilai W_T dari suatu jaringan menunjukkan bahwa jaringan tersebut memiliki sensitivitas yang tinggi.

Tabel 2.2 Faktor Bobot Jaringan

Jaringan	Faktor Bobot Jaringan (W _T)
Gonad	0,20
Sumsum Tulang Belakang	0,12
Paru-paru	0,12
Payudara	0,12
Hati	0,05
Esofagus	0,05
Thyroid	0,03
Permukaan tulang	0,01
Kulit	0,01
Lain-lain	0,05

(Grupen, 2010).

2.6 Penggunaan Radiasi

Radiasi mempunyai banyak manfaat yang bisa digunakan dalam berbagai bidang. Bidang yang menggunakan radiasi antara lain

bidang kedokteran, ilmu pengetahuan dan teknologi, serta komunikasi. Pada bidang kedokteran radiasi banyak dimanfaatkan baik itu untuk diagnosis maupun untuk pengobatan (Suyatno, 2010). Contoh radiasi yang digunakan untuk diagnosis adalah radiasi sinar X yang bisaa digunakan untuk rontgen. Sedangkan contoh radiasi untuk pengobatan adalah radiasi sinar gamma yang digunakan untuk terapi penyembuhan kanker.

2.6.1 Radioterapi

Radioterapi merupakan penggunaan sinar-X langsung pada sasaran untuk menghancurkan sel-sel kanker sekaligus meminimalisir dampak radiasi pada sel-sel yang sehat. Lama pengobatan radioterapi tergantung dari beberapa faktor, seperti lokasi, jenis dan stadium kanker, dan apakah radioterapi merupakan pengobatan tunggal atau dikombinasikan dengan jenis pengobatan kanker lainnya, seperti kemoterapi atau operasi. Radioterapi dapat diterapkan untuk mengatasi kanker di banyak bagian tubuh. Tujuan dilakukannya radioterapi adalah untuk menghilangkan jaringan kanker yang ada dalam tubuh. Selain itu juga ada digunakan untuk pembersihan, yaitu membersihkan sisa-sisa kanker yang ada setelah dilakukan pengangkan, untuk menghilangkan jaringan kanker yang mungkin tertinggal (Suvatno, 2010).

Sinar X, elektron, dan sinar γ (gamma) banyak digunakan dalam radioterapi disamping partikel lain. Pada prinsipnya apabila berkas sinar radioaktif atau partikel dipaparkan ke jaringan, maka akan terjadi berbagai peristiwa antara lain peristiwa ionisasi molekul air yang mengakibatkan terbentuknya radikal bebas di dalam sel yang pada gilirannya akan menyebabkan kematian sel. Lintasan sinar juga menimbulkan kerusakan akibat tertumbuknya DNA yang dapat diikuti kematian sel. Radioterapi digunakan sebagai pengobatan mandiri untuk mengecilkan tumor atau menghancurkan sel-sel kanker termasuk yang berkaitan dengan leukemia dan limfoma, dan juga digunakan dalam kombinasi dengan pengobatan kanker (Siswono, 2002).

Penggunaan radiasi ionisasi yang paling luas dalam dunia kedokteran adalah sinar-X dan sinar gamma. Hubungan antara sinar gamma dengan material biologis sangat kuat, sehingga mampu memukul elektron pada kulit atom yang akan menghasilkan pasangan ion. Cairan tubuh intraselular maupun ekstraselular akan terionisasi

yang menyebabkan kerusakan dan kematian pada mikroorganisme, sehingga sinar gamma banyak dipakai sebagai sterilisasi peralatan kedokteran. Radiasi sinar gamma dapat membunuh semua bentuk kehidupan mikroorganisme (Siswono, 2002).

Dalam setiap proses radiasi ditentukan berapa besar dosis radiasi yang digunakan. Banyak hal yang bisa mempengaruhi pemberian dosis ini antara lain kondisi pasien, jenis kanker, lokasi kanker, ukuran kanker, dan masih banyak lagi. Setiap proses radioterapi maka radiasi yang dipancarkan akan terfokus ke bagian kanker. Tetapi selalu ada kemungkinan bahwa jaringan sehat disekitarnya juga akna terkena radiasi. Sehingga setiap penyinaran akan terlebih dahulu diperhitungkan sehingga efek sampingnya bisa dikurangi. Radioterapi dibagi menjadi dua macam yaitu:

1. Radiasi Eksternal

Radiasi eksternal merupakan radiasi yang penyinarannya dilakukan dari luar tubuh. Radiasi eksternal dilakukan dengan menempatkan sumber radiasi diluar tubuh pasien kemudian pasien disinari sehingga radiasi akan menembus kulit dan masuk kedalam jaringan yang dituju. Radiasi ini bisa diterapkan untuk hampir semua jenis pasien (Suyatno, 2010).

2. Radiasi Internal

Radiasi internal atau bisa disebut *brachytherapy* merupakan penyinaran yang dilakukan dari dalam tubuh. Sehingga sumber radiasi yang digunakan akan dimasukkan dalam tubuh melalui sebuah kabel atau kateter. Sumber radiasi yang digunakan juga berupa kapsul yang akan ditanamkan di jaringan kanker. Penggunaan radiasi eksternal lebih efektif untuk membunuh kanker sekaligus mengurangi dampak radiasi terhadap jaringan sehat disekitar kanker. Radiasi ini bisaanya digunakan untuk mengobati kanker di daerah kepala, leher, selangkangan, dan saluran kencing, serta kanker thyroid, prostat, leher rahim, dan payudara (Suyatno, 2010).

2.7 Efek Radiasi

Sel dalam tubuh manusia terdiri dari sel genetik dan sel somatik. Sel genetik adalah sel telur pada perempuan dan sel sperma pada laki-laki, sedangkan sel somatik adalah sel-sel lainnya yang ada

dalam tubuh. Berdasarkan jenis sel, maka efek radiasi dapat dibedakan atas efek genetik dan efek somatik. Efek genetik atau efek pewarisan merupakan efek radiasi yang terjadi pada sel genetik dan dirasakan oleh keturunan dari individu yang terkena paparan radiasi. Sedangkan bila efke radiasi terjadi pada sel somatik maka akibatnya akan dirasakan langsung oleh individi yang terpapar radiasi.

Waktu yang dibutuhkan sampai terlihatnya gejala efek somatik sangat bervariasi sehingga dapat dibedakan atas efek segera dan efek tertunda. Efek segera adalah kerusakan yang secara klinik sudah dapat teramati dalam waktu singkat setelah pemaparan, seperti rontoknya rambut, memerahnya kulit, luka bakar dan penurunan jumlah sel darah. Kerusakan tersebut akan terlihat dalam waktu beberapa hari sampai minggu setelah dikenai radiasi dengan dosis yang tinggi. Efek tertunda merupakan efek radiasi yang baru timbul setelah selang waktu yang lama (orde tahunan) setelah terkena radiasi, contohnya adalah dan kanker. Dalam masalah proteksi radiasi, efek radiasi juga dibedakan atas efek stokastik dan efek non stokastik (deterministik) (Akhadi, 2000).

a. Efek Stokastik

Efek stokastik ialah efek yang belum tentu terjadi (probabilistik). Efek stokastik tidak mempunyai batas ambang. Artinya, dosis radiasi serendah apapun mempunyai kemungkinan untuk menimbulkan perubahan pada sistem biologik, baik pada tingkat molekul maupun sel. Pada efek stlastik tidak terjadi kematian sel melainkan terjadi perubahan sel. Efek stokastik baru akan muncul setelah masa laten, yang lama (jangka panjang). Semakin besar dosis, semakin besar peluang terjadinya efek stokastik, sedangkan keparahannya tidak tergantung kepada dosis (Akhadi, 2000).

b. Efek Deterministik

Efek ini terjadi karena adanya kematian sel sebagai akibat dari paparan radiasi baik pada sebagian atau seluruh tubuh. Efek deterministik timbul bila dosis yang diterima di atas dosis ambang dan umumnya timbul dengan waktu tunda yang relatif singkat dibandingkan dengan efek stokastik (jangka pendek). Keparahan efek ini akan meningkat bila dosis yang diterima semakin besar. Beberapa contoh efek deterministik adalah eritema atau kulit yang menjadi merah,

repository.ub.a

pelepuhan dan terkelupas, katarak pada lensa mata, peradangan akut paru, gangguan proses pembentukan sel sperma, bahkan sampai sterilitas gangguan proses pembentukan sel-sel darah dan gangguan perkembangan janin dalam kandungan (Akhadi, 2000).

2.8 Mencit (Mus musculus)

Mencit (*Mus musculus*) memiliki ciri-ciri anatomi sebagai berikut:

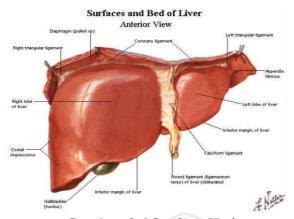
Tabel 2.3 Anatomi dan Fisiologi Mencit

Kriteria	Jumlah
Berat badan dewasa jantan	20-40 g
Berat lahir	0,5-1,5 g
Luas pemukaan badan	$20 \text{ g}: 36 \text{ cm}^2$
Jangka waktu hidup	1,5-3 th
Konsumsi makanan	15 g/100 g/hr
Konsumsi air	15 ml/100 g/hr
Waktu transit pencernaan	8-14 jam
Siklus seksual	4-5 hr
Lama hamil	19-21 hr
Jumlah kelahiran	10-12 ekor
Produksi anak	8/minggu
Temperature tubuh	36,5-38° C
Laju denyut jantung	325-780/menit
Volume darah	76-80 ml/kg
Tekanan darah	113-147 /81-10 ⁶ mmHg
Eritrosit	$7-12,5x106/\text{mm}^3$
Hematrokit	39-49%
Hemoglobin	10,2-16,6 mg/100 ml
Leukosit	$6-15x10^3 \text{ /mm}^3$
Neutrofil	10-40%
Limfosit	55-95%
Eosinofil	0-4%
Monosit	0,1-3,5%
Basofil	0-0,3%
Trombosit	160-410x10 ³ /mm ³

(Harkness, 1983).

Klasifikasi ilmiah dari mencit (Mus musculus) adalah sebagai

berikut:


Kingdom : Animalia
Divisi : Chordata
Kelas : Mammalia
Ordo : Rodentia
Famili : Muridae
Genus : Mus
Spesies : Musculus

Mencit (*Mus musculus*) sangat gampang sekali bertambah keturunannya, gampang merawatnya dalam jumlah yang banyak dan ciri anatomi serta fisiologi tubuhnya mirip manusia, sehingga mencit banyak yang digunakan sebagai hewan percobaan di laboratorium. Setiap harinya, mencit membutuhkan makanan sebanyak 3-5 gram. Pemberian makanan tersebut harus memperhatikan kualitas bahan pangan (untuk daya cerna), karena kualitas makanan mencit sangat berpengaruh terhadap kondisi mencit, yang meliputi kemampuan untuk tumbuh, berkembang biak atau perlakuan terhadap pengobatan (Zulkarnain, 2013).

2.9 Hepar (Hati)

Hepar (hati) adalah kelenjar terbesar dalam tubuh dengan berat sekitar 1300-1550 gram dan berwarna merah cokelat, mempunyai banyak pembuluh darah serta lunak. Hepar berbentuk baji dengan permukaan dasarnya pada sisi kanan dan puncaknya pada sisi kiri tubuh, terletak di kuadran kanan atas abdomen (hipokondria kanan). Permukaan atasnya berbatasan dengan diafragma dan batas bawahnya mengikuti pinggiran kosta kanan.

Hepar merupakan salah satu organ ekskresi dan juga organ pencernaan dan disuplai oleh dua pembuluh darah yaitu vena porta hepatika yang berasal dari lambung dan usus yang kaya akan nutrien seperti asam amino, monosakarida, vitamin yang larut dalam air dan mineral. Arteri hepatika, cabang dari arteri koliaka yang kaya akan oksigen. Pembuluh darah tersebut masuk hati melalui porta hepatis yang kemudian dalam porta tersebut vena porta dan arteri hepatika bercabang menjadi dua yakni ke lobus kiri dan ke lobus kanan (Hadi, 2002). Darah dari cabang-cabang arteri hepatika dan vena porta

Gambar 2.6 Struktur Hati Sumber: Netter, 2006

mengalir dari perifer lobulus ke dalam ruang kapiler yang melebar yang disebut sinusoid. Sinusoid ini terdapat diantara barisan sel-sel

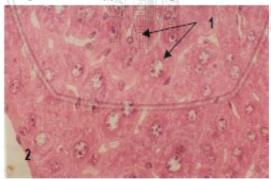
hepar ke vena sentral. Vena sentral dari semua lobulus hati menyatu untuk membentuk vena hepatika (Sherwood, 2001).

Selain cabang-cabang vena porta dan arteri hepatika yang mengelilingi bagian perifer lobulus hati, juga terdapat saluran empedu yang membentuk kapiler empedu yang dinamakan kanalikuli empedu yang berjalan diantara lembaran sel hati (Amirudin, 2009).

Plexus (saraf) hepaticus mengandung serabut dari ganglia simpatis T7-T10, yang bersinapsis dalam plexuscoeliacus, nervus vagus dexter dan sinister serta phrenicus dexter (Sherlock, 1990).

2.9.1 Fungsi Hati

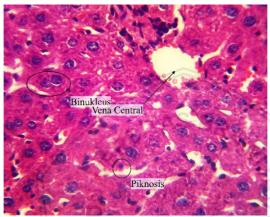
Hati adalah organ metabolik terbesar dan terpenting di tubuh. Organ ini penting bagi sistem pencernaan untuk sekresi empedu. Hati menghasilkan empedu sekitar satu liter per hari, yang diekskresi melalui duktus hepatikus kanan dan kiri yang kemudian bergabung membentuk duktus hepatikus komunis. Selain sekresi empedu, hati juga melakukan berbagai fungsi lain, mencakup hal-hal berikut:


- 1. Pengolahan metabolik kategori nutrien utama (karbohidrat, lemak, protein) setelah penyerapan mereka dari saluran cerna.
- 2. Detoksifikasi atau degradasi zat-zat sisa dan hormon serta obat dan senyawa asing lainnya.

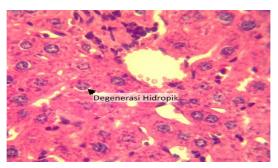
- 3. Sintesis berbagai protein plasma, mencakup protein-protein yang penting untuk pembekuan darah serta untuk mengangkut hormon tiroid, steroid dan kolesterol dalam darah.
- 4. Penyimpanan glikogen, lemak, besi, tembaga dan banyak vitamin
- 5. Pengaktifan vitamin D, yang dilaksanakan oleh hati bersama dengan ginjal.
- 6. Pengeluaran bakteri dan sel darah merah yang usang.
- 7. Ekskresi kolesterol dan bilirubin, yang merupakan produk penguraian yang berasal dari pemecahan sel darah merah yang sudah usang.

Hati merupakan komponen sentral sistem imun. Tiap-tiap sel hati atau hepatosit mampu melaksanakan berbagai tugas metabolik diatas, kecuali aktivitas fagositik yang dilaksanakan oleh makrofag residen atau yang lebih dikenal sebagai sel Kupffer (Sherwood, 2001). Sel Kupffer, yang meliputi 15% dari massa hati serta 80% dari total populasi fagosit tubuh, merupakan sel yang sangat penting dalam menanggulangi antigen yang berasal dari luar tubuh dan mempresentasikan antigen tersebut kepada limfosit (Amiruddin, 2009).

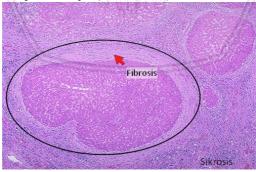
2.9.2 Histologi Organ Hati


Organ hati memiliki gambaran mikroskopis yang dapat dilihat dengan jelas apabila menggunakan perbesaran 400x. Apabila

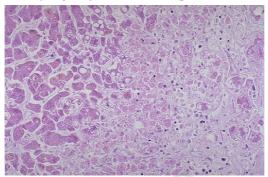
Gambar 2.7 Gambaran Mikroskopis Organ Hati Sehat Keterangan: 1) Hepatosit, 2) Vena Centralis Sumber: Hastuti, 2006


menggunakan perbesaran 100x atau 40x, maka sel normal tidak dapat terlihat dengan jelas.

Organ hati dapat dikatakan sehat apabila jumlah sel normalnya cukup besar. Sel normal memiliki ciri-ciri seperti pada Gambar 2.5, berbentuk bulat besar dengan sitoplasma yang terkomposisi dengan baik (tidak terlalu pekat). Apabila sel normal rusak, maka akan terjadi beberapa jenis kerusakan yaitu piknosis, binukleus, sikrosis, nekrosis, fibrosis dan degenerasi hidropik. Masing-masing jenis kerusakan pada hati memiliki cirinya masing-masing antara lain:


Gambar 2.8 Kerusakan pada Organ Hati Sumber: Sudiono dkk, 2003

- 1. Piknosis, merupakan suatu keadaan dimana inti sel hepatosit mengalami penyusutan dan berwarna sangat gelap. Hal ini dikarenakan DNA dan basophil menjadi lebih padat dan mengalami penurunan massa akibat radikal bebas yang berikatan dengan rantai DNA sel (Sudiono dkk, 2003).
- 2. Degenerasi hidropik, merupakan tingkat kerusakan struktur ke-2 yang ditandai dengan ciri-ciri antara lain sitoplasma mengalami vakuolisasi, vakuola-vakuola nampak jernih dan terjadi karena peningkatan pemasukan air ke dalam sel dan kemudian air memasuki vakuola-vakuola tersebut (Hastuti, 2006).


Gambar 2.9 Degenerasi hidropik pada Organ Hati Sumber: Hastuti, 2006

- 3. Sel binukleus, ditandai dengan terdapatnya sel hepatosit yang memiliki dua inti dan saling berikatan satu sama lain. Sel binukleus dapat terjadi karena adanya kerusakan pada kromosom dan DNA sel, sehingga ketika sel melakukan mitosis (pembelahan sel) sitoplasma tidak terbelah dengan sempurna (Sudiono dkk, 2003).
- 4. Fibrosis, merupakan peningkatan deposisi komponen matriks ekstraseluler (kolagen, glikoprotein, proteoglikan) di hepar. Respon terhadap kerusakan sel hepar ini sering bersifat irreversibel (Klatt, 2016).
- 5. Sikrosis, merupakan tahap akhir dari kerusakan sel hepatosit. Ketika sel mengalami kerusakan secara terus menerus, ia akan menyebabkan munculnya nodul yang abnormal. Sikrosis ditandai dengan munculnya fibritisasi pada sekitar nodul, dan berubahnya warna hati menjadi oranye (Klatt, 2016).

Gambar 2.10 Sikrosis dan Fibrosis pada Organ Hati Sumber: Klatt, 2016

6. Nekrosis, merupakan proses degenerasi yang menyebabkan kerusakan sel yang terjadi setelah suplai darah hilang ditandai

Gambar 2.11 Nekrosis pada Organ Hati Sumber: Klatt. 2016

dengan pembengkakan sel, denaturasi protein dan kerusakan organ yang menyebabkan disfungsi berat jaringan. Sel yang mengalami denaturasi ini ditandai dengan mengecilnya sel dan bertambah padatnya sitoplasma di dalam sel, sehingga berwarna pekat. Pada Gambar 2.8, pada sisi kiri merupakan sel yang masih normal namun mulai mengalami kerusakan. Sedangkan pada sisi kanan, merupakan sel hepatosit yang mengalami nekrosis (Klatt, 2016).

2.10 Antioksidan

Secara kimia senyawa antioksidan adalah senyawa pemberi elektron (elektron donor). Secara biologis, pengertian antioksidan adalah senyawa yang dapat menangkal atau meredam dampak negatif oksidan. Antioksidan bekerja dengan cara mendonorkan satu elektronnya kepada senyawa yang bersifat oksidan sehingga aktivitas senyawa oksidan tersebut dapat di hambat (Winarti, 2010). Antioksidan dibutuhkan tubuh untuk melindungi tubuh dari serangan radikal bebas. Antioksidan adalah suatu senyawa atau komponen kimia yang dalam kadar atau jumlah tertentu mampu menghambat atau memperlambat kerusakan akibat proses oksidasi.

2.10.1 Jenis- jenis Antioksidan

1. Antioksidan primer

Antioksidan primer bekerja untuk mencegah pembentukan senyawa radikal baru, yaitu mengubah radikal bebas yang ada menjadi molekul yang berkurang dampak negatifnya sebelum senyawa radikal bebas bereaksi. Antioksidan primer mengikuti mekanisme pemutusan rantai reaksi radikal dengan mendonorkan atom hidrogen secara cepat pada suatu lipid yang radikal, produk yang dihasilkan lebih stabil dari produk awal. Antioksidan primer adalah antioksidan yang sifatnya sebagai pemutus reaksi berantai (*chain-breaking antioxidant*) yang bisa bereaksi dengan radikal-radikal lipid dan mengubahnya menjadi produk-produk yang lebih stabil (Kumalaningsih, 2006).

2. Antioksidan sekunder

Antioksidan sekunder bekerja dengan cara mengkelat logam yang bertindak sebagai pro-oksidan, menangkap radikal dan mencegah terjadinya reaksi berantai. Antioksidan sekunder berperan sebagai pengikat ion-ion logam, penangkap oksigen, pengurai hidroperoksida menjadi senyawa non radikal, penyerap radiasi UV atau deaktivasi singlet oksigen (Putra, 2008).

3. Antioksidan tersier

Antioksidan tersier bekerja memperbaiki kerusakan biomolekul yang disebabkan radikal bebas. antioksidan tersier adalah enzim enzim vang memperbaiki DNA dan metionin sulfida reduktase (Putra, 2008). Berdasarkan sumbernya antioksidan dibagi dalam dua kelompok, yaitu antioksidan sintetik (antioksidan yang diperoleh dari hasil sintesa reaksi kimia) dan antioksidan alami (antioksidan hasil ekstraksi bahan alami). Beberapa contoh antioksidan sintetik yang diizinkan penggunaannya secara luas diseluruh dunia untuk digunakan dalam makanan Butylated Hidroxyanisol (BHA), adalah Butylated (BHT), Tert-Butylated Hidroxyquinon Hidroxytoluene (TBHO) dan tokoferol. Antioksidan tersebut merupakan antioksidan yang telah diproduksi secara sintetis untuk tujuan komersial (Buck 1991).

4. Oxygen Scavanger

Oxygen Scavanger yang mengikat oksigen sehingga tidak mendukung reaksi oksidasi, misalnya vitamin C.

5. Chelators

Chelators atau Sequesstrants mengikat logam yang mampu mengkatalisi reaksi oksidasi misalnya asam sitrat dan asam amino (Kumalaningsih, 2006).

2.11 Mahkota Dewa

Mahkota dewa (*Phaleria macrocarpa*) merupakan salah satu tumbuhan di Indonesia yang sering digunakan sebagai obat dalam bentuk pil maupun ekstrak. Sistematika tumbuhan mahkota dewa adalah sebagai berikut:

Kingdom : Plantae

Divisi : Spermatophyta
Sub divisi : Dicotyledon
Kelas : Thymelaeales
Famili : Thymelaeaceae

Marga : Phaleria Spesies : Macrocarpa

Gambar 2.12 Mahkota dewa (*Phaleria macrocarpa*)
Sumber: Harmanto, 2003

Buah mahkota dewa diyakini sebagai salah satu sumber antioksidan dengan aktivitas yang tinggi secara tradisional ekstraknya (daun, batang, buah dan biji) dalam air panas digunakan untuk mengendalikan penyakit kanker, impotensi, hemorrhoids, diabetes, alergi, hati dan jantung, gagal ginjal, gangguan peredaran darah, jerawat, stroke, migrain dan berbagai macam jenis penyakit kulit (Harmanto, 2003). Metabolit sekunder tanaman mahkota dewa seperti tanin, saponin, resin, senyawa fenolik dan polifenol, terpenoid, alkaloid, dan flavonoid dilaporkan memiliki aktivitas antioksidan, antimikroba dan memiliki aktivitas cytotoxic sehingga digunakan di

bidang farmasi sebagai obat-obatan ataupun suplemen diet serta dapat pula digunakan sebagai agen pengawet alami pada pangan (Hendra, 2011).

2.12 Katuk

Katuk memiliki nama latin (*Saoropus androgynous*). Tumbuhan ini banyak dijumpai di Indonesia dan Asia Tenggara. Pada umumnya daun katuk terkenal untuk memperlancar ASI. Katuk termasuk dalam family Phyllanthaceae yang merupakan satu family dengan ceremai. Katuk merupakan jenis tumbuhan semak dan tumbuh pada dataran rendah hingga 1300 m di atas permukaan laut. Bagian tumbuhan katuk yang sering dimanfaatkan adalah bagian daunnya. Daun katuk berwarna hijau gelap, dengan panjang 5 hingga 6 cm.

Kingdom : Plantae

Divisi : Magnoliophyta
Kelas : Magnoliopsida
Ordo : Malphigiales
Famili : Phyllanthaceae
Genus : Saoropus
Spesies : Androgynus

Gambar 2.13 Daun katuk (*Saoropus androgynus*)
Sumber: Rukmana, 2007

Katuk juga memiliki bunga berwarna merah gelap atau kuning dengan bercak merah gelap dan berbunga sepanjang tahun, terdapat juga yang berwarna merah muda namun sangat jarang ditemui. Buah dari pohon katuk ini tidaklah besar, berbentuk bulat kecil dan berwarna hijau kekuningan serta keras.

Hasil penelitian Kelompok Kerja Nasional Tumbuhan Obat Indonesia menunjukkan bahwa tanaman katuk mengandung beberapa

senyawa kimia, antara lain alkaloid papaverin, protein, lemak, vitamin, mineral, saponin, flavonoid, dan tanin. Beberapa senyawa kimi yang terdapat dalam tanaman katuk diketahui berkhasiat obat (Rukmana, 2007).

Daun katuk selain dapat melancarkan ASI karena mengandung asma seskuiterna, dapat membersihkan darah kotor pasca melahirkan, menyembuhkan frambusia dan sulit buang air kecil, serta borok, bisul dan sembelit.

2.13 Bunga Sepatu

Bunga sepatu banyak dijumpai pada daerah iklim tropis dan subtropis. Tanaman bunga sepatu ini merupakan tanaman semak dengan bunga besar berwrna merah, putih, kuning, merah muda, oranye tergantung dari spesiesnya dan tidak berbau. Mahkota bunga terdiri dari 5 lembar atau lebih. Tangkai putiknya berbentuk silinder panjang dikelilingi tangkai sari berbentuk oval. Bijinya berbentuk pipih dan berwarna putih. Bunga sepatu pada umumnya digunakan sebagai tanaman hias dan masih jarang penggunaanya sebagai obatobatan.

Kingdom : Plantae

Divisi : Magnoliophyta
Kelas : Magnoliopsida
Ordo : Malvales
Famili : Malvaceae
Genus : Hibiscus
Spesies : Rosa-sinensis

Gambar 2.14 Bunga sepatu (*Hibiscus rosasinensis*) Sumber: Hembing, 2000

Tanaman bunga sepatu ini mulai dari akar, daun hingga bunganya memiliki berbagai macam kandungan antioksidan. Akar tanaman ini mengandung saponin, skopoletin, tanin, cleomiscosin A, dan clemiscosin C. Sedangkan daunnya mengandung saponin, polifenol dan taraxeryl asetat.Bunganya sendiri mengandung polifenol, cyanidin diglucosid, hibisetin, zat pahit dan lendir.

Bunga dari tanaman ini, memiliki beberapa kegunaan antara lain, untuk batuk berdahak dan bernanah, batuk rejan (*pertussis*), radang saluran pernafasan (*bronchitis*), TBC, mimisan (*epistaxis*), disentri, infeksi saluran kemih, gonorrhea, keputihan, haid tidak teratur, melancarkan haid, furunkulus, bisul di kepala anak, dan borok (*ulcustripicum*). Sedangkan daunnya dapat berguna untuk penyakit radang kulit, sariawan, gondongan, radang usus, radang selaput lendir hidung, radang selaput mata (*conjunctivitis*), dan demam karena malaria (Hembing, 2000).

2.14 Kenikir

Kenikir memiliki nama latin *Cosmos caudatus*. Kenikir berasal dari Amerika Tengah, Amerika Latin. Spesies ini dibawa ke Asia Tenggara oleh Spanyol melalui Filipina dan merupakan satu famili dengan aster. Kenikir juga merupakan tanaman perdu dengan tinggi 75-100 cm, yang memiliki batang tegak bergaris-garis membujur, berbulu dan bercabang banyak. Daunnya bertangkai panjang, majemuk, berwarna hijau dengan panjang 15-25 cm dan berhadapan. Kenikir juga memiliki bunga yang berwarna kuning dan buah yang keras serta berbentuk seperti jarum. Kenikir sudah sangat umum

Gambar 2.15 Kenikir (*Cosmos caudatus*) Sumber: Hidayat, 2015

repository.ub.ac.

dimanfaatkan sebagai obat herbal. Bagian tumbuhan yang sering digunakan adalah daunnya.

Kingdom : Plantae

Divisi : Spermatophyta Kelas : Magnoliophyta

Ordo : Fabales
Famili : Asteraceae
Genus : Cosmos
Spesies : Caudatus

Daun dari tanaman ini mengandung saponin, flavonoid, polifenol dan minyak atsiri (Adi, 2008). Sebuah penelitian menunjukkan bahwa kenikir atau dikenal dengan nama *ulam raja* di Malaysia, pada dosis 500 mg/kg berpotensi sebagai agen terapi guna mengembalikan kerusakan tulang pada wanita yang sudah mengalami menopause, sementara itu penelitian lainnya menyebutkan bahwa kenikir berpotensi sebagai anti radang karena kandungan flavonoid yang berpotensi sebagai antioksidan (Hidayat, 2015).

Efek farmakologis yang dimiliki oleh kenikir, di antaranya penambah nafsu makan, penguat jantung, dan sebagai pengusir serangga (Hariana, 2013). Selain itu, manfaat kenikir dalam dunia pengobatan adalah sebagai obat maag dan lemah lambung, obat kanker, gondongan, payudara bengkak, meningkatkan sistem imun tubuh, menguatkan tulang, dan mengatasi bau mulut.

2.15 Beluntas

Beluntas umumnya ditanam sebagai tanaman pagar maupun tumbuh liar di tanah kering. Beluntas merupakan tanaman semak dan memiliki batang dengan cabang banyak dan berbulu lembut. Tanaman ini dapat tumbuh hingga 3 meter dan memerlukan cukup cahaya matahari agar dapat tumbuh. Daun dari beluntas ini bertangkai pendek, berbentuk bulat telur dengan ujung bundar melancip bergerigi, dan letaknya berselang-seling. Bunga dari beluntas berwarna ungu dan muncul di ujung cabang daun atau ketiak daun. Buahnya seperti berbentuk gasing dan berwarna kecoklatan.

Kingdom : Plantae

Divisi : Magnoliophyta Kelas : Magnoliopsida

Ordo : Asterales Famili : Asteraceae Genus : Pluchea Spesies : Indica

Beberapa bahan kimia yang terkandung dalam beluntas di antaranya alkaloid dan minyak asiri, efek farmakologis daun beluntas adalah menambah nafsu makan dan membantu pencernaan (Hariana,

Gambar 2.16 Beluntas (*Pluchea indica*) Sumber: Dalimartha, 2013

2013). Beluntas memiliki rasa yang pahit dan getir. Meskipun memiliki rasa yang getir, dan digunakan sebagai tanaman pagar, beluntas memiliki beberapa manfaat pada kesehatan, yaitu menghilangkan bau badan, bau mulut, gangguan pencernaan anak, TBC, nyeri pada rematik, nyeri tulang, sakit pinggang, demam dan keputihan (Dalimartha, 2013).

Bagian daun yang bisaanya diolah sebagai obat herbal. Dalam beberapa penelitian, daun beluntas telah terbukti mampu menangkap radikal bebas 1,1-difenil-2-pikrilhidrasil (DPPH) dan asam ABTS.

BAB III METODOLOGI PENELITIAN

3.1 Waktu dan Tempat Penelitian

Penelitian ini dilakukan pada bulan April 2017 hingga Agustus 2017, bertempat di Laboratorium Fisika Lanjutan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Brawijaya dan Laboratorium Fisiologi Hewan Universitas Islam Negeri Maulana Malik Ibrahim Malang.

3.2 Alat dan Bahan Penelitian

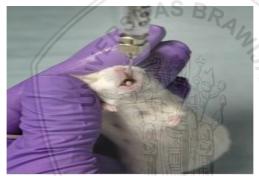
3.2.1 Alat Penelitian

Alat-alat yang digunakan dalam penelitian ini antara lain box plastik sebagai kandang dengan ukuran 30 x 20 x 15 cm 3 , sumber radiasi gamma Co-60, Cs-137, Am-241, Na-22, dan Sr-90, seperangkat alat bedah, sonde lambung atau stomach tube (1,5 x 80 mm 2), pipet tetes, mikrotom, parafin block, oven, handskun, masker, timbal hitam, cawan petri, hot plate dan timbangan digital.

3.2.2 Bahan Penelitian

Bahan – bahan yang digunakan dalam penelitian ini antara lain adalah mencit jantan berumur 2 bulan dengan kisaran berat 20 gram sebanyak 60 ekor, pakan mencit berupa pellet jenis BR1, air mineral isi ulang untuk minum mencit, aquades 1000 ml, PBS 1000ml, xylol, formalin 10%, alkohol (70%, 75%, 80%, 90%, 95% dan 96%), pewarna hematoxilin-eosin (HE), entellan, sekam kayu, dan bunga sepatu, mahkota dewa, daun katuk, kenikir, beluntas sebagai bahan ekstrak antioksidan.

3.3 Prosedur Penelitian


3.3.1 Persiapan Alat dan Bahan

Sebelum pemaparan, mencit dikelompokkan menjadi 12 kelompok dengan masing-masing kelompok berjumlah 5 mencit. Kemudian, dilakukan proses adaptasi selama tujuh hari di Laboratorium Fisiologi Hewan UIN Malang. Selanjutnya dilakukan persiapan terhadap alat radiasi. Sumber radiasi gamma pada penelitian ini digunakan Co-60, Cs-137, Am-241, Na-22 dan Sr-90 sebagai sumber radiasinya. Sumber-sumber radiasi gamma tersebut kemudian diletakkan pada suatu wadah berbentuk setengah lingkaran yang terbuat dari kayu dimana pada bagian tengah kayu terdapat lubang

untuk menempatkan sumber radiasi. Digunakan timbal dengan tebal 2 mm sebagai proteksi radiasinya. Kemudian mencit diletakkan di bawah sumber radiasi dan dibiarkan terpapar selama waktu yang telah ditentukan sebelumnya selama 14 hari. Sedangkan untuk kelompok mencit yang diberi antioksidan, antioksidan tersebut diberikan 4 jam sebelum dilakukan pemaparan. Selanjutnya dilakukan pembedahan dan pembuatan preparat organ hati mencit.

3.3.2 Persiapan Ekstrak Antioksidan

Ekstrak antioksidan Bikotans yang diberikan pada mencit berupa campuran ekstrak dari mahkota dewa, daun katuk, kenikir, beluntas, bunga sepatu dan 1 ml aquades yang dibuat sendiri. Antioksidan kemudian diberikan kepada mencit secara oral dengan menggunakan sonde lambung dengan dosis yang telah ditetapkan sebelumnya berdasarkan berat badan mencit, satu kali sehari selama 14 hari.

Gambar 3.1 Sonde lambung pada mencit

3.3.3 Persiapan Hewan Coba Mencit

Penelitian eksperimental ini dilakukan dengan 2 perlakuan utama yaitu 5 variabel waktu penyinaran radiasi dan 5 variabel konsentrasi antioksidan Bikotans. Mencit jantan digunakan pada penelitian ini dimana 5 mencit sebagai kontrol negatif, 25 mencit diradiasi dengan dengan 5 variabel waktu penyinaran, 5 mencit sebagai kontrol positif dan 25 mencit diberi antioksidan Bikotans dengan 5 variabel konsentrasi. Perlakuan masing-masing dilakukan 14 hari, kemudian mencit dibedah dan diamati. Mencit yang telah disiapkan kemudian dipilih dengan kondisi fisik yang paling prima, kondisi fisik mencit yang baik tersebut dapat dilihat dari pergerakan mencit yang paling aktif dan tidak adanya luka atau cacat lain pada

seluruh tubuh mencit. Mencit yang telah terpilih kemudian dimasukkan ke dalam kandang dan di aklimatisasi selama 1 minggu untuk proses adaptasi terhadap habitatnya yang baru sekaligus menyeragamkan seluruh kondisi mencit yang terpilih. Pembagian 4 kelompok perlakuan mencit sebagai berikut:

Kontrol negatif (K-) :Mencit tidak diradiasi dan tidak diberi antioksidan.

Radiasi negatif (R-) :Mencit diradiasi dan tidak diberi antioksidan

Kontrol positif (K+) : Mencit diradiasi 40 menit dan tidak diberi

antioksidan.

Radiasi positif (R+) :Mencit diberi antioksidan dan diradiasi

Tabel 3.1 Pengelompokan Mencit Berdasarkan Perlakuan [keterangan: (-) tanpa, (+) dengan]

Kelompok	Perlakuan		
	Radiasi	Ekstrak Antioksidan	
Kontrol Negatif (K-)		-	
Kontrol Positif (K+)	人 學 續升 党人	+	
Radiasi Negatif (R-)		XA -	
Radiasi Positif (R+)		//	

3.3.4 Pemberian Perlakuan

Mencit yang telah dikelompokkan kemudian dibagi berdasarkan perlakuan yang diberikan. Masing-masing kelompok perlakuan menggunakan 5 mencit. Pada kelompok radiasi negatif (R-) digunakan 5 variasi waktu pemaparan radiasi. Sedangkan pada kelompok radiasi positif (R+) digunakan 5 variasi antioksidan dengan lama waktu pemaparan 40 menit.

Tabel 3.2 Pengelompokan Dosis Paparan Radiasi dan Pemberian Ekstrak (keterangan : BB = Berat Badan)

`	terangai	1	5 – Berat Badan)	
Kontrol Negatif	K-	Tanpa pemaparan radiasi dan tanpa pemberian ekstrak Bikotans		
Radiasi Negatif	R-	1	Paparan radiasi 10 menit	
		2	Paparan radiasi 20 menit	
		3	Paparan radiasi 30 menit	
		4	Paparan radiasi 40 menit	
		5	Paparan radiasi 50 menit	
Kontrol Positif	K+	Pemaparan selama 40 menit dan pemberian ekstrak Bikotans 7,8 mg/kg BB		
Radiasi Positif	R+	1	Paparan radiasi 40 menit dan ekstrak Bikotans 3,8 mg/kg BB	
		2	Paparan radiasi 40 menit dan ekstrak Bikotans 4,8 mg/kg BB	
		3	Paparan radiasi 40 menit dan ekstrak Bikotans 5,8 mg/kg BB	
		4	Paparan radiasi 40 menit dan ekstrak Bikotans 6,8 mg/kg BB	
		5	Paparan radiasi 40 menit dan ekstrak antioksidan 7,8 mg/kg BB	

3.4 Pengamatan dan Pembedahan

Pembedahan mencit dilakukan dengan menggunakan alat bedah dan meja bedah. Mencit terlebih dahulu di dislokasi pada bagian lehernya. Kemudian, mencit dibedah dengan sangat hati-hati dan diambil organ hati yang akan dijadikan preparat. Organ hati yang diambil harus berada pada kondisi utuh dan tanpa goresan agar preparat yang dihasilkan maksimal.

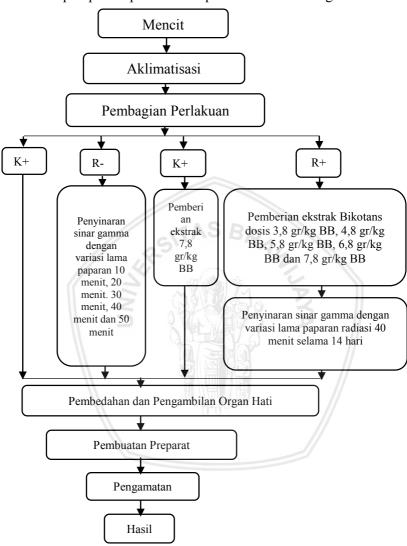
Organ hati kemudian diambil dan dipotong dengan ukuran sekecil mungkin, namun mewakili struktur jaringan secara keseluruhan. Organ kemudian direndam kedalam larutan formalin 10% selama lebih dari 24 jam untuk proses fiksasi. Preparat yang telah

difiksasi kemudian direndam ke dalam larutan etanol 70%, 80%, 90%, 95% dan 96% masing-masing dalam waktu 30 menit, khusus untuk etanol 95% dan 96% dilakukan 2x perendaman.

Preparat yang telah direndam etanol kemudian dimasukkan kedalam xylol untuk menghilangkan kadar etanol pada preparat dengan proses dehidrasi selama 30 menit sebanyak 3x pengulangan. Setelah itu preparat dipindah kedalam parafin cair dalam blok preparat untuk dicetak. Setelah itu, preparat dipotong kemudian ditempelkan pada gelas obyek yang sebelumnya sudah diberi entellan dan kemudian dipanaskan dalam dengan suhu 2-5°C dibawah titik lebur parafin (sekitar 40°C) hingga preparat kering. Setelah kering, kemudian preparat dimasukkan ke dalam xilol murni selama 5-10 menit. Selanjutnya, preparat kembali direndam dalam larutan etanol 96%, 95%, 90%, 80% dan 70% selama 5-10 menit. Setelah direndam dalam etanol, preparat kemudian dibilas dengan air dan dilakukan pewarnaan dengan hemaktosilin-eosin direndam selama 1-2 menit. Selanjutnya preparat dibilas dengan air mengalir, dan dikeringkan pada suhu kamar. Apabila preparat telah kering, kemudian preparat ditutup dengan gelas obyek dan diamati di bawah mikroskop binokuler Olympus ex-31 dengan perbesaran 400x. Pada penelitian ini digunakan software Image Raster dan Opti Lab untuk menganalisis preparat yang diamati.

3.5 Analisis Data

Data yang diperoleh dari penelitian ini kemudian ditabulasi dan dilakukan pengolahan data dengan Microsoft Office Excel untuk dianalisis lebih lanjut. Untuk mengetahui berapa presentase sel yang rusak, dapat dilihat sel fibroblas yang rusak. Rusaknya sel hepatosit pada organ dapat diketahui dengan adanya banyak sel yang memiliki ukuran sel dan inti yang berbeda, inti sel membesar, kromatin menebal, kasar, tidak rata, serta terjadi banyak pembelahan mitosis. Dapat pula ditemukan banyak susunan sel yang tidak teratur (basophil). Penghitungan sel kemudian dinyatakan dalam persen, yaitu jumlah seluruh sel hepatosit yang mengalami kerusakan dibandingkan dengan seluruh sel hepatosit baik yang rusak maupun tidak dalam satu lapang pandang dikalikan 100%.


$$\% Kerusakan = \frac{\sum Sel \ Rusak}{\sum Sel \ dalam \ 1 \ lapang \ pandang} \ x \ 100\% \tag{3.1}$$

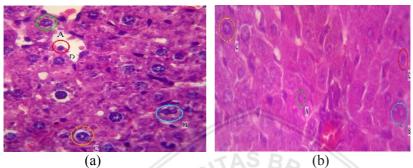
Interpretasi data dilakukan dengan melihat bentuk pola yang dihasilkan dari grafik hasil ploting. Pola yang dihasilkan dari grafik akan menunjukkan hubungan dan korelasi di antara parameter yang bersangkutan, dalam hal ini yaitu lamanya paparan radiasi, dosis ekstrak antioksidan, presentase kerusakan sel. Dengan diketahuinya korelasi antara faktor-faktor tersebut, maka dapat diketahui pula pengaruh diantara parameter-parameter yang lain.

3.6 Diagram Alur Penelitian

Adapun proses penelitian dapat dilihat dalam diagram

Gambar 3.2 Diagram Alur Penelitian

BAB IV ANALISA DAN PEMBAHASAN

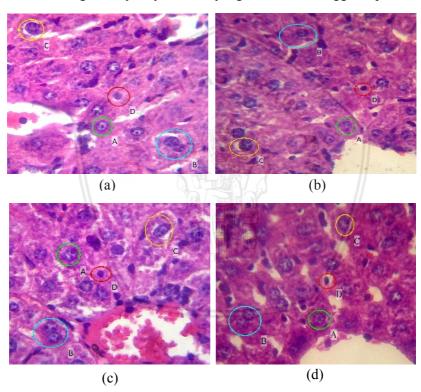

4.1 Hasil Penelitian

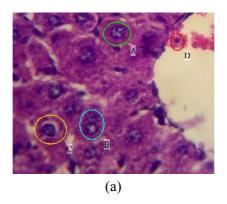
4.1.1 Pengamatan pada organ hati mencit

Berdasarkan penelitian yang telah dilakukan, terdapat perubahan pada sel hati yaitu kerusakan pada sel hepatosit mencit. Kerusakan ini dipicu karena adanya perubahan pada keadaan lingkungan, asupan nutrisi yang diterima, kelainan genetik, keadaan psikologis mencit dan adanya materi toksik yang masuk ke dalam sel. Sel hati atau hepatosit dapat dikatakan rusak apabila perbandingan presentase sel normal lebih kecil atau sama dengan presentase sel rusaknya. Pada penelitian ini terjadi 3 (tiga) macam jenis kerusakan yang diamati, yaitu piknosis, degenerasi hidropik dan binukleus. Piknosis merupakan suatu keadaan dimana inti sel hepatosit mengalami penyusutan dan berwarna sangat gelap. Hal ini dikarenakan DNA dan basophil menjadi lebih padat dan mengalami penurunan massa akibat radikal bebas yang berikatan dengan rantai DNA sel (Sudiono dkk, 2003). Degenerasi hidropik, merupakan tingkat kerusakan struktur ke-2 yang ditandai dengan ciri-ciri antara lain sitoplasma mengalami vakuolisasi, vakuola tampak jernih, namun sitoplasma tampak pekat dan keruh karena materi yang tercampur aduk di dalamnya. Selain itu, ukuran sel terlihat lebih besar karena adanya air yang masuk ke dalam sel (Hastuti, 2006). Sel binukleus, ditandai dengan terdapatnya sel hepatosit yang memiliki dua inti dan saling berikatan satu sama lain. Sel binukleus dapat terjadi karena adanya kerusakan pada kromosom dan DNA sel, sehingga ketika sel melakukan mitosis (pembelahan sel) sitoplasma tidak terbelah dengan sempurna (Sudiono dkk, 2003).

Preparat yang diamati terdiri dari 5 lapang pandang dari masing-masing hewan coba yang berbeda. Kemudian diamati dengan menggunakan software *Image Raster* dan digunakan teknik skoring. Dimana menghitung jumlah sel normal dan sel rusak, yang kemudian dirata-rata dan dihitung persentase kerusakan per lapang pandang.

Pada masing-masing kelompok didapatkan gambaran mikroskopis yang berbeda-beda. Perbedaan yang sangat mencolok terlihat antara sesudah dan sebelum diberi ekstrak. Demikian pula dengan kontrol negatif dan kontrol positifnya. Kontrol positif digunakan untuk mengamati apakah ekstrak Bikotans mengandung toksik bagi organ.

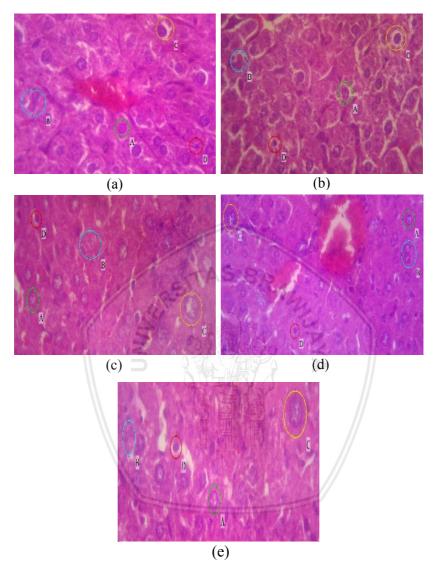



Gambar 4.1 Gambaran mikroskopis organ hati mencit (a) kontrol negatif, (b) kontrol positif

Keterangan: (A) Sel Normal, (B) Binukleus, (C) Degenerasi hidropik, (D) Piknosis

Gambar 4.1 merupakan pencitraan organ hati mencit dengan perbesaran 400x menggunakan mikroskop binokuler *Olympus-cx31*. Mencit (Mus musculus) pada kontrol negatif maupun kontrol positif sama sekali tidak mendapatkan paparan radiasi. Namun, meskipun tidak mendapatkan paparan radiasi sama sekali, tetap terdapat beberapa inti sel yang rusak. Pada Gambar 4.1 (a) dapat dilihat bahwa terdapat banyak inti sel yang mengalami degenerasi hidropik dan piknosis, yang ditandai dengan warna inti sel jauh lebih gelap dibandingkan dengan sel normal. Sedangkan pada Gambar 4.1 (b) mayoritas inti sel tidak berwarna gelap dan sangat sedikit yang mengalami piknosis maupun degenerasi hidropik. Selain itu susunan dari sel sendiri lebih padat dan lebih teratur. Dari kedua gambar tersebut dapat diketahui bahwa tingkat kerusakan pada Gambar 4.1 (a) jauh lebih besar dibandingkan Gambar 4.1 (b). Kerusakan sel ini dapat disebabkan oleh berbagai kemungkinan, salah satunya adalah faktor keadaan awalnya, perubahan lingkungan, dan faktor genetik. Namun, sel dapat dikatakan benar-benar rusak apabila persentase sel normalnya lebih dari sama dengan persentase sel rusaknya.

Pembagian kelompok kontrol negatif dan kontrol positif dilakukan untuk mengetahui apakah ekstrak Bikotans memiliki efek toksik bagi organ hati. Dosis ekstrak yang diberikan pada kontrol positif sebesar 7,18 mg, yang merupakan dosis maksimum pada penelitian ini. Berdasarkan Gambar 4.1, dapat diketahui bahwa kerusakan pada Gambar 4.1 (b) kontrol positif jauh lebih kecil dibandingkan pada Gambar 4.1 (a) kontrol negatif. Hal ini membuktikan bahwa ekstrak Bikotans tidak mengandung senyawa toksik yang berbahaya bagi organ hati. Namun, justru sebaliknya, ekstrak Bikotans membuat organ hati mencit menjadi lebih sehat yang ditandai dengan banyaknya inti sel yang normal. Sehingga, dapat


Gambar 4.2 Gambaran mikroskopis hati mencit (a) 10 menit, (b) 20 menit, (c) 30 menit, (d) 40 menit, (e) 50 menit

Keterangan: (A) Sel Normal, (B) Binukleus, (C) Degenerasi hidropik, (D) Piknosis

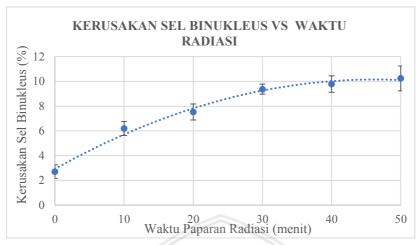
disimpulkan bahwa dosis maksimum dari ekstrak Bikotans tersebut tidak mengandung senyawa toksik untuk organ hati mencit

Gambaran mikroskopis tersebut memperlihatkan semakin banyaknya sel yang mengalami piknosis dan degenerasi hidropik seiring bertambahnya durasi paparan radiasi (banyaknya inti sel yang berwarna hitam). Apabila diamati lebih teliti, jumlah sel normal juga semakin berkurang seiring dengan bertambahnya durasi paparan. Pada Gambar 4.2 (e) dapat dilihat struktur sel sangat tidak teratur (banyaknya ruang antar sel), yang menunjukkan bahwa sel hepatosit mencit mengalami kerusakan. Ketidakteraturan sel semakin tidak teratur ketika lama durasi paparan radiasi semakin bertambah. Sehingga dapat disimpulkan bahwa kerusakan sel semakin bertambah sebanding dengan lamanya paparan radiasi.

Gambar 4.3 menunjukkan gambaran mikroskopis organ hati mencit setelah diberi ekstrak Bikotans. Dalam tahap pemberian ekstrak ini, variasi dilakukan pada dosis ekstraknya. Penentuan dosis ekstrak dilakukan dengan cara menghitung dosis normal untuk manusia, dan kemudian dikonversikan dengan berat badan mencit untuk mendapatkan dosis mencitnya. Dosis normal digunakan sebagai

Gambar 4.3 Gambaran mikroskopis hati mencit dengan dosis antioksidan (a) 3,18 mg, (b) 4,18 mg, (c) 5,18 mg, (d) 6,18 mg, (e) 7,18 mg

Keterangan: (A) Sel Normal, (B) Binukleus, (C) Degenerasi hidropik, (D) Piknosis

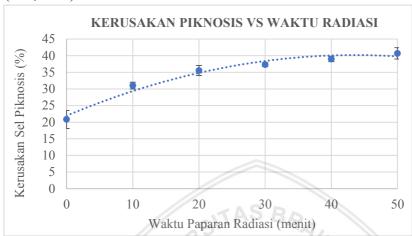

dosis tengah (5,18 mg), dan kemudian digunakan variasi dosis 1 mg, untuk mendapatkan dosis yang lain.

Pada Gambar 4.3 dapat dilihat bahwa tingkat keteraturan sel jauh lebih teratur dibandingkan dengan Gambar 4.2, yang menandakan bahwa tingkat kerusakan sel setelah diberi ekstrak jauh lebih sedikit dibandingkan sebelum diberi ekstrak. Inti sel pada Gambar 4.2 juga jauh lebih terang dibandingkan dengan Gambar 4.2. Hal ini menandakan bahwa pemberian ekstrak dapat mengurangi piknosis dan degenerasi hidropik sel. Pengamatan lebih lanjut juga menunjukkan bahwa jumlah sel normal pada Gambar 4.2 jauh lebih kecil dibandingkan Gambar 4.3. Dari Gambar 4.3 diatas dapat diamati bahwa seiring bertambahnya dosis ekstrak, kerusakan sel semakin menurun. Hal ini ditandai dengan semakin sedikitnya inti yang berwarna hitam (piknosis dan degenerasi hidropik) serta banyaknya inti sel yang normal. Sehingga dapat disimpulkan penambahan dosis ekstrak dapat mengurangi kerusakan organ hati yang telah dipapari radiasi gamma. Semakin besar dosis ekstrak yang diberikan, maka semakin baik pula organ hati mencit.

4.1.2 Pengaruh Waktu Paparan Radiasi Gamma terhadap Kerusakan Organ Hati Mencit

Penelitian ini dibagi menjadi dua tahap, tahap yang pertama adalah meneliti pengaruh waktu paparan radiasi gamma terhadap kerusakan organ hati mencit, dan tahapan kedua adalah pengaruh variasi dosis ekstrak. Pada tahap ini, sel normal, sel lisis, sel degenerasi hidropik dan sel binukleus dihitung jumlahnya dan dihitung persentase kerusakannya dengan menggunakan persamaan 3.1. Persentase kerusakan yang didapat kemudian dibuat dalam bentuk grafik polinomial orde dua.

Dari data yang didapatkan persentase kerusakan sel binukleus meningkat sejauh 3,49% setelah mendapat paparan radiasi selama 10 menit. Sel piknosis juga mengalami peningkatan 12,1%, sedangkan sel yang berdegenerasi hidropik meningkat 2,55%. Total kerusakan yang terjadi juga meningkat 18,13%. Hal ini membuktikan bahwa radiasi sinar gamma memberikan efek rusak bagi sel hepatosit mencit. Dari Gambar 4.4 tersebut didapatkan persamaan $y = -0,0034x^2 + 0,3118x + 2,9238$ dengan $R^2 = 0,9889$. R^2 menunjukkan koefisien deterministik

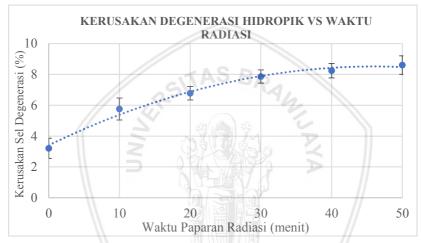


Gambar 4.4 Grafik hubungan antara persentase kerusakan binukleus dengan lama paparan radiasi

sebesar 0,9889. Koefisien deterministik sendiri merupakan koefisien yang menunjukkan hubungan titik data dengan garis interpolasi yang dibuat. Koefisien deterministik bernilai 0-1 semakin dekat titik data dengan garis interpolasinya, maka nilainya semakin mendekati 1, sehingga apabila R² = 0,9889, maka dapat dikatakan titik data dengan garis interpolasinya cukup dekat. Apabila. Persentase sel binukleus terus mengalami peningkatan hingga lama paparan 30 menit. Namun setelah 40 menit, kenaikan persentase kerusakan hanya memiliki selisih yang cukup kecil yaitu 0,42% saja. Demikian pula dari menit 40 ke menit 50, selisih kenaikannya hanya 0,46%. Kenaikan yang cukup kecil ini disebabkan oleh kondisi sel yang telah kebal terhadap paparan radiasi gamma. Jadi ada semacam proses imunisasi yang terjadi pada sel, dalam hal ini kerusakan sel akibat paparan radiasi akan diimbangi bukan hanya dalam bentuk perbaikan kembali sel yang rusak melainkan juga kekebalan sel terhadap radiasi berikutnya.

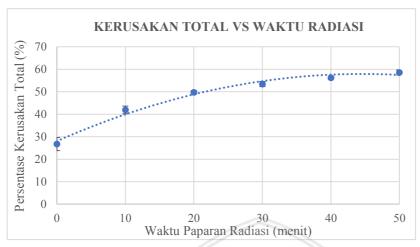
Pada sel binukleus, radikal bebas berinteraksi dengan kromosom dan menimbulkan disentrik. Disentrik ini kemudian mengakibatkan sel menjadi berikatan saat terjadi pembelahan. Oleh sebab itu sel kemungkinan sel binukleus muncul hanya terjadi saat pembelahan saja, sedangkan pembelahan sel sendiri membutuhkan waktu beberapa jam hingga beberapa hari. Selain itu, kemungkinan sel melakukan pembelahan diri juga menurun akibat adanya radikal

bebas. Radikal bebas dapat menghilangkan kemampuan sel untuk membelah diri (poliferasi) setelah tiga atau dua kali melakukan mitosis (Sari, 2015).



Gambar 4.5 Grafik hubungan antara persentase kerusakan piknosis dengan lama paparan radiasi

Persentase sel piknosis yang muncul semakin meningkat seiring dengan bertambahnya durasi paparan radiasi. Pada menit ke 30 dan 40 didapatkan kenaikan persentase yang cukup kecil. Hal ini disebabkan karena proses imunisasi terhadap radiasi gamma dosis rendah. Apabila dibandingkan dengan Gambar 4.4, persentase sel piknosis lebih besar dibandingkan dengan persentase sel binukleus. Piknosis terjadi dalam waktu yang singkat, ketika radikal bebas berinteraksi dengan membran sel, maka protein channel yang terdapat pada membran akan menutup terus sehingga sel tidak dapat melakukan metabolisme dan menjadi mengkerut. Hal ini kemudian mengakibatkan, sel hepatosit mengalami kekurangan ion, air dan nutrisi lain yang dibutuhkan sel untuk melakukan metabolismenya. Pada kasus sel binukleus, sel hepatosit kemungkinan telah kehilangan kemampuannya untuk membelah diri, sehingga persentase sel binukleus jauh lebih sedikit daripada persentase sel piknosis. Grafik yang terbentuk membentuk suatu persamaan $y = -0.0096x^2 + 0.8363x$ +21,932 dengan $R^2 = 0,971$.

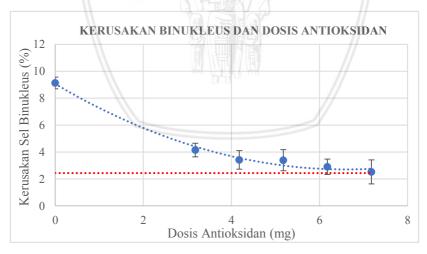

Pada menit ke 50 persentase sel binukleus menurun sebanyak 0,14% sedangkan pada menit sebelumnya terus mengalami

peningkatan. Hal ini terkait dengan imunitas yang telah dibahas sebelumnya. Persentase sel degenerasi hidropik ini jauh lebih sedikit dibandingkan dengan sel piknosis dan sel binukleus. Ketika radikal bebas berinteraksi dengan membran sel, protein channel terus membuka, sehingga ion yang berada di luar membran terus menerus masuk, protein carrier dan pompa juga tidak bekerja, mengakibatkan konsentrasi ion dalam sel meningkat dan beberapa organel sel rusak, sehingga seluruh ion, zat dan enzim bercampur menjadi satu dalam sitoplasma dan membuatnya berwarna keruh. Selain itu, sel akan membengkak. Pada kondisi lebih lanjut, degenerasi akan berujung pada lisis.

Gambar 4.6 Grafik hubungan antara persentase kerusakan degenerasi hidropik dengan lama paparan radiasi

Grafik pada Gambar 4.6 membentuk persamaan $y = -0.0024x^2 + 0.2217x + 3.4052$ dengan $R^2 = 0.9881$, yang artinya titik data berada cukup dekat dengan garis ekstrapolasinya. Hal ini ditandai dengan koefisien dererministiknya. Dari grafik di atas dapat dilihat bahwa semakin lama paparan radiasinya, maka semakin tinggi pula kerusakan hidropiknya.

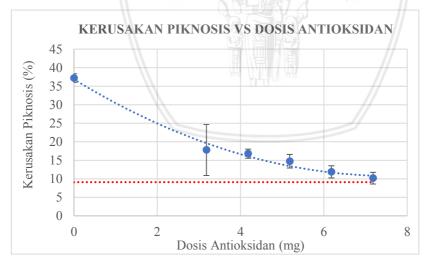
Gambar 4.7 Grafik hubungan antara persentase kerusakan total dengan waktu radiasi


Dari grafik di atas, dapat dilihat bahwa semakin lama waktu paparan radiasinya, semakin tinggi pula kerusakan totalnya. Kerusakan total pada menit ke 40 menurun dikarenakan terjadi penurunan pada grafik sel binukleus. Sedangkan pada menit ke 0 menuju menit 10 peningkatannya sangat besar yaitu 15,13%. Hal ini dikarenakan pada menit ke 0, mencit belum mendapatkan paparan radiasi sama sekali, sehingga kerusakan yang terhitung, merupakan kerusakan dasar atau kerusakan bawaan dari mencit tersebut. Pada menit ke 10, mencit mulai menerima paparan radiasi, sehingga radikal bebas yang disebabkan oleh radiasi gamma mulai muncul dan berinteraksi dengan sel, sehingga memicu kerusakan pada sel. Pada menit selanjutnya, kerusakan sel terus mengalami kenaikan. Selisih kenaikan yang terhitung berbeda-beda (kenaikannya tidak konstan). Selain tidak konstan, pada menit ke 30, 40 dan 50, kenaikan yang terhitung cenderung sangat kecil. Keadaan ini terjadi karena pada menit tersebut, sel telah berada pada titik jenuhnya, sehingga paparan radiasi tidak lagi menimbulkan efek yang signifikan. Persamaan yang didapatkan pada grafik diatas adalah $y = -0.015x^2 + 1.3403x + 28.054$ dengan $R^2 = 0.9842$.

Seperti yang telah dibahas sebelumnya, sel mengalami proses imunisasi, ketika sel terkena radiasi gamma, diimbangi bukan hanya dalam bentuk perbaikan kembali sel yang rusak melainkan juga kekebalan sel terhadap radiasi berikutnya. Sel normal yang bertahan akan menjadi kebal dan bahkan ada yang memperbaiki diri sebagai hasil adaptasi terhadap radiasi gamma. Inilah yang menyebabkan kenaikan yang sangat kecil dan penurunan persentase sel rusak.

4.1.3 Pengaruh Dosis Ekstrak Bikotans terhadap Organ Hati Mencit

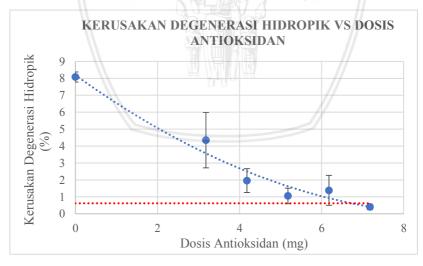
Ekstrak Bikotans adalah antioksidan yang digunakan untuk mengurangi radikal bebas yang disebabkan oleh radiasi gamma. Pada penelitian ini, dicari berapakah dosis yang tepat agar sel dapat sembuh atau kembali normal setelah terpapar radiasi gamma.


Ekstrak Bikotans merupakan campuran dari 5 macam ekstrak, yaitu mahkota dewa, kenikir, beluntas, daun katuk dan bunga sepatu. Dosis antioksidan yang digunakan pada penelitian ini merupakan dosis untuk penyakit ringan hingga berat. Hal ini dikarenakan dosis radiasi yang diterima mencit merupakan radiasi dosis rendah, namun dilakukan secara bertahap selama 14 hari. Penggunaan ekstrak antioksidan pun dilakukan 2 jam sebelum penyinaran, sehingga diharapkan ketika penyinaran berlangsung, antioksidan yang terdapat di dalam tubuh mencit, dapat mengurangi radikal bebas dan tidak menghambat pembelahan sel. Berdasarkan penelitian tahap ini, jumlah sel normal jauh lebih banyak dibandingkan dengan tahap sebelumnya.

Gambar 4.8 Grafik hubungan antara persentase kerusakan binukleus dengan dosis antioksidan

Sehingga dapat diasumsikan, pemaparan radiasi gamma dapat menghambat jalannya pembelahan sel.

Pada titik pertama yaitu dosis ekstrak 0 mg, merupakan data pemaparan radiasi selama 40 menit pada penelitian tahap sebelumnya vaitu 9,13%. Digunakan data tahap sebelumnya bertujuan untuk membandingkan persentase sebelum dan sesudah diberi ekstrak Bikotans. Pada pemaparan selama 40 menit, sebagian besar sel telah tahan terhadap paparan radiasi gamma, maka dari itu data yang digunakan adalah data pemaparan radiasi selama 40 menit. Pada Gambar 4.8 dapat dilihat penurunan persentase binukleus dari titik 0 mg menuju titik 3,18mg sangatlah besar yaitu 5,66%. Hal ini disebabkan karena setelah diberi ekstrak bikontans jumlah sel normal vang terhitung sangatlah banyak, bahkan hampir dua kali lipat daripada sel normal pada kelompok K-, persentase sel normal yang meningkat menyebabkan persentase sel binukleus menurun. Kenaikan persentase sel normal ini disebabkan oleh berkurangnya persentase radikal bebas dalam organ hati mencit, ekstrak Bikotans memberikan elektron pada radikal bebas sehingga radikal bebas tersebut menjadi stabil. Akibatnya, kemampuan sel untuk membelah diri (proliferasi) tidak hilang. Pada grafik ini didapatkan persamaan $y = 0.1461x^2 -$ 1,926x + 9,0564 dengan $R^2 = 0,9891$, seperti dapat dilihat, persamaan

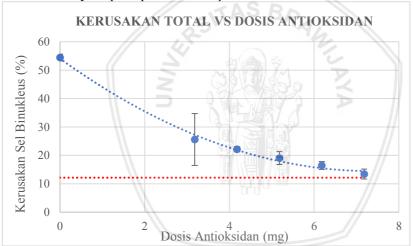


Gambar 4.9 Grafik hubungan antara persentase kerusakan piknosis dengan dosis antioksidan

yang didapat berbeda dengan tahap sebelumnya. Hal ini dikarenakan grafik yang terbentuk jauh berbeda.

Garis merah putus-putus merupakan kontrol positif sebesar 2,43%. Penurunan pada grafik menunjukkan, bahwa hampir seluruh dosis mendekati garis merah. Hal ini menunjukkan bahwa persentase sel binukleus pada seluruh dosis memiliki nilai yang mendekati atau bahkan lebih rendah daripada kontrol positifnya.

Apabila dibandingkan dengan tahap sebelumnya, persentase sel piknosis pada tahap pemberian ekstrak ini menurun hampir separuhnya. Penurunan persentase sel piknosis ini disebabkan adanya ekstrak yang telah menstabilkan radikal bebas, sehingga tidak berinteraksi dengan membran sel. Akibatnya proses metabolisme baik di luar maupun di dalam sel dapat berjalan dengan baik. Meski demikian, ekstrak Bikotans ini tidak dapat sepenuhnya menghilangkan efek negatif dari radikal bebas. Hal ini dibuktikan dengan masih adanya sel piknosis pada sel hepatosit mencit. Pemberian ekstrak Bikotans ini dilakukan selama 14 hari berturut-turut, dengan pemberian satu kali dalam sehari. Pada grafik ini, persamaannya y = 0.4505x² - 6.8556x + 36.875 dengan R² = 0.9871. Dari grafik tersebut dapat dilihat bahwa pada dosis 3,18 mg, 5,18 mg dan 7,18 mg persentase sel piknosis mendekati garis merah (kontrol positif) yang



Gambar 4.10 Grafik hubungan antara persentase kerusakan degenerasi hidropik dengan dosis antioksidan

repository.ub.ad

bernilai 9,09%. Terutama pada dosis 7,18 mg menunjukkan bahwa dengan pemberian ekstrak 7,18 mg, sel dapat kembali normal seperti pada kontrol positif untuk lama pemaparan 40 menit.

Pada Gambar 4.10 persamaan grafiknya adalah $y = 0.0924x^2$ - 1.7458x + 8.1893 dengan $R^2 = 0.9653$. Penurunan persentase degenerasi hidropik terhitung hampir setengah dari tahap 1. Seperti hal nya dengan sel piknosis, persentase radikal bebas dalam tubuh berkurang, yang kemudian membuat metabolisme sel menjadi lancar. Kontrol positif pada grafik ini adalah 0,62%. Dari Gambar 4.10 dapat dilihat bahwa pada dosis 7,18 mg berada di bawah garis merah (kontrol positif), demikian pula dengan dosis 6,18 mg dan 5,18 mg, persentase yang terhitung mendekati garis merah. Sehingga dapat dikatakan bahwa pada dosis 5,18 mg, 6,18 mg dan 7,18 mg persentase sel degenerasi hidropik di dalam sel hepatosit mencit dapat mencapai nilai normalnya seperti pada kontrol positif.

Gambar 4.11 Grafik hubungan antara persentase kerusakan total dengan dosis antioksidan

Persentase kerusakan total pada dosis 0 mg ke dosis 3,18 mg mengalami penurunan yang sangat besar, hal ini ditandai dengan grafik yang menurun dengan curam pada titik ke dua. Penurunan yang sangat besar ini menandakan bahwa kerusakan sel berkurang secara drastis hingga dua kali lipatnya. Dengan kata lain, pemberian ekstrak dengan dosis paling kecil yaitu 3,18 mg sudah dapat mengurangi kerusakan total sel hingga dua kali lipatnya. Sehingga dapat

disimpulkan bahwa pemberian ekstrak Bikotans dapat mengurangi persentase radikal bebas. Kontrol negatif (tidak diberi antioksidan dan tidak dipapari radiasi gamma) menunjukkan persentase kerusakan total 54,43%, sedangkan setelah diberi antioksidan, kerusakan total vang terhitung seluruhnya 25,6%. Hal ini membuktikan selain mengurangi radikal bebas, antioksidan tersebut juga memberi sel ion, nutrisi, juga zat lain yang dibutuhkan sel untuk melakukan metabolisme, sehingga sel menjadi lebih sehat. Seiring dengan bertambahnya dosis antioksidan yang diberikan, persentase kerusakan total sel semakin menurun, namun bukan berarti penambahan hingga terus menerus dapat mengurangi persentase kerusakan sel. Pada dosis tertentu, dapat terjadi kemungkinan dimana anntioksidan tersebut justru bersifat toksik bagi sel hepatosit mencit. Dosis yang terlampau tinggi dapat menyebabkan kondisi sel menjadi tidak stabil, karena konsentrasi ion akan meningkat baik di dalam maupun di luar sel, peristiwa ini kemudian menyebabkan sel untuk bekerja sangat keras dalam melakukan metabolismenya.

Kontrol positif pada grafik tersebut adalah 12,14%. Pada dosis 7,18 mg, persentase kerusakan total sel mendekati garis merah. Sehingga dapat disimpulkan dengan dosis ekstrak Bikotans sebesar 7,18 mg, sel hepatosit mencit yang rusak (baik kerusakan binukleus, piknosis dan degenerasi hidropik) dapat kembali normal (acuannya adalah kontrol positif mencit). Persamaan grafik dari persamaan diatas adalah y = $0.7293x^2 - 10.75x + 54.069$ dengan $R^2 = 0.9945$.

4.2 Pembahasan

Berdasarkan data yang didapat, dapat disimpulkan bahwa pada penelitian ini, terdapat kesinambungan antara lama paparan radiasi dengan persentase kerusak sel hepatosit mencit. Dimana semakin bertambahnya waktu paparan radiasi gamma, maka semakin bertambah pula kerusakan pada sel hepatosit mencit. Namun sel hepatosit akan mengalami titik jenuh pada waktu tertentu. Pada titik jenuh ini, sel hepatosit telah menjadi imun terhadap radiasi berikutnya, sehingga peningkatan persentase kerusakan tidaklah signifikan. Terdapat pula relasi antara dosis antioksidan (ekstrak Bikotans) dengan persentase kerusakan sel hepatosit mencit. Semakin bertambahnya dosis antioksidan yang diberikan kepada mencit, maka semakin berkurang pula persentase kerusakannya. Pemberian ekstrak

Bikotans dapat mengurangi persentase kerusakan sel hingga dua kali lipatnya. Pemberian ekstrak Bikotans pada dosis maksimal yaitu 7,18 mg tidak menunjukkan adanya tanda-tanda keracunan pada sel hepatosit mencit. Justru sebaliknya, persentase kerusakan sel hepatosit menurun hingga dua kali lipat kontrol negatif.

4.3 Pengaruh Radiasi Gamma terhadap Organ Hati Mencit

4.3.1 Pengaruh Dosis Radiasi dengan Organ Hati

Pada penelitian ini digunakan lima sumber radiasi yang berbeda beda, antara lain Co-60, Cs-137, Na-22, Sr-90 dan Am-241. Dengan penggunaan sumber radiasi yang berbeda-beda, maka dapat dikatakan dosis yang diterima oleh mencit merupakan akumulasi dari kelima sumber radiasi tersebut. Dosis yang diterima mencit pun semakin meningkat seiring dengan bertambahnya waktu pemaparan radiasi. Dosis radiasi terhadap waktu berhubungan dengan laju dosisnya, dan laju dosis dapat dihitung dengan persamaan:

$$\dot{D} = \Gamma \frac{A}{R^2} \tag{4.1}$$

Dimana $\dot{\mathbf{D}}$ adalah laju dosis, Γ adalah faktor gamma, A adalah aktivasi dan R adalah jarak antara sumber radiasi dengan mencit yaitu 2 cm. Sedangkan hubungan antara dosis radiasi dengan waktu dapat dinyatakan dengan persamaan:

$$D = \dot{D}.t \tag{4.2}$$

Tabel 4.1 Dosis yang Diterima Mencit Selama 14 Hari

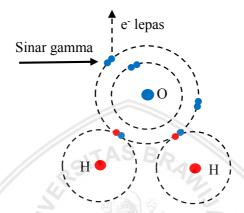
Sumber	\\		Dosis (µSv)	ierz IE	
Radiasi	10 menit	20 menit	30 menit	40 menit	50 menit
Co-60	159,85	319,69	479,54	639,38	799,23
Cs-137	200,47	400,93	601,40	801,86	1002,33
Na-22	156,26	312,53	468,79	625,05	781,32
Am-241	2,20	4,39	6,59	8,78	10,98
Sr-90	2,90	5,79	8,69	11,58	14,48
Total	521,67	1043,33	1565,00	2086,67	2608,34

Pada dosis radiasi $521,67 \mu Sv$, mencit telah mengalami kerusakan sel, meskipun demikian efek yang timbul pada mencit hanyalah kerusakan didalam sel hepatosit. Mencit tidak menunjukkan efek deterministik, dimana kulit mencit mengalami eritrema (berbintik bintik merah) dan

tidak menunjukkan efek stokastik dalam jangka waktu 14 hari. Demikan pula degan dosis 74,52 μSv dan 111,79 μSv . Pada dosis radiasi 149,05 μSv , terdapat benjolan di beberapa mencit, namun belum diketahui lebih lanjut apakah benjolan tersebut akibat luka, virus ataukah efek dari pemaparan radiasi gamma. Apabila dibandingkan dengan teori yang ada, maka seharusnya mencit tidak menunjukkan efek deterministik. Hal ini disebabkan karena penyinaran dilakukan dengan dosis rendah namun secara bertahap. Dosis radiasi hingga 2608,34 μSv belum mampu memimbulkan efek deterministik pada mencit, meski terjadi kerusakan pada sel hepatosit, kerusakan tersebut belum dapat memicu terjadinya kerusakan total ataupun kanker pada organ hati mencit.

Tabel 4.1 diatas menunjukkan dosis yang diterima oleh mencit selama 14 hari. Sel hepatosit mencit mengalami titik jenuh setelah mendapatkan dosis sebesar 2086,67 µSv. Hal ini menandakan sel hepatosit mencit mulai menjadi kebal setelah menerima paparan 1565 μSv. Karena pemaparan radiasi yang dilakukan terhadap mencit ini berdosis rendah namun terus menerus, maka ada kemungkinan adanya efek stokastik yang akan muncul pada jangka waktu beberapa tahun kemudian. Kemungkinan terjadi cacat keturunan pun dapat terjadi. Dari Tabel 4.1, dapat diketahui bahwa ekstrak Bikotans dapat bekerja efektif hingga dosis 2608,43 µSv, dan juga efektif dengan dosis dibawahnya. Berdasarkan laporan UNSCEAR pada tahun 2000 ratarata dosis yang diterima oleh setiap orang diseluruh dunia adalah sekitar 2,8 mSv/tahun, dengan perincian 2,4 mSv dari alam dan 0,472 mSv dari aplikasi teknik nuklir (foto rontgen, kedokteran nuklir, PLTN). Sehingga belum diketahui apakah antioksidan Bikotans dapat menutupi efek radiasi yang diterima manusia per tahunnya karena dosis maksimal yang digunakan pada penelitian ini adalah 2,6 mSv. Namun, meski demikan, ada kemungkinan besar ekstrak Bikotans dapat bekerja efektif pada dosis 2,8 mSv. Hal ini karena pada penelitian yang dilakukan, ekstrak Bikotans diberikan selama 14 hari penyinaran dengan total dosis hingga 2,6 mSv sedangkan dosis radiasi yang diterima manusia setiap harinya kurang lebih 7,7 μSv, jauh di bawah dosis pada penelitian.

Dari Tabel 4.1 tersebut dapat diketahui juga bahwa dosis yang diterima mencit adalah sekitar 3.73E-02 mSv - 1.86E-01 mSv setiap harinya. Dosis ini merupakan dosis rendah, yang dimaksud dengan


radiasi dosis rendah di sini adalah dosis radiasi dari 0,25 sampai dengan 1.000 μSv (Akhadi,2000). Namun meskipun sekecil apapun dosis radiasi yang diterima tubuh ada kemungkinannya akan menimbulkan kerusakan sel somatik maupun sel genetik. Meski demikian, data epidemiologi mengenai efek radiasi dosis rendah menimbulkan kanker dan kerusakan genetik masih sangat minim. Di sisi lain, terdapat beberapa asumsi dari pakar biologi radiasi yang menyebutkan bahwa ditemukannya bukti-bukti tentang adanya efek stimulatif akibat paparan radiasi dosis rendah yang disebut hormesis. Hormesis sendiri mengandung pengertian bahwa penyinaran radiasi dosis rendah dapat memberikan efek yang menguntungkan bagi kehidupan (Akhadi, 2000). Namun, anggapan mengenai hormesis sendiri masih diperdebatkan hingga sekarang.

Pada hasil penelitian sebelumnya, dapat dilihat bahwa sel mengalami titik jenuh pada menit ke 40 dan 50, dimana pada menitmenit tersebut, sel sudah menjadi kebal terhadap radiasi berikutnya. Apabila hal ini dikaitkan dengan hormesis, maka dapat dikatakan anggapan peneliti mengenai penyinaran dosis rendah ini ada benarnya. Seperti yang telah diketahui mahkluk hidup memiliki kemampuan untuk beradaptasi terhadap lingkungannya. Pada penelitian ini, sel normal yang bertahan dari paparan radiasi sebelumnya akan menjadi terangsang fungsi-fungsi selnya dan mengurangi kerusakan akibat paparan radiasi berikutnya. Akibatnya, sel-sel yang tersisa pada organ hati mencit adalah sel-sel yang telah mengalami adaptasi. Apabila sel-sel yang telah beradaptasi tersebut kemudian melakukan pembelahan, maka sebagian besar sel yang terdapat pada organ adalah sel yang kebal terhadap paparan radiasi dosis rendah.

Berdasarkan penelitian lain dari beberapa ahli, dari data yang dikumpulkan selama 24 tahun, antara tahun 1958 hingga 1982, korban bom atom Hiroshima dan Nagasaki yang selamat diperkirakan menerima dosis antara 0,12-0,36 Sv justru tercatat tingkat kematiannya akibat leukemia paling minim dibandingkan penduduk lain yang tidak menerima paparan radiasi. Dari hasil penelitian yang telah didapatkan, maka dapat disimpulkan sebuah hipotesis dimana dalam penelitian ini radiasi dosis rendah dapat berguna bagi mahkluk hidup.

4.3.2 Interaksi Radiasi dengan Organ Hati Mencit

Ketika radiasi mengenai mencit, maka radiasi tersebut akan berinteraksi dengan suatu materi. 60%-70% dari berat tubuh manusia mengandung H_2O . Karena kandungannya yang sangat banyak di dalam tubuh manusia, radiasi yang mengenai tubuh akan segera berinteraksi dengannya. Energi radiasi kemudian akan terserap oleh

Gambar 4.12 Interaksi Radiasi dengan Molekul Air organ hati dan mengakibatkan terjadinya ionisasi dan eksitasi, efek Compton, dan efek produksi pasangan. Baik proses ionisasi maupun eksitasi menyebabkan terbentuknya radikal bebas. Radikal bebas tersebut kemudian akan berinteraksi dengan sel, atom, atau senyawa lain yang terdapat di dalam tubuh. Selain berinteraksi dengan H₂O, radiasi juga berinteraksi dengan atom-atom penyusun organ hati. Interaksi dengan atom penyusun tersebut berupa efek fotolistrik, efek Compton, dan efek produksi pasangan.

Gambar 4.12 mejelaskan radiasi gamma menyebabkan elektron di kulit atom terlepas. Pada gambar di atas, molekul H_2O yang semulanya stabil, akan menjadi tidak stabil setelah kehilangan satu elektron pada kulit terluarnya. Proses ini berlangsung sangat singkat dalam orde 10^{-16} detik. Keseluruhan proses ini disebut sebagai tahap fisik

$$H_2O$$
 + radiasi pengion \longrightarrow $H_2O^+ + e^-$

Molekul H2O kemudian kekurangan satu elektron, dan menjadi H₂O⁺. Karena H₂O⁺ bersifat tidak stabil, maka ia akan memecah menjadi H⁺

repository.ub.ac

dan OH*. Di sisi lain, elektron yang terlepas dari H_2O kemudian akan berikatan dengan molekul H_2O lainnya yang stabil dan menghasilkan H_2O^- . Sama halnya dengan H_2O^+ , H_2O^- juga bersifat tidak stabil dan akhirnya terpecah menjadi H* dan OH $^-$.

$$H_2O \longrightarrow H_2O^+ + e^ H_2O^+ \longrightarrow H^+ + OH^*$$
 $e^- + H_2O \longrightarrow H^* + OH^-$

H* dan OH* merupakan radikal bebas. OH* kemudian dapat berinteraksi dengan OH* lainnya dan meghasilkan hidrogen peroksida.

$$OH^* + OH^* \longrightarrow H_2O_2$$

Hidrogen peroksida (H₂O₂) merupakan oksidator kuat yang bersifat racun bagi tubuh. Radikal bebas kemudian dapat berinteraksi dengan membran sel, atau dengan kromosom. Meskipun radiasi juga berinteraksi dengan molekul selain air, namun efek yang dihasilkan terhadap sel biologisnya tidaklah besar jika dibandingkan dengan efek melalui media air tersebut. Proses ionisasi ini berlangsung singkat yaitu 10⁻⁵ detik. Tahap ini disebut sebagai tahap fisikokimia (Akhadi, 2000).

Ketika radikal bebas dan peroksida berinteraksi dengan membran sel hepatosit mencit, maka ia akan menyebabkan protein channel membuka/menutup terus, pompa dan carrier juga tidak akan berjalan. Selain dengan membran sel, radikal bebas juga akan berinteraksi dengan inti sel yang terdiri dari kromosom-kromosom yang dapat menyebabkan rantai DNA putus, atau dapat juga memicu terjadinya mutasi genetik seperti inversi, translokasi, disentrik dan ring. Radikal bebas juga dapat berinteraksi dengan molekul protein dan enzim di dalam sel. Apabila radikal bebas berinteraksi dengan protein, ia akan memutus rangkaian panjang molekul protein (Pratama, 2016). Molekul yang putus tersebut kemudian menjadi terbuka dan dapat melakukan reaksi lainnya. Radikal bebas dan peroksida juga dapat merusak struktur biokimia molekul enzim sehingga fungsi enzim dapat terganggu. Tahapan ini dikenal sebagai tahap kimia dan biologi (Akhadi, 2000).

Pada tahap biologi, sel mulai mengalami kerusakan. Proses ini dapat berlangsung selama berpuluh-puluh menit hingga beberapa puluh tahun setelah terkena paparan radiasi. Sel dapat menunjukkan berbagai kerusakan, seperti kematian sel secara langsung, pembelahan sel terhambat atau tertunda serta terjadinya perubahan secara permanen pada sel anak setelah sel induknya membelah. Kerusakan vang terjadi dapat meluas hingga ke skala organ, jaringan bahkan dapat menyebabkan kematian (Bappeten, 2005). Kerusakan pada tahap biologis yang terlihat pada penelitian ini masih dalam lingkup organ saja. Tidak ditemui tanda-tanda adanya tumor atau sel yang membelah secara tidak normal. Pada tubuh mencit sendiri juga tidak ditemui adanya eritrema atau bintik-bintik hitam. Keadaan psikologis mencit pun terbilang stabil. Namun apabila diamati lebih teliti, barulah dapat diketahui beberapa kerusakan pada sel hepatosit mencitnya. Hal ini disebabkan dosis radiasi yang digunakan merupakan dosis rendah dan penyinaran dilakukan hanya 14 hari.

4.3.3 Pengaruh Antioksidan terhadap Radikal Bebas

Radikal bebas merupakan molekul yang tidak stabil dan merupakan molekul yang sangat reaktif di dalam tubuh. Radikal bebas memiliki dua atau lebih elektron yang tidak berpasangan pada kulit terluarnya. Supaya stabil, radikal bebas ini akan mengambil elektron yang terdapat pada molekul lain, baik dari molekul penyusun tubuh maupun molekul air. Antioksidan berperan sebagai penyumbang elektron kepada radikal bebas, sehingga ia tidak lagi memiliki elektron tidak berpasangan dan menjadi stabil. Hasil dari penelitian menunjukkan ekstrak Bikotans efektif memulihkan sel hepatosit mencit dan mengurangi radikal bebas sehingga metabolisme dan pembelahan sel dapat berjalan dengan baik.

Gambar 4.13 Struktur Kimia Flavonoid

repository.ub.a

Bikotans terdiri dari mahkota dewa, beluntas, kenikir, daun katuk dan bunga sepatu. Bikotans mengandung berbagai macam senyawa antioksidan yang berguna bagi tubuh, antara lain flavonoid, minyak atsiri, saponin, polifenol, dan tanin. Flavonoid merupakan senyawa yang paling berpengaruh dalam pemulihan sel hepatosit mencit. Banyak penelitian yang telah menyatakan bahwa senyawa flavonoid memiliki potensi sebagai antioksidan karena memiliki gugus hidroksil yang terikat pada karbon cincin aromatik sehingga dapat menangkap radikal bebas yang dihasilkan dari reaksi peroksidasi lemak, senyawa flavonoid akan menyumbangkan satu atom hidrogen untuk menstabilkan radikal peroksi lemak (Hamid, 2010).

Posisi dan jumlah gugus hidroksil mempengaruhi aktivitas senyawa antioksidan flavonoid. Flavonoid bekerja dengan cara *scavenging* dimana ia akan menangkap radikal bebas dengan menggunakan gugus hidroksilnya.

Gambar 4.14 Proses Scanvenging oleh Flavonoid

Flavonoid menyumbangkan atom H untuk menangkap radikal bebas, sehingga radikal bebas yang semula tidak stabil akan menjadi stabil. Atom H akan berikatan dengan radikal bebas dan menghasilkan RH. Hal ini menyebabkan flavonoid juga menjadi radikal karena kehilangan satu atom H. Namun, flavonoid menjadi lebih stabil, setelah melepas atom H lain untuk menangkap radikal bebas.

Dalam penelitian ini, radikal bebas yang terbentuk adalah H* dan OH*. Suatu molekul dapat dikatakan sebagai radikal bebas apabila memiliki elektron tidak berpasangan. Radikal bebas juga sangat reaktif dan hanya dapat menjadi stabil setelah menerima

elektron. Hal ini berbeda dengan ion, dimana ion tidak memiliki elektron tidak berpasangan, selain itu ion hanya dapat menjadi stabil dengan cara berikatan dengan ion lain yang memiliki muatan yang berbeda. Dalam penelitian ini, H* dapat berikatan dengan atom H flavonoid dikarenakan H* memiliki keelektronegatifan yang besar. Keelektronegatifan merupakan sifat kimia atom, yang menunjukkan seberapa besar kemampuan suatu atom untuk menarik elektron menuju dirinya. H* merupakan radikal bebas yang memiliki satu elektron tidak berpasangan, sehingga ketika terdapat atom H dari flavonoid, ia akan menarik atom H tersebut agar tidak terdapat lagi elektron tidak berpasangan. Atom H sendiri memiliki energi ikat yang rendah yaitu 63 kJ/mol, sehingga ia akan lebih mudah melepaskan diri dari gugusan flavonoid. Sedangkan pada OH*, ia memiliki satu elektron tidak berpasangan, untuk menjadi stabil, ia harus mengambil satu elektron untuk menjadi berpasangan. Karena radikal bebas ini bersifat sangat reaktif, maka ia akan mengambil satu elektron dari atom H flavonoid untuk menjadi stabil.

Besarnya energi ikat tergantung dari jumlah elektron yang digunakan bersama dalam ikatan. Semakin banyak pasangan elektron yang digunakan bersama, maka semakin besar pula energi ikat antar atomnya (Pratama, 2010).

Tabel 4.2 Energi Ikat Antar Atom

Ikatan	Energi	Ikatan	Energi	Ikatan	Energi
	Ikatan	Š	Ikatan		Ikatan
	(Kj/Mol)		(Kj/Mol	/	(Kj/Mol
H - F	436	N-H	391	Br — F	237
H - F	567	N-N	163	Br - F	218
H - Cl	431	N - O	201	Br — F	193
H - Br	366	N-F	272	I-Cl	208
H - I	299	N-Cl	200	I - Cl	175
C - H	413	N - Br	243	I - Cl	151
C-C	348	O - H	63	C = C	614
C-N	293	O - O	146	C = N	839
C - O	358	O - F	190	C-N	615
C - S	259	O - I	203	C = O	891
C - F	485	O-H	234	C = O	749
C - Cl	328	S-H	339	N-N	1072

(Pratama, 2010)

4.4 Pengaruh Radiasi Gamma terhadap Organ Lain

Pada penelitian ini, radiasi gamma terbukti secara kuantitatif merusak organ hati. Namun, selain organ hati, radiasi juga merusak organ lain. Hal ini disebabkan karena radikal bebas yang terbentuk akibat proses ionisasi dengan molekul air, terbawa ke seluruh tubuh melalui sistem peredaran darah. Darah sendiri tersusun atas 95% molekul air, sehingga jumlah radikal bebas yang terbentuk di dalam darah cukup banyak. Darah yang mengandung radikal bebas tersebut kemudian di bawa menuju ginjal untuk di filtrasi. Radikal bebas yang berukuran cukup besar tidak mampu menembus saringan pada ginjal yang berukuran cukup kecil. Akibatnya radikal bebas mengendap pada ginjal. Hal ini dibuktikan pada penelitian lain yang menggunakan organ ginjal. Didapatkan persentase kerusakan organ ginjal yang lebih kecil yaitu 65% sedangkan organ hati mencapai 68%.

Selain dibawa menuju ke ginjal, darah juga bersikulasi pada paru-paru. Darah dibutuhkan paru-paru untuk mengikat oksigen, yang kemudian dibawa menuju jantung. Pada saat terjadi pertukuran antara oksigen-karbondioksida di dalam paru-paru, radikal bebas yang terkandung dalam darah akan berinteraksi dengan sel-sel organ paru. Akibatnya sel paru mengalami kerusakan. Hal ini juga telah dibuktikan pada penelitian lain yang menggunakan organ paru. Didapatkan persentase kerusakan yang cukup besar yaitu 75%.

Radikal bebas yang muncul akibat radiasi juga berpengaruh pada organ limpa. Organ limpa memiliki fungsi untuk imunisasi. Sehingga ketika ada radikal bebas yang muncul di dalam tubuh, limpa akan merespon dengan mengirim sel-sel imunnya. Apabila jumlah radikal bebas terlampau banyak, maka limpa pun akan berkerja sangat keras. Akibatnya, sel limfosit mengalami kerusakan. Hal ini dibuktikan dari penelitian sebelumnya. Didapatkan persentase kerusakan hingga 70%. Dari penelitian-penelitian tersebut dapat dikatakan bahwa radikal bebas yang muncul akibat radiasi gamma dapat merusak organ lain di seluruh tubuh, tidak terbatas pada organ hati saja.

BAB V PENUTUP

5.1. Kesimpulan

Terjadi kerusakan mikroskopis organ hati, dimana secara kualitatif, semakin lama paparan radiasi, semakin meningkat persentase kerusakan sel. Sementara kerusakan akan semakin berkurang berdasarkan penambahan dosis antioksidan yang diberikan. Sebelum diberi ekstrak Bikotans, kerusakan total sel hepatosit adalah 54,43%. Setelah diberi ekstrak Bikotans kerusakan total sel hepatosit adalah 18,14%. Dosis ekstrak 3,18 mg merupakan dosis efektif, karena pada dosis tersebut persentase kerusakan sel berkurang paling besar yaitu 28,81%.

5.2. Saran

Perlu dilakukan penelitian lebih lanjut menggunakan software yang otomatis dapat menentukan jenis kerusakan dari sel dan menggunakan antioksidan yang lain.

DAFTAR PUSTAKA

- Adi, Lukas Tersono. 2008. *Tanaman Obat & Jus untuk Mengatasi Penyakit Jantung, Hipertensi, Kolesterol dan Stroke*. Jakarta: PT Agromedia Pustaka.
- Akhadi, Mukhlis. 2000. *Dasar-Dasar Proteksi Radiasi*. Jakarta: PT Rineka CIpta.
- Alatas, Z., & dkk. 2010. *Buku Pintar Nuklir (Ruslan, Ed.)*. Jakarta: Pusat Diseminasi Iptek Nuklir BATAN.
- Alatas, Z., & Lusiyanti, Y. 2001. *Efek Kesehatan Radiasi Non- Pengion pada Manusia*. Tangerang: BATAN-Litbang Keselamatan Radiasi dan Biomedika Nuklir.
- Amirudin, Rifai. 2009. Fibrosis Hati dalam Buku Ajar Ilmu Penyakit Hati Ed.1. Jakarta: Jayabadi.
- Bandunggawa, Sandi IN, dan Merta IW. 2009. *Bahaya Radiasi dan Cara Proteksinya*. Denpasar: Mediana.
- Bappeten. 2005. Efek Biologi Radiasi Diklat Inspektur Pratama Tingat 1. Jakarta: Juli 2005
- Buck, D.F. 1991. Antioxidant di dalam: J. Smith, editor Food Additive User's Handbook. United Kingdom: Blackie Academic and Professional.
- Bushong, C.S. 2001. Radiologic Science for Technologists: Physics, Biology, and Protection 7th Edition. Washington: Mosby Company
- Dalimartha, Setiawan. 2013. *Tanaman Obat di Lingkungan Sekitar*. Jakarta: Niaga Swadaya.
- Danusantoso, H. 2003. *Peran Radikal Bebas terhadap Beberapa Penyakit Baru*. Jakarta: Fakultas Kedokteran Universitas Trisakti.
- Dawn, B., Marks, Allan D Marks dan Collen M. Smith. 2000. Biokimia Kedokteran Dasar Sebuah Pendekatan Klinis. Jakarta: EGC.
- Devy, Lukita & Dodo, R. S. 2006. Pengaruh Terapi Kurkumin terhadap Kadar Malondialdehid (MDA) Hasil Isolasi Parotis dan Profil Protein Tikus Putih yang Terpapar Lipopolisakarida (LPS). Kima Student 1: 133-139.
- Ermawati. 1999. *Interaksi Radiasi dengan Materi*. Jakarta: Universitas Gunadarma

- Farb, A., Burke AP, Tang AL, Liang TY, Mannan P., Smialek J. 2009. Coronary Plaque Erosion without Rupture into a Lipid Core. J. Med: 1354-63.
- Fitri, M. 2008. Hubungan Antara Gambaran Vena Hepatika Segmen Perider Pada Pemeriksaan USG Hati dan Peningkatan Kadar SGPT Dalam Darah. Surakarta: Universitas Sebelas Maret.
- Gabriel, J. F. 2005. Fisika Kedokteran. Jakarta: EGC.
- Grupen, C. 2010. *Introduction to Radiation Protection*. Universitas Siegen: Jurusan Fisika.
- Hadi, Sujono. 2002. *Sirosis Hepatis dalam Gastroenterologi*. Bandung: Alumnu pp: 637-638.
- Hamid, A., dkk. 2010. Comparison of Different Extraction Methods for the Extraction of Major Biactive Flavonoid Compounds from Spearmint (Mentha spicata L.) Leaves. Food and Bioproducts Processing, 89: 1-6.
- Hariana, Arief. 2013. *262 Tumbuhan Obat dan Khasiatnya*. Jakarta: Penebar Swadaya Grup.
- Harkness, J. E, The Mous. 1983. *The Biology and Medicine od Rabbits and Rodents second edition*. Philadelphia: Lea and Febringer.
- Harmanto, Ning. 2003. *Menaklukan Penyakit Bersama Mahkotadewa*. Jakarta: Agro Media Pustaka.
- Hastuti, Sri Utami. 2006. Pengaruh Berbagai Dosis Citrinin terhadap Kerusakan Struktur Hepatosit Mencit (Mus musculus) pada Tiga Zona Lobulus Hepar. Malang: Jurusan Biologi Universitas Negeri Malang.
- Hembing, H. M. 2000. *Ensiklopedia Milenium Tumbuhan Berkhasiat Obat Indonesia*. Jakarta: Prestasi Insan Indonesia.
- Hendra, R. 2011. Antioxidant, Anti-Inflammatory and Cytotoxicity of Phaleria macrocarpa. BMC: 11-110.
- Hidayat, Syamsul dan Rodame M. Napitupulu. 2015. *Kitab Tumbuhan Obat*. Jakarta: Penebar Swadaya Grup.
- Junqueira, L. 1995. *Histologi Dasar*. Jakarta: Buku kedokteran EGC.
- Klatt. 2016. The Internet Pathology Laboratory for Medical Education. Utah: Ecless Health Sciences Library University of Utah.
- Kumalaningsih, Sri. 2006. *Antioksidan Alami-Penangkal Radikal Bebas, Sumber, Manfaat, Cara Penyediaan dan Pengolahan*. Surabaya: Trubus Agrisarana.

- Lusiyanti, Y. 2008. Penerapan Efek Interaksi Radiasi Dengan Sistem Biologi Sebagai Dosimeter Biologi. Jurnal Fisika Nuklir. 2, 1–15.
- Netter, F. H. 2006. *Atlas of Human Anatomy* 4th *edition*. Philadelphia: pp. 294.
- Pratama, Guntur. 2016. Pengaruh Ekstrak Temulawak terhadap Gambaran Mikroskopis Organ Limpa Mencit yang Terpapar Radiasi Gamma. Malang: Jurusan Fisika. Universitas Brawijaya
- Pratama, M. A. 2010. Penyinaran Tanaman Otomatis Menggunakan Lampu LED Penumbuh Tanaman Berbasis Mikrokontroler Atmega 16. Palembang: Jurusan Teknik Komputer. Politeknik Negeri Sriwijaya,
- Putra, S.E. 2008. *Antioksidan Alami di Sekitar Kita*. Jakarta: Swadaya Graha.
- Rukmana, H. Rahmat dan Indra Mukti Harahap.2007. *Katuk Potensi dan Manfaatnya*. Jakarta: Penerbit Kanisius.
- Sari, Septiana K. 2015. Pengaruh Ekstrak Temulawak (Curcuma Xanthoriza) terhadap Kadar SGPT dan Identifikas Jenis Radikal Bebas akibat Paparan Radiasi Gamma pada Hepar Mencit (Mus musculus). Malang: Magister Ilmu Fisika Universitas Brawijaya.
- Sherlock, S. 1990. *Penyakit Hati dan Sistem Saluran Empedu Cetakan I.* Jakarta: Penerbit Widya Medika.
- Sherwood, L. 2001. Fisiologi Manusia: dari Sel ke Sistem, edisi ke 2. Jakarta: EGC.
- Sianturi, Agus Coco. 2011. Pengaruh Pemberian Ekstrak Air Daun Bangun-Bangun (Coleus amboinicus L.) terhadap Jumlah Sel Darah Merah dan Hemoglobin pada Tikus Putih (Rattus norvegicus) yang diberi Aktivitas Fisik Maksimal. Medan: Universitas Negeri Medan.
- Sibuea, P. 2003. *Antioksidan Senyawa Ajaib Penangkal Penuaan Dini*. Yogyakarta: Sinar Harapan.
- Siswono. 2002. *Kimia, Pangan dan Gizi*. Jakarta: PT Gramedia Pustaka Utama.
- Sudiono, J., dkk. 2003. *Patologi Cetakan I.* Jakarta: Penerbit Buku Kedokteran EGC.
- Suyatno, F. 2010. Aplikasi Radiasi dan Radioisotop Dalam Bidang Kedokteran. Yogyakarta: Seminar Nasional IV SDM Teknologi

repository.up.ac.

Nuklir 18 November 2010.

Winarti, S. 2010. *Makanan Fungsional Edisi 1*. Yogyakarta: Graha Ilmu.

Zulkarnain. 2013. Analisis Pengaruh Penyinaran Sinar Gamma (y) terhadap Kadar Insulin Pankreas Sebelum dan Setelah Pemberian Ekstrak Buah Pare (Momordica charantia L.) pada Hewan Coba Mencit (Mus musculus) yang Dibebani Glukosa. Malang: Magister Ilmu Fisika Universitas Brawijaya.

DAFTAR LAMPIRAN

Lampiran 1 Data kerusakan sel

1. Tahap I

Tabel 7.1 Kontrol Negatif

1 a	be	1 /	. 1	K(ш	101	LIN	ع	atı	1																
Mean			3.6048906					3.65456432					2.46481684					2.53364647					3.7962641			
*Degenerasi	4.28571429	1.3888889	0	5.40540541	6.9444444	3.65853659	1.44927536	20.2613029 5.45454545 3.65456432	1.61290323	6.09756098	5.35714286	2.94117647	2.17391304	0	1.85185185	2.7027027	1.51515152	25.1548662 4.54545455 2.53364647	1.75438596	2.15053763	3.38983051	6.6666667	2.81690141	1.49253731	4.61538462	3.21083647
Mean			18.0085225					20.2613029					19.5652174 19.3218346 2.17391304 2.46481684					25.1548662					21.4036563			
%Piknosis	21.4285714	16.6666667	12.195122	18.9189189	20.8333333	21.9512195	28.9855072	20	14.516129	15.8536585	12.5	17.6470588	19.5652174	28.3783784	18.5185185	22.972973	27.272723	72.7272727	28.0701754	24.7311828	23.7288136	24	77.4647887 72.0575611 2.81690141 2.74251849 16.9014085 21.4036563 2.81690141	22.3880597	20	20.8300365
Mean			2.39086648					1.81818182 2.07631268				1	2.78796608	S	L	3/	2	68.7579693 3.03030303 3.55351802					2.74251849			
%Binukleus	0	4.16666667	75.9957205 3.65853659	1.35135135	2.7777778	1.2195122	2.89855072		3.22580645	1.2195122	5.35714286	2.94117647	77.173913 75.4253825 1.08695652	2.7027027	1.85185185	4.05405405	1.51515152	3.03030303	7.01754386	2,15053763	5.08474576	1.3333333	2.81690141	4.47761194	0	2.71023635
Mean			75.9957205					74.0078201					75.4253825			1		68.7579693		717			72.0575611			
%Normal	74.2857143	77.77778	84.1463415	74.3243243	69.444444	73.1707317	66.6666667	72.72727	80.6451613	76.8292683	76.7857143	76.4705882	77.173913	68.9189189	77.77778	70.2702703	69.6969697	69.6969697	63.1578947	70.9677419	67.7966102	68	77.4647887	71.641791	75.3846154	73.2488907
Şel	70	72	82	74	72	82	69	55	62	82	56	- 89	92	74	54	74	99	99	23	93	59	75	7.1	29	63	TOTAL
Binukleus Piknosis Degenerasi Parenkim	3	1	0	4	5	3	1	3	1	5	3	2	2	0	1	2	1	3	1	2	2	5	2	1	3	
Piknosis	12	12	10	14	15	18	20	11	6	13	7	12	18	21	10	17	18	15	16	23	14	18	12	12	13	
Binukleus	0	3	3	1	2	1	2	1	2	1	3	2	1	2	1	8	1	2	4	2	e	1	2	e	0	
Normal	52	26	69	22	20	09	46	40	20	63	43	52	71	21	42	25	46	46	36	99	40	51	22	48	49	
Lapang Pandang	11	12	13	14	15	11	12	13	14	15	L1	12	13	14	15	П	12	63	14	15	П	12	13	47	53	
Lapang			M					M2					W3					M4					MS			

Tabel 7.2 Perlakuan 1 (10 menit)

Ta	be	1 /	.2	Pe	rla	ικι	ıan	1	(1	U 1	ne	nit	.)													
Mean			5.69436624					6.68294668					4.69968916					5.76167629					5.95440359			44.8782438
*Degenerasi	3.65853659	4.70588235	4.47761194	5.95238095	9.67741935	5.95238095	7.69230769	6.41025641	7.40740741	5.95238095	5	8.53658537	3.61445783	2.5974026	3.75	8.23529412	3.79746835	6.25	7.22891566	3.2967033	5.95238095	5.61797753	5.5555556	8.75	3.8961039	5.75861639
Mean			35.8208955 34.6064829					32.4921992 6.41025641					32.1387708					33.3113019					26.3888889 32.0605615 5.5555556 5.95440359			
%Piknosis	31.7073171	37.6470588		34.5238095	33.3333333	32.1428571	32.967033	32.0512821	28.3950617	36.9047619	32.5	35.3658537	28.9156627 32.1387708 3.61445783 4.69968916	37.6623377	26.25	29.4117647	34.1772152	33.75	37.3493976	31.8681319	29.7619048	30.3370787		38.75	35.0649351	32.9218632
Mean			5.97014925 6.57284448					6.41025641 6.05073938					57.6860524 6.02409639 5.47548763					6.95088624					5.5555556 5.93886295			
%Binukleus	6.09756098	4.70588235		10.7142857	5.37634409	5.95238095	3.2967033	6.41025641	8.64197531	5.95238095	3.75	3.65853659	6.02409639	5.19480519	8.75	5.88235294	7.59493671	6.25	8.43373494	6.59340659	5.95238095	6.74157303	5.5555556	6.25	5.19480519	6.19776414
Mean			53.1263064					54.7741148				S	57.6860524				9	53.9761356	4	X	14	2-,	56.046172			
%Normal	58.5365854	52.9411765	53.7313433	48.8095238	51.6129032	55.952381	56.043956	55.1282051	55.555556	51.1904762	58.75	52.4390244	61.4457831	54.5454545	61.25	56.4705882	54.4303797	53.75	46.9879518	58.2417582	58.333333	57.3033708	62.5	46.25	55.8441558	55.1217562
∑sel	82	98	29	84	93	84	91	78	81	84	08	82	83	17	80	82	79	8	83	91	84	68	72	8	77	TOTAL
Binukleus Piknosis Degenerasi Parenkim	8	4	3	5	6	5	7	5	9	5	4	7	3	2	(3/4)	The state of the	3	5 00	100 J	3	5	5	4	7	3	
Piknosis	56	32	24	29	31	27	30	22	23	31	26	29	24	29	21	25	27	27	33	29	25	27	19	31	27	
Binukleus	2	4	4	6	5	5	3	2	7	5	3	3	2	4	7	2	9	22	7	9	2	9	4	2	4	
Normal	48	45	36	41	48	47	51	43	45	43	47	43	51	42	49	48	43	43	39	53	49	51	45	37	43	
Lapang Pandang	11	12	13	14	15	11	12	13	14	15	11	12	13	14	15	11	12	63	14	1.5	11	12	13	14	15	
Lapan			Ξ					M2					₩					₩					MS			

Tabel 7.3 Perlakuan 2 (20 menit)

Ta	De	1 /	.3	1 6	114	ıĸu	ıan	_	(~	O I	110	1116	,													
Mean			6.79423228					7.26234568					6.32587084					6.35835085					7.1658868			49.7660388
%Degenerasi	5.06329114	5.06329114	7.04225352	7.5	9.30232558	11.25	5	34.8368607 5.5555556	6.17283951	8.3333333	6.25	9.52380952	7.04225352	3.75	5.06329114	7.14285714	5.5555556	6.09756098 6.35835085	6.66666667	6.32911392	5.40540541	7.22891566	33.3340619 6.75675676	9.5890411	6.84931507	6.78133729
Mean			37.2215449					34.8368607					36.5815229					35.6980059					33.3340619			
%Piknosis	36.7088608	32.9113924	38.028169	41.25	37.2093023	32.5	08	38.888889	38.2716049	34.5238095	36.25	36.9047619	38.028169	33.75	37.9746835	34.2857143	38.8888889	37.804878	33.3333333	34.1772152	37.8378378	36.1445783	33.7837838	34.2465753	24.6575342	35.5343993
Mean			6.73284111					7.7808642					49.2957746 49.9881483 5.63380282 7.10445797					50.3274061 6.09756098 7.61623713					6.75675676 8.01711102			
%Binukleus	3.79746835	8.86075949	11.2676056	6.25	3.48837209	3.75	10	6.944444	9.87654321	8.33333333	8.75	4.76190476	5.63380282	6.25	10.1265823	5.71428571	6.9444444	6.09756098	6.66666667	12.6582278	6.75675676	6.02409639	6.75675676	8.21917808	12.3287671	7.45030229
Mean			43.6619718 49.2513817					50.1199295		1	9		49.9881483					50.3274061					52.7027027 51.4829403			
%Normal	54.4303797	53.164557	43.6619718	45	50	52.5	55	48.611111	45.6790123	48.8095238	48.75	48.8095238	49.2957746	56.25	46.835443	52.8571429	48.6111111	50	53.333333	46.835443	50	50.6024096	52.7027027	47.9452055	56.1643836	50.2339612
∑sel	79	79	71	80	98	80	80	72	81	84	80	84	71	88	79	70	72	82	75	79	74	83	74	73	73	TOTAL
Binukleus Piknosis Degenerasi Parenkim	4	4	2	9	8	6	4	4	2	7	22	8 1	3	3	4 - 11	2-5-17	4	2	ហ	22	4	9	5	7	5	
Piknosis	59	26	27	33	32	56	24	28	31	29	29	31	27	27	30	24	28	31	52	27	28	30	25	52	18	
Binukleus	6	7	8	5	3	3	8	5	8	7	7	4	4	S		4	5	5	5	10	2	5	5	9	9	
Normal	43	42	31	36	43	42	44	32	37	41	39	41	32	45	37	37	35	41	40	37	37	42	39	32	41	
Lapang Pandang	듸	2	M1 L3	F4	12	11	12	M2 L3	<u>14</u>	23	П	7	E1 EM	4	53	╗	7	M4 L3	7	53	=	7	M5 L3	₹	ಬ	

Tabel 7.4 Perlakuan 3 (30 menit)

1 a	DC.	. ,	.4	1 0	Ha	iixu	ıuıı)	()	O I	110	1116	,													
Mean			8.15758859					7.65278813					7.19927527					8.185587					8.11203893			54.4419399
*Degenerasi	7.31707317	7.22891566	8.43373494	5.47945205	12.3287671	7.86516854	6.57894737	9.09090909	7.22891566	7.5	6.41025641	6.02409639	9.45945946	7.69230769	6.41025641	7.40740741	9.75609756	6.25	7.79220779	9.7222222	7.14285714	8.33333333	9.87654321	6.75675676	8.45070423	7.86145558
Mean			37.3312025					37.820591					33.7837838 36.5652214 9.45945946 7.19927527					36.7160425					37.8155855			
%Piknosis	39.0243902	32.5301205	39.7590361	39.7260274	35.6164384	39.3258427	40.7894737	9.07188214 37.6623377	31.3253012	40	34.6153846	34.939759	33.7837838	42.3076923	37.1794872	37.037037	31.7073171	43.75	36.3636364	34.7222222	34.5238095	40.4761905	39.5061728	35.1351351	39.4366197	37.2497286
Mean			9.57917873					9.07188214					9.45945946 9.71703863					9.41836092		//			11.111111 8.86731802			
%Binukleus	10.9756098	12.0481928	8.43373494	8.21917808	8.21917808	8.98876404	6.57894737	6.49350649	12.0481928	11.25	12.8205128	9.63855422	9.45945946	6.41025641	10.2564103	8.64197531	7.31707317	12.5	11.6883117	6.9444444	8.33333333	8.33333333	11.1111111	8.10810811	8.45070423	9.33075569
Mean			44.9320302					45.4547387					46.5184647	,	523			45.6800095	7)	4		45.2050575			
%Normal	42.6829268	48.1927711	43.373494	46.5753425	43.8356164	43.8202247	46.0526316	46.7532468	49.3975904	41.25	46.1538462	49.3975904	47.2972973	43.5897436	46.1538462	46.9135802	51.2195122	37.5	44,1558442	48.6111111	20	42.8571429	39,5061728	50	43.6619718	45.5580601
Sel	82	88	83	73	73	89	92	77	83	80	78	83	74	28	78	81	82	88	η	7.2	84	84	81	74	7.1	TOTAL
Binukleus Piknosis Degenerasi Parenkim	9	9	7	4	6	7	5	7	9	9	5	5	7	9	2	6 11 11 11	8	D.	9	7	9	7	8	5	9	
Piknosis	32	27	33	29	56	32	31	29	26	32	27	29	22	33	29	8	26	33	38	25	23	34	32	36	28	
Binukleus	6	10	7	9	9	8	5	5	10	6	10	8	7	2	8	7	9	10	6	5	7	7	6	9	9	
Normal	32	40	36	34	32	39	35	36	41	33	36	41	35	34	36	88	42	88	34	32	42	36	32	37	31	
Lapang Pandang	11	12	13	L4	12	11	12	13	L4	51	11	12	13	F4	12	=	77	ಣ	[4	12	=	12	ខ	14	12	
Lapan			M1					M2					M3					₩					MS			

Tabel 7.5 Perlakuan 4 (40 menit)

			29					54					52				-	752					22			98
Mean			8.030960					8.2449154					7.621366					8.405098					8.087938			54.4252036
%Degenerasi	6.32911392	7.40740741	10.3896104 8.03096067	8.43373494	7.59493671	7.89473684	8.23529412	6.32911392	8.8888889	9.87654321	9.09090909	7.05882353	8.23529412 7.62136625	7.14285714	6.57894737	8.53658537	7.79220779	7.14285714 8.40509822	10.9589041	7.59493671	9.85915493	8.21917808	6.41025641 8.08793852	8.97435897	6.97674419	8.07805581
Mean			39.0995141					36.4952331					36.9236192					37.4501819					36.1236168			
%Piknosis	44.3037975	35.8024691	35.0649351	38.5542169	41.7721519	36.8421053	31.7647059	36.7088608	38.888889	38.2716049	36.3636364	38.8235294	8.79541769 34.1176471	34.5238095	40.7894737	39.0243902	35.0649351	8.75611882 37.1428571	34.2465753	41.7721519	38.028169	38.3561644	35.8974359	34.6153846	33.7209302	37.218433
Mean			9.09090909 9.26580635					10.1265823 8.99741446 36.7088608					8.79541769					8.75611882					9.82881631			
%Binukleus	8.86075949	7.40740741		10.8433735	10.1265823	9.21052632	10.5882353	10.1265823	8.8888889	6.17283951	10.2272727	9.41176471	8.23529412	9.52380952	6.57894737	6.09756098	6.49350649	10	12.3287671	8.86075949	9.85915493	9.5890411	10.2564103 9.82881631 35.8974359 36.1236168	8.97435897	10.4651163	9.12871472
Mean			43.6037189	4				46.262437	4			Q	49,4117647 46.6595969			4	Λ.	45.388601	2				45.9596283			
%Normal	40.5063291	49.382716	45,4545455	42.1686747	40.5063291	46.0526316	49.4117647	46.835443	43.333333	45.6790123	44,3181818	44.7058824	49,4117647	48.8095238	46.0526316	46.3414634	50.6493506	45.7142857	42.4657534	41.7721519	42.2535211	43.8356164	47.4358974	47,4358974	48.8372093	45.5747964
∑sel	79	81	77	83	79	92	85	79	8	81	88	85	85	84	76	82	77	70	73	79	7.1	73	78	78	98	TOTAL
Piknosis Degenerasi Parenkim	5	9	8	7	9	9	7	5	8	8	8	. 6	7	9-	5	7-may	9	5	8	9	7	9	5	7	9	
	35	29	27	32	33	28	27	29	33	31	32	33	29	29	31	32	27	26	22	33	27	28	28	27	29	
Binukleus	7	9	7	6	8	7	9	8	80	5	9	8	7	8	5	2	2	7	6	7	7	7	8	7	6	
Normal	32	40	35	32	32	35	42	37	39	37	39	38	42	41	35	38	39	32	31	33	30	32	37	37	42	
Lapang Pandang	п	12	13	14	LS	п	12	13	14	LS	П	12	13	14	15	п	12	13	47	15	п	12	13	14	15	
Laps			M					M2					₩ W					₩					MS			

repository.ub.a

Tabel 7.6 Perlakuan 5 (50 menit)

						ıĸı			()		110		<i>′</i>													
Mean			7.79924536					7.92511767					7.4847491					8.09605018					8.39062652			54.5916067
*Degenerasi	7.59493671	9.5890411	7.22891566 7.79924536	8.3333333	6.25	299999999	8.53658537	7.31707317	6.57894737	10.5263158	7.69230769	6.32911392	7.40740741	8.64197531	7.35294118	8.97435897	7.14285714	36.5496424 9.63855422 8.09605018	7.40740741	7.31707317	6.41025641	9.45945946	36.6050563 8.10810811	9.3333333	8.64197531	7.93915777
Mean			39.0576378					36.3015262 7.31707317					41.9753086 38.9489449 7.40740741													
%Piknosis	43.0379747	36.9863014	42.1686747	38.0952381	35	38.888889	35.3658537	41.4634146	32.8947368	32.8947368	34.6153846	36.7088608		43.2098765	38.2352941	37.1794872	33.3333333	33.7349398	37.037037	41.4634146	44.8717949	33.7837838	35.1351351	34.6666667	34.5679012	37.4925615
Mean			42.1686747 44.6116479 8.43373494 8.53146901					42.6829268 46.6118956 8.53658537 9.16146056					40.7407407 44.4899196 9.87654321 9.07638637					46.2912508 9.63855422 9.06305668					9.9670645			
%Binukleus	8.86075949	9.5890411	8.43373494	9.52380952	6.25	877777778	9.75609756	8.53658537	11.8421053	7.89473684	8.97435897	7.59493671	9.87654321	8.64197531	10.2941176	8.97435897	9.52380952	9.63855422	8.64197531	8.53658537	10.2564103	9.45945946	45,9459459 45.0372526 10.8108108	10.6666667	8.64197531	9.15988742
Mean			44.6116479					46.6118956			7/		44.4899196		2			46.2912508	7.1				45.0372526			
%Normal	40.5063291	43.8356164	42.1686747	44.047619	52.5	46.6666667	46.3414634	42.6829268	48.6842105	48.6842105	48.7179487	49.3670886	40.7407407	39.5061728	44.1176471	44.8717949	50	46.9879518	46.9135802	42.6829268	38.4615385	47.2972973	45.9459459	45.3333333	48.1481481	45.4083933
∑sel	79	73	83	84	80	90	82	82	92	76	78	79	81	81	68	78	84	83	81	82	78	74	74	75	81	TOTAL
Piknosis Degenerasi Parenkim	9	7	9	7	5	9	7	9	2	8	9	5	9	7	5		9	8	9	9	5	7	9	7	7	
Piknosis	34	27	35	32	28	32	29	34	22	25	27	29	34	35	26	29	28	78	8	34	35	22	26	56	28	
Binukleus	7	7	7	8	2	7	8	7	6	9	7	9	8	7	7	7	8	00	7	7	8	7	8	8	7	
Normal	32	32	35	28	42	42	38	98	28	28	38	39	33	32	30	35	42	39	38	35	30	38	34	34	68	
Lapang Pandang	11	12	M1 L3	14	15	11	12	M2 L3	14	1.5	11	12	M3 L3	14	1.5	11	12	M4 L3	14	1.5	11	12	M5 L3	14	15	
	L		_			L,		_			Щ		_					_					_			

2. Tahap 2 **Tabel 7.7** Kontrol Positif

ng Par	Lapang Pandang	Normal	Binukleus	Piknosis	Binukleus Piknosis Degenerasi Parenkim	Sel	%Normal	Mean	snalynujg%	Mean	%Piknosis	Mean	%Degenerasi	Mean
⊐		22	1	8	1	88	88.23529		1.176470588		9.411765		1.176470588	
S		84	0	2	0	68	94.38202		0		8/6/19/9		0	
മ		74	2	2	0	81	91.35802	91.35802 90.32873	2.469135802	2.287792	6.17284	6.918298	0	0.465179
⇉		8/	2	8	0	91	85.71429		5.494505495		8.791209		0	
R		08	2	4	1	87	91.95402		2.298850575		4.597701		1.149425287	
⊐		54	3	10	1	89	79.41176		4.411764706		14.70588		1.470588235	
의		62	33	9	0	71	87.32394		4.225352113		8.450704		0	
മ		72	6	2	0	83	86.74699	85.19116	10.84337349 5.361152 2.409639 8.903568	5.361152	2.409639	8.903568	0	0.544118
⇉		98	1	9	0	88	92.47312		1.075268817		6.451613		0	
낁		64	5	10	1	8	80		6.25		12.5		1.25	
⊐		52	0		1	19	85.2459		0		13.11475		1.639344262	
Ŋ		29	0	7		74	90.54054		0		9.459459		0	
$^{\circ}$		80	0	10	1	91	87.91209	87.91209 89.28817	0	0.277778	10.98901 9.608626	9.608626	1.098901099	0.825427
4		88	0	11		욠	88.29787		00		11.70213		0	
R		89	1	2	15 11 - 103	72	94.44444		1.38888889		2.777778		1.38888889	
⊐		84	m	7	2-10 J. Wan	짫	89.3617	^-	3.191489362		7.446809		0	
П		23	0	8	0	19	86,88525		00		13.11475		0	
മ		99	1	6	0	92	86.84211	85.92471	1.315789474 2.734478 11.84211	2.734478	11.84211	10.7298	0	0.611007
4		54	3	6	1	29	80.59701	2	4.47761194		13.43284		1.492537313	
R		99	3	2	1	64	85.9375		4.6875		7.8125		1.5625	
⊐		92	0	10	1	87	87,35632		0		11.49425		1.149425287	
의		82	2	9	0	83	88.17204		2.150537634		9.677419		0	
ഇ		92	2	8	0	8	88.37209	88.37209 88.57147	2.325581395 1.507469 9.302326 9.264868	1.507469	9.302326	9.264868	0	0.656189
콬		88	8	6	1	88	86.73469		3.06122449		9.183673		1.020408163	
23		88	0	9	1	8	92.2222		0		6.666667		1.11111111	
						TOTAL	87.86085		2.433733791		9.085032		0.620384009	12.13915
+	Ī													

Tabel 7.8 Perlakuan 1 (3,18 mg)

1 a	DC	1 /	.0	1 (116	ıĸı	ıaı	1 1	()	,10	3 11	ng	,													
Mean			4.880525					1.760412					4.107703					4.794587					6.209711			25.61093
%Degenerasi	3.75	8.928571429	8.620689655	1.694915254	1.408450704	0	1.19047619	2.857142857	1.724137931	3.03030303	4.47761194	1.369863014	3.50877193	4.285714286	6.896551724	4.705882353	8.045977011	1.428571429	5.194805195	4.597701149	7.228915663	5.617977528	5.55555556	8.75	3.896103896	4.350587589
Mean			13.41269					15.55437					15.89824					14.13533					29.9636			
%Piknosis	11.25	16.07143	13.7931	11.86441	14.08451	15.78947	19.04762	15.71429 15.55437	12.06897	15.15152	22.38806	20.54795	1.511573 8,77193 15.89824	15.71429	12.06897	12.94118	12.64368	3.282351 15.71429 14.13533	15.58442	13.7931	19.27711	30.33708	26.38889	38.75	35.06494	17.79285
Mean			3.706847					3.12448					1.511573					3.282351					5.712242 26.38889			
%Binukleus	7.5	0	1.724137931	5.084745763	4.225352113	1.315789474	4.761904762	2.857142857	5.172413793	1.515151515	0	4.109589041	0	0	3.448275862	2.352941176	4.597701149	5.714285714	2.597402597	1.149425287	4.819277108	6.741573034	5.55555556	6.25	5.194805195	3.467498797
Mean			77.99994					79.56074					78.48249	1		A	5	87787.77	BA		1,		58.11445			
%Normal	77.5	75	75.86207	81.35593	80.28169	82.89474	75	78.57143	81.03448	80.30303	73.13433	73.9726	87.7193	88	77.58621	80	74.71264	77.14286	76.62338	80.45977	68.6747	57.30337	62.5	46.25	55.84416	74.38907
les₹	08	99	28	65	71	76	84	70	88	- 99	67	23	25	70 >	85	85	87	70	n	87	88	88	72	80	77	TOTAL
Piknosis Degenerasi Parenkim	3	5	5	1	1	0	1	2	1	2	3	1	2	3		THE A IN				4	9	5	4	7	3	
Piknosis	6	6	8	7	10	12	16	11	7	10	15	15	2	11	7	11	11	11	12	12	16	27	19	31	27	
Binukleus	9	0	1	3	3	1	4	2	3	1	0	3	0	0	2	2	4	4	2	1	4	9	4	5	4	
Normal	62	42	44	48	22	63	63	55	47	23	49	54	09	99	45	89	99	54	59	70	25	51	45	37	43	
Lapang Pandang	П	7	ខា	14	15	П	7	ខា	14	15	П	7	ខា	14	15	П	7	ខា	14	15	П	12	ខា	14	15	
Lapang			M					M2					EM					₩					S			

Tabel 7.9 Perlakuan 2 (4,18 mg)

	~ ~		•	- 1		ıĸı			١.	,-		ng	′													
Mean			1.839994					2.487654					0.799364					2.16594					2.511867			22.16929
%Degenerasi	2.105263158	2.830188679	1.098901099	2.22222222	0.943396226	1.38888889	2.7777778	3.33333333	0	4.938271605	0	0	0	1.869158879	2.127659574	3.703703704	0	3.06122449	1.123595506	2.941176471	2.816901408	2.040816327	2.941176471	1.351351351	3.409090909	1.960963923
Mean			17.67892					17.10957					18.0821					15.06632					16.02403			
%Piknosis	15.78947	20.75472	16.48352 17.67892	15,55556	19.81132	19,4444	14.81481	20	17.70833	13,58025	15.71429	27.69231	21.15385	13.08411	12.76596	13.58025	22.61905	7.142857 15.06632	20.22472	11.76471	16.90141	19.38776	10.78431 16.02403	14.86486	18.18182	16.79219
Mean			3.607121					3.277778										3.715447					3.522557			
%Binukleus	1.052631579	0.943396226	5.494505495	1.11111111	9.433962264	2.77777778	2.77777778	6.66666667	4.166666667	0	1.428571429	0.769230769	76.92308 78.16073 1.923076923 2.957801	7,476635514	3.191489362	1,234567901	1.19047619	6.12244898	5.617977528	4.411764706	2.816901408	1.020408163	5.882352941	6.756756757	1.136363636	3.416140711
Mean			76:87397					77.125	7	3	5		78.16073				Ţ	79.0523	4				77.94154			
%Normal	81.05263	75.4717	76.92308	81.11111	69.81132	76.38889	79.62963	70	78.125	81.48148	82.85714	71.53846	76.92308	77.57009	81.91489	81.48148	76.19048	83.67347	73.03371	80.88235	77.46479	77.55102	80.39216 77.94154	77.02703	77.27273	77.83071
Sel	95	106	91	90	106	72	108	90	96	81	70	130	104	107	94	81	84	98	89	- 69	7.1	98	102	74	88	TOTAL
Degenerasi Parenkim	2	3	1	2	1	1	3	3	0	4	0	0.00	0	-1264	2	-11.3 [7//5/10]	0	3	1	2	2	2	3	1	3	
Piknosis	15	22	15	14	21	14	16	18	17	11	11	36	22	14	12	11	19	7	18	8	12	19	11	11	16	
Binukleus	1	1	5	1	10	2	3	9	4	0	1	1	2	8	က	1	1	9	5	3	2	1	9	5	1	
Normal	22	08	70	2/3	74	55	98	89	75	99	85	93	08	83	22	99	64	82	59	99	99	9/	82	25	89	
Lapang Pandang	П	7	ខា	L4	15	П	77	ខា	L4	15	П	7	ខា	L4	15	П	7	ខា	L4	15	П	7	ខា	L4	15	
Lapan			물					ZZ					£					₹					£			

Tabel 7.10 Perlakuan 3 (5,18 mg)

I a	be	17	.10	U F	e r	lak	cua	ın	3 (5,	18	m	<u>g)</u>													
Mean			0.829584					1.744971					1.254155					0.874126					0.578704			19.0366
%Degenerasi	0	0	1.785714286	2.362204724	0	0	1.652892562	1.282051282	3.225806452	2.564102564	1.62601626	1	2	0.869565217	0.775193798	0.961538462	1.136363636	0	2.2727273	0	0	1.041666667	0	0	1.851851852	1.056307801
Mean			14.77366					17.78213					14.00165					14.36946					12.83725			
%Piknosis	19.14894	14.15929	14.28571 14.77366	15.74803	10.52632	29.31034	9.917355	17.94872	17.2043	14.52991	10.56911	15	13	18.26087	13.17829	14.42308	12.5	15.15152	14.77273	15	10.81081	14,58333	12	12.90323	13.88889	14.75283
Mean			4.046778					3.139896					2.614573				\sim	2.789044					3.547018			
%Binukleus	3.191489362	9.734513274	1.785714286 4.046778	1.57480315	3.947368421	3.448275862	4.958677686	1.282051282	4.301075269	1.709401709	0.81300813	3	2	2.608695652	4.651162791	2.884615385	3.409090909	1.515151515 2.789044 15.15152 14.36946	1.136363636	5	4.504504505	0	2	7.52688172	3.703703704	3.22746193
Mean			80.34998					77.33301			2		82.12962	51				81.96737		X	14	2	83.03703			
%Normal	77.65957	76.10619	82.14286	80.31496	85.52632	67.24138	83.47107	79.48718	75.26882	81.19658	86.99187	81	83	78,26087	81,39535	81.73077	82,95455	83,33333	81.81818	80	84.68468	84.375	98	79.56989	80.55556	80.9634
Sel	94	113	112	127	2/2	116	121	78	93	117	123	100	100	115	129	104	88	132	88	100	111	96	100	93	108	TOTAL
Piknosis Degenerasi Parenkim	0	0	2	3	0	0	2	1	3	3	2	1	2	1 8		11/21/11		0.4 100	2 7/40	0	0	1	0	0	2	
Piknosis	18	16	16	20	8	34	12	14	16	17	13	15	13	21	17	15	11	20	13	15	12	14	12	12	15	
Binukleus	3	11	2	2	3	4	9	1	4	2	1	3	2	3	9	က	က	2	1	5	5	0	2	7	4	
Normal	73	98	92	102	65	92	101	62	20	95	107	81	83	90	105	82	73	110	72	80	94	81	98	74	87	
Lapang Pandang	П	7	ខា	14	15	п	7	ខា	14	53	П	7	ខា	14	15	П	7	ខា	14	15	П	7	ខា	14	23	
Lapan			¥					M2					£					ĕ					S			

Tabel 7.11 Perlakuan 4 (6,18 mg)

I a	ıbe	1 /	ι.	l l	e r	lak	cua	an	4 (6,	18	m	g)													
Mean			2.337453					2.122933					1.471346					0.712596					0.28169			16.45652
%Degenerasi	1.265822785	1.470588235	1.123595506	2.564102564	5.263157895	0.840336134	2.564102564	4.347826087	1.492537313	1.369863014	1.680672269	1.265822785	2.631578947	606060606.0	0.869565217	2.247191011	0	0	0	1.315789474	0	0	0	1.408450704	0	1.385203737
Mean	Mean 14.04523					10.73603					10.91916							10.46927		13.25659						
%Piknosis	17.72152	13.23529	14.60674 14.04523	12.82051	11.84211	13.44538	11.53846	5.797101 10.73603	11.9403	10.9589	10.08403	12.65823	13.15789	10	8.695652	11.23596	12.5	9.638554 10.46927	5.813953	13.15789	14.86486	14.1791	8	9.859155	19.37984	11.88526
Mean			2.291536					2.392178					4.396303										2.602522			
%Binukleus	1.265822785	2.941176471	3.370786517	2.564102564	1.315789474	2.521008403	5.128205128	1.449275362 2.392178	1.492537313	1.369863014	2.521008403	0	6.140350877	6.363636364	6.956521739	1.123595506	3.125	7.228915663 4.247767	5.813953488	3.947368421	1.351351351	4.47761194	5	1.408450704	0.775193798	3.186061011
Mean			81.32578					84.74886	6	3	5		83.21319				U	84.57037	2				83.85919			
%Normal	79.74684	82.35294	80.89888	82.05128	81.57895	83.19328	80.76923	88.4058	85.07463	86.30137	85,71429	86.07595	78.07018	82.72727	83.47826	85.39326	84.375	83.13253	88.37209	81.57895	83.78378	81.34328	87	87.32394	79.84496	83.54348
Sel	79	68	89	78	76	119	78	69	67	73	119	79	114	110	115	89	64	83	98	76	74	134	100	71	129	TOTAL
Piknosis Degenerasi Parenkim	1	1	1	2	4	1	2	3	1	1	2		3		141 03	2 7/30	0	0	0	1	0	0	0	1	0	
Piknosis	14	9	13	10	9	16	9	4	8	8	12	10	15	11	10	10	8	8	5	10	11	19	8	7	22	
Binukleus	1	2	3	2	1	3	4	1	1	1	3	0	7	7	8	1	2	6	5	3	1	6	5	1	1	
Normal	63	99	72	64	62	66	63	19	25	63	102	89	68	16	96	92	54	69	92	62	62	109	87	62	103	
Lapang Pandang	П	71	M1 L3	L4	15	П	71	M2 L3	L4	15	П	71	M3 L3	14	15	1	71	M4 L3	L4	15	11	71	MS L3	L4	53	

Tabel 7.12 Perlakuan 5 (7.18 mg)

Ta	be	1 /		2 I	e r	lai	cua		5 (ζ/,	18	m														
Mean			0.446429			0.476258							0.192308	0.3125						0.606061				13.41671		
%Degenerasi	1.19047619	0	1.041666667	0	0	1.176470588	0	1.204819277	0	0	0.961538462	0	0	0	0	0	0	1.5625	0	0	0	3.03030303	0	0	0	0.406710969
Mean	9.336847					8.242724					10.47706					10.4144					12.4882					
%Piknosis	9.52381	10.34483	2.545972 10.41667 9.336847	5.555556	10.84337	7.058824	9.195402	3.614458	7.594937	13.75	8.653846	9.756098	6.315789	9.574468	18.08511	10.97561	9.708738	7.8125	9.876543	13.69863	12.67606	12.12121	14.0625	16.43836	7.142857	10.19185
Mean						2.650484						2.17932					12.57606 12.12121 1.991952 14.0625 16.43836 7.142857									
%Binukleus	4.761904762	2.298850575	2.083333333	2.380952381	1.204819277	5.882352941	1.149425287	1.204819277 2.650484 3.614458 8.242724	1.265822785	3.75	4.807692308	926092609	84.60759 5.263157895 4.723044 6.315789 10.47706	2.127659574	5.319148936	1.219512195	1.941747573	1.5625	6.172839506	0	2.816901408	0	0	0	7.142857143	2.818154325
Mean			87.67075			88.63053					84.60759					87.09378					84.91379					
%Normal	84.52381	87.35632	86.45833	92.06349	87.95181	85.88235	89.65517	93.9759	91.13924	82.5	85.57692	84.14634	88.42105	88.29787	76.59574	87.80488	88.34951	89.0625	83.95062	86.30137	84.50704	84.84848	85.9375	83.56164	85.71429	86.58329
Şel	84	87	96	126	88	85	87	83	79	80	104	82	95	94	-94	82	103	64	8	73	71	99	64	73	70	TOTAL
Piknosis Degenerasi Parenkim	1	0	1	0	0	1	0	1	0	0	1 V	0	0	S. Car		0			0.0		0	2	0	0	0	
Piknosis	8	6	10	7	6	9	8	3	9	11	6	8	9	6	17	6	10	5	8	10	6	8	6	12	22	
Binukleus	4	2	2	3	1	2	1	1	1	3	2	2	5	2	S		2	J	5	0	2	0	0	0	ហ	
Normal	71	92	88	116	73	73	78	28	72	99	89	69	84	88	72	72	91	22	88	63	09	99	路	19	09	
Lapang Pandang	П	7	ខា	14	15	П	7	ខា	14	15	п	12	ខា	14	15	п	7	ខា	4	15	П	12	ខា	14	15	
Lapan	ΤW							ZI MI					율			M4										

Keterangan: M = Mencit; L = Lapang Pandang; Degenerasi = Degenerasi Hiropik

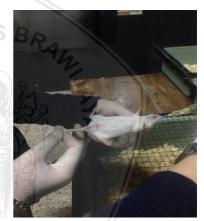
Lampiran 2 Alat dan bahan

Gambar 7.1 Kandang Mencit

Gambar 7.2 Sonde
Lambung

Gambar 7.3 NaCl

Gambar 7.4 Formalin 10%


Gambar 7.6 Tempat Bedah

Gambar 7.5 Masker

Gambar 7.7 Pemaparan radiasi pada mencit

Gambar 7.8 Pemberian Antioksidan

Lampiran 3 Surat keterangan laik etik

KOMISI ETIK PENELITIAN **UNIVERSITAS BRAWIJAYA**

KETERANGAN KELAIKAN ETIK "ETHICAL CLEARENCE"

No:886-KEP-UB

KOMISI ETIK PENELITIAN (ANIMAL CARE AND USE COMMITTEE) UNIVERSITAS BRAWIJAYA

TELAH MEMPELAJARI SECARA SEKSAMA RANCANGAN PENELITIAN YANG DIUSULKAN, MAKA DENGAN INI MENYATAKAN BAHWA:

PENELITIAN BERJUDUL

PENGARUH PEMBERIAN EKSTRAK BIKOTANS TERHADAP GAMBARAN MIKROSKOPIS ORGAN HATI

DARI MENCIT (Mus musculus) YANG TERPAPAR RADIASI GAMMA

PENELITI

: MARIA YASINTHA VEGA DHARA

UNIT/LEMBAGA/TEMPAT

: UNIVERSITAS BRAWIJAYA

DINYATAKAN

LAIK ETIK

Malang, 31 Januari 2018 Ketua Komisi Etik Penelitian Universitas Brawijaya

rof.Dr.drh. Aulanni'am, DES. NIP. 19600903 198802 2 001

Lampiran 4 Surat keterangan plagiasi

BAB I PENDAHULUAN

1.1 Latar Belakang

Teknologi nuklir merupakan salah satu teknologi yang sangat penting dan berkembang sangat pesat dalam beberapa dekade terakhir. Penerapannya telah mencangkup berbagai bidang, salah satunya dalam bidang kesehatan. Dalam bidang kesehatan, teknologi nuklir sering digunakan baik untuk radiografi ataupun radioterapi.

Radiasi gelombang berenergi tinggi seperti sinar-X, alfa, beta atau gamma merupakan radiasi pengion yang sering digunakan untuk menghancurkan atau merusak sel kanker (Lusiyanti, 2008). Sinar gamma memiliki energi yang besar dibandingkan dengan radiasi elektromagnetik lain sehingga dapat menembus jaringan manusia cukup jauh (Farb, 2009). Penggunaan radiasi pengion dalam bidang kesehatan terbilang sangat efektif karena dapat merusak sel kanker dan tumor yang terdapat di dalam tubuh tanpa operasi. Namun di sisi lain, penggunaan radiasi pengion memiliki efek negatif, diantaranya penyerapan energi radiasi ke dalam tubuh biologis menyebabkan eksitasi atau ionisasi. Eksitasi sinar gamma dapat merusak DNA, mengakibatkan luka bakar, merusak jaringan sel sehat dan mengakibatkan kerusakan organ dan menyebabkan kematian (Ermawati, 1999). Radiasi juga dapat berinteraksi dengan atom atau molekul lain dalam sel (terutama air) untuk menghasilkan radikal hebas

Radikal bebas merupakan molekul atau atom tidak stabil yang mempunyai sekelompok atom dengan elektron yang tidak berpasangan sehingga memiliki kecenderungan menarik elektron dari molekul lain. Ketika radikal bebas menarik elektron, ia akan memicu reaksi berantai yang menambah jumlah radikal bebas. Radikal bebas ini kemudian akan berinteraksi dengan materi biologis sel. Jika radikal bebas tidak diinaktivasi, reaktivitasnya dapat merusak seluruh tipe makromolekul seluler, termasuk karbohidrat, protein, lipid dan asam nukleat (Dawn, 2000). Radikal bebas akan berinteraksi dengan protein yang ada di dalam tubuh sehingga menyebabkan zat-zat yang ada di dalam tubuh bersifat racun (toksik) (Sari, 2015). Radikal bebas juga dapat berinteraksi dengan organ-organ di dalam tubuh, salah satunya organ hati.

Hati adalah organ metabolik terbesar di tubuh. Pada penelitian ini digunakan organ hati karena ia memiliki fungsi untuk detoksifikasi, sintesis berbagai protein plasma, pengeluaran bakteri dan sel darah merah yang usang dalam bentuk bilirubin dan kolesterol (Fitri, 2008). Apabila sel hati tersebut terkena radikal bebas, maka sel akan rusak dan sistem kekebalan tubuh menurun, sehingga virus dan bakteri akan mudah menyerang (Junqueira, 1995). Selain itu, radikal bebas yang terakumulasi di dalam hati dapat menyebabkan pembengkakan sel, kanker hati, apoptosis, nekrosis, fibrosis serta sirosis (Sianturi, 2011). Untuk meminimalisir dampak radikal bebas pada organ hati, dapat digunakan antioksidan.

Antioksidan merupakan senyawa yang dapat mendonorkan elektron pada radikal bebas sehingga menjadi stabil. Senyawa antioksidan seperti flavonoid banyak ditemukan pada tumbuhan hijau dan buah-buahan. Beberapa jenis tumbuhan hijau dan buah-buahan yang memiliki antioksidan yang baik yaitu mahkota dewa (Phaleria macrocarpa), daun katuk (Sauropus androgynus), bunga sepatu (Hibiscus rosasinensis), kenikir (Cosmos caudatus) dan beluntas (Pluchea indica) yang disingkat menjadi Bikotans. Kandungan saponin dan polifenol yang terdapat pada kenikir, katuk, mahkota dewa dan bunga sepatu berfungsi sebagai antioksidan, meningkatkan respon imun, memperlancar peredaran darah, dan anti kanker. Selain itu, kandungan tannin yang terdapat pada daun katuk, beluntas dan bunga sepatu dapat mengikat radikal bebas, antibiotik dan penawar racun. Flavonoid yang terdapat pada seluruh bahan dapat melindungi sel dari radikal bebas, anti alergi, antibiotik dan pencegah trombus. Sedangkan kandungan minyak atsiri sebagai antibiotik antioksidan tubuh (Danusantoso, 2003).

Penelitian ini dilakukan untuk untuk mengetahui efek antioksidan Bikotans terhadap paparan radiasi gamma pada organ hati. Ekstrak Bikotans yang digunakan merupakan kombinasi dari lima antioksidan di atas. Pada penelitian ini digunakan hewan uji mencit (*Mus musculus*). Mencit digunakan sebagai hewan uji karena fungsi dan anatomi tubuhnya sebagian besar mirip dengan manusia.

Pada penelitian sebelumnya, belum dilakukan analisis mengenai dampak radikal bebas terhadap organ hati dan hanya sebatas organ lain saja seperti kulit, limpa, paru-paru, ginjal dan darah. Oleh sebab itu, penulis ingin menganalisis kerusakan pada organ hati akibat

radikal bebas dan membandingkannya dengan persentase kerusakan organ yang lain berdasarkan data kuantitatifnya.

1.2 Rumusan Masalah

Rumusan masalah dalam penelitian ini adalah bagaimana pengaruh dari radiasi gamma terhadap gambaran mikroskopis organ hati mencit dan pengaruh pemberian ekstrak Bikotans sebagai antioksidan.

1.3 Batasan Masalah

Dalam penelitian ini tidak menguji kandungan kimia ekstrak Bikotans. Selain itu, tidak digunakan mencit berkelamin betina dan usianya tidak di atas maupun di bawah 2 bulan.

1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah mengetahui pengaruh dari radiasi gamma terhadap gambaran mikroskopis organ hati mencit dan pengaruh pemberian ekstrak Bikotans sebagai antioksidan.

1.5 Manfaat penelitian

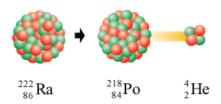
Manfaat dari penelitian ini adalah untuk mengkaji dampak radikal bebas yang ditimbulkan oleh radiasi sinar gamma. Selain itu penelitian ini diharapkan dapat digunakan sebagai kajian ilmiah pemanfaatan ekstrak Bikotans sebagai antioksidan, memberikan informasi bahwa kandungan ekstrak Bikotans mempunyai banyak manfaat bagi tubuh manusia khususnya organ hepar dan dapat mencegah munculnya radikal bebas, kanker, maupun tumor yang dapat timbul karena terpapar radiasi gamma.

repository.ub.a

BAB II TINJAUAN PUSTAKA

2.1 Radiasi

Radiasi adalah pemancaran/pengeluaran dan perambatan energi menembus ruang atau sebuah substansi dalam bentuk gelombang atau partikel, partikel radiasi terdiri dari atom atau subatom dimana mempunyai massa dan bergerak, menyebar dengan kecepatan tinggi menggunakan energi kinetik. Pada saat radiasi terjadi, energi dilepaskan oleh atom dan merambat dalam bentuk partikel atau gelombang elektromagnetik. Radiasi sendiri terjadi karena elektron-elektron terlepas dari atom, atau adanya pergerakan elektron di dalam kulit-kulit atom. Peristiwa berpindahnya elektron dalam kulit atom ini disebut dengan eksitasi. Sedangkan pada peristiwa terlepasnya elektron, elektron yang meninggalkan atom akan berikatan dengan atom netral lain membentuk ion negatif dan atom yang ditinggalkan menjadi bermuatan positif. Peristiwa pembentukan ion negatif dan positif ini disebut dengan ionisasi (Gabriel, 2005). Dalam poses aktifasi inti ini, unsur-unsur yang awalnya tidak radioaktif akan menjadi bersifat radioaktif sehingga tidak stabil dan berdisintegrasi spontan dengan melepaskan energi. Terdapat 2 jenis radiasi, yaitu radiasi pengion dan radiasi nonpengion.

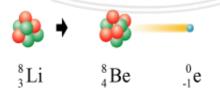

2.2.1 Radiasi Pengion

Radiasi pengion adalah jenis radiasi yang dapat menyebabkan proses ionisasi (terbentuknya ion positif dan ion negatif) apabila berinteraksi dengan materi. Yang termasuk dalam jenis radiasi pengion adalah partikel alfa, partikel beta, sinar gamma, sinar-X dan neutron. Setiap jenis radiasi memiliki karakteristik khusus.

1. Radiasi Alfa (α)

Nuklida yang tidak stabil (kelebihan proton atau neutron) dapat memancarkan nukleon untuk mengurangi energinya. Partikel alfa tersusun dan 2 neutron dan 2 proton, 2 nomor atom dan nomor massa 4, memiliki energi ikat kirakira

28 MeV. Inti atom memancarkan partikel alfa akan berkurang nomor atomnya sebesar 2 dan massanya 4 (Gabriel, 2005).



Gambar 2.1 Radiasi Alfa Sumber: EMSD, 2006

Oleh karena bermuatan positif partikel α dibelokkan oleh medan magnet maupun medan listrik. Partikel-partikel alfa bergerak dengan kecepatan antara 2.000 – 20.000 mil per detik, atau 1 –10 persen kecepatan cahaya. Partikel alfa adalah partikel terberat yang dihasilkan oleh zat radioaktif. Karena memiliki massa yang besar dan daya tembus sinar alfa paling lemah diantara diantara sinar-sinar radioaktif, diudara ia hanya dapat menembus beberapa cm saja dan tidak dapat menembus kulit. Sinar alfa dapat dihentikan oleh selembar kertas bisaa. Sinar alfa segera kehilangan energinya ketika bertabrakan dengan molekul media yang dilaluinya (Akhadi, 2000).

2. Radiasi Beta (β)

Suatu proses peluruhan radioaktif yang tidak mengubah nomor massanya tetapi mengubah nomor atomnya digolongkan sebagai peluruhan beta.

Gambar 2.2 Radiasi Beta Sumber: EMSD, 2006

Ada dua macam radiasi beta yaitu radiasi beta negatif dan radiasi beta positif. Radiasi beta negatif merupakan radiasi yang terdiri dari elektron yang mempunyai energi besar. Pada radiasi ini neutron akan menjadi proton dengan melepaskan partikel beta dan anti neutrino. Radiasi beta positif terjadi ketika proton diubah menjadi neutron, serta memancarkan partikel beta dan neutrino.

3. Radiasi Gamma (γ)

Radiasi gamma merupakan radiasi yang timbul karena unsur radioaktif meluruh dengan memancarkan gamma.

Radiasi gamma merupakan radiasi berenergi tinggi dari radiasi elektromagnetik yang diproduksi oleh aktivitas radioaktif. Radiasi gamma dapat menembus suatu materi lebih dalam dari pada radiasi alfa maupun beta. Hal ini dikarenakan radiasi gamma mempunyai energi yang besar. Radiasi gamma bisa dihentikan dengan menggunakan bahan dengan nomor atom tinggi, misalnya timbal. Ketika sinar gamma berinteraksi dengan materi maka radiasi gamma akan cenderung masuk menembus materi. Energi ionisasi radiasi gamma lebih kecil dibandingkan dengan radiasi alfa dan beta.

2.2.2 Radiasi Non-pengion

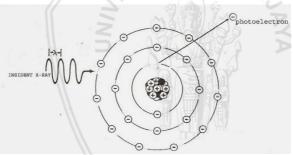
Radiasi non-pengion merupakan radiasi yang tidak dapat mengionisasi saat berinteraksi dengan materi (Alatas, 2001). Radiasi non-pengion mempunyai energi yang lebih rendah dari radiasi elektromagnetik. Contoh radiasi non-pengion adalah radiasi gelombang radio, cahaya inframerah, dan cahaya tampak. Ketika radiasi non-pengion berinteraksi dengan materi maka radiasi non-pengion hanya mampu mengubah rotasi, getaran atau elektron konfigurasi dari molekul atau atom (Alatas, 2010).

2.3 Interaksi Radiasi Elektromagnetik dengan Materi

Ada 2 kemungkinan yang dapat terjadi apabila radiasi mengenai tubuh manusia yakni berinteraksi dengan tubuh manusia atau hanya melewati saja. Jika berinteraksi, radiasi dapat mengionisasi atau dapat pula mengeksitasi atom. Setiap terjadi proses ionisasi atau eksitasi, radiasi akan kehilangan sebagian energinya. Energi radiasi yang hilang tersebut akan menyebabkan peningkatan temperatur (panas) pada bahan (atom) yang berinteraksi dengan radiasi. Dengan

repository.ub.ac

kata lain, semua energi radiasi yang terserap di jaringan biologis akan muncul sebagai panas melalui peningkatan vibrasi (getaran) atom dan struktur molekul. Peristiwa ini merupakan awal dari perubahan kimiawi yang selanjutnya dapat mengakibatkan efek biologis yang merugikan (Akhadi, 2000).


Ada tiga fenomena ketika radiasi (foton) berinteraksi dengan suatu bahan (materi), di antaranya efek fotolistrik, efek Compton dan produksi pasangan.

2.3.1 Efek Fotolistrik

Efek fotolistrik merupakan interaksi yang terjadi ketika foton menumbuk elektron yang berada di bagian kulit atom terdalam. Foton tersebut memberikan seluruh energinya ke elektron sehingga elektron akan keluar dari lintasannya. Menurut hukum kekekalan energi, besar energi foton adalah:

$$E_f = E_k + E_b \tag{2.1}$$

Dimana E_f adalah besar energi foton (eV), E_k adalah besar energi kinetik elektron (eV) dan E_b adalah besar energi ikat elektron (eV).

Gambar 2.3 Mekanisme Efek Fotolistrik Sumber: Bushong, 2001

2.3.2 Efek Compton

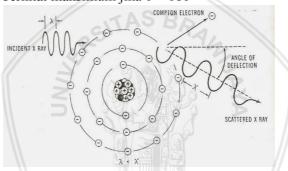
Efek Compton merupakan interaksi yang terjadi ketika foton menumbuk elektron yang berada di bagian kulit atom terluar. Berbeda dengan kasus efek fotolistrik, pada efek Compton, foton memberikan sebagian energinya ke elektron sehingga menyebabkan elektron keluar dari lintasannya dan muncul foton hambur. Menurut hukum kekelan energi, besar energi foton adalah:

$$E_f = E_{f'} + E_k + E_b (2.2)$$

Dengan energi ikat (E_b) sebesar:

$$E_b = \frac{z^2}{n^2} (-13.6 \text{ eV}) \tag{2.3}$$

Dimana Z adalah jumlah proton (jumlah elektron) dari suatu atom dan n adalah kulit tempat elektron berada. Oleh karena elektron berada pada kulit terluar, maka energi ikat yang terbentuk sangat lemah ($E_b \approx 0$), sehingga diperoleh rumusan:


$$E_f = E_{f'} + E_k \tag{2.4}$$

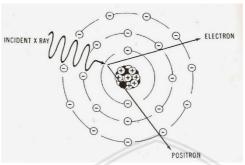
Menurut hubungan $E = \frac{hc}{\lambda}$, pada efek Compton, E > E' dan $\lambda < \lambda'$, sehingga diperoleh persamaan :

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$$
 (2.5)

Dimana besarnya $\frac{h}{m_0c}$ = 0,0243 Å, yang disebut dengan panjang gelombang Compton.

 \triangleright Δλ bernilai maksimum jika $\theta = 180^{\circ}$

Gambar 2.4 Efek Compton Sumber: Bushong, 2001


2.3.3 Efek Produksi Pasangan

Efek produksi pasangan terjadi karena interaksi anatara foton dengan medan listrik dalam inti atom berat. Dalam produksi pasangan, dapat dianggap bahwa foton berinteraksi dengan atom secara keseluruhan. Jika interaksi itu terjadi, maka foton akan lenyap dan sebagai gantinya timbul sepasang elektron-positron. Karena massa diam elektron /positron ekuivalen dengan 0,51 MeV, maka produksi pasangan hanya dapat terjadi pada energi foton datang \geq 1,02 MeV. Proses terjadinya produksi pasangan ditunjukkan pada Gambar 2.4.

repository.up.ac

Energi kinetik total pasangan elektron-positron dapat dihitung melalui persamaan sebagai berikut:

$$h\nu = (E_e + m_0 c^2) + (E_p + m_0 c^2)$$

 $E_e + E_p = h\nu + m_0 c^2$

Gambar 2.5 Efek Produksi Pasangan Sumber: Bushong, 2001

Kedua foton tersebut kemudian dapat berinteraksi dengan bahan melalui proses fotolistrik maupun hamburan Compton. Produksi pasangan hanya penting untuk radiasi elektromagnetik berenergi tinggi. Produksi pasangan meningkat dengan meningkatnya energy radiasi elektromagnetik yang datang. Proses ini juga proporsional dengan Z² bahan penyerap. Oleh sebab itu, produksi pasangan ini lebih sering terjadi pada bahan dengan nomor atom tinggi (Akhadi, 2000).

2.4 Interaksi Radiasi di dalam Tubuh

Radiasi merupakan pancaran energi dalam bentuk partikel atau gelombang elektromagnetik. Penyerapan energi dari radiasi ke dalam sel biologis menyebabkan adanya eksitasi dan ionisasi. Efek dari eksitasi dan ionisasi tersebut dapat menyebabkan timbulnya radikal bebas dan mengarah ke karsinogenik, sehingga memicu terjadinya stress oksidatif yang dapat menyebabkan kerusakan sel dan berakibat menurunnya fungsi dan kerja organ yang terpapar radiasi. Radikal bebas merupakan atom atau molekul yang tidak stabil dan sangat reaktif karena pada orbital terluarnya terkandung satu atau lebih elektron yang tidak berpasangan. Sehingga memiliki kecenderungan menarik elektron dari molekul lainnya dan memicu reaksi berantai yang mengakibatkan jumlah radikal bebas akan meningkat (Sibuea, 2003).

Bila radiasi pengion melalui tubuh manusia maka akan terjadi interaksi dengan senyawa air di dalam tubuh, sel, kromosom maupun DNA.

1) Interaksi dengan Molekul Air (Radiolisis Air)

Penyerapan energi radiasi oleh molekul air dalam proses radiolisis air akan menghasilkan radikal bebas (H* dan OH*). Radikal bebas adalah suatu atom atau molekul yang bebas, tidak bermuatan dan mempunyai sebuah elektron yang tidak bermuatan dan mempunyai sebuah elektron yang tidak berpasangan pada orbit terluarnya. Keadaan ini menyebabkan radikal bebas menjadi tidak stabil, sangat reaktif dan toksik. Sesama radikal bebas yang terbentuk dapat saling bereaksi menghasilkan molekul hidrogen peroksida yang toksik. Perlu diingat bahwa sekitar 80% dari tubuh manusia terdiri dari air. Sinar radioaktif jika mengenai jaringan akan menimbulkan ionisasi molekul air, kemudian akan megokisidasi gula dalam DNA sehingga rangkaian nukleotidanya akan putus.

2) Interaksi dengan DNA

Interaksi radiasi dengan DNA dapat menyebabkan terjadinya perubahan struktur molekul gula atau basa, putusnya ikatan hidrogen antar basa, hilangnya basa, dan lainnya. Radiasi juga dapat mengakibatkan terjadinya perubahan dalam komposisi basa dan juga putusnya rantai DNA (Devy, 2006). Kerusakan yang lebih parah dapat terjadi berupa putusnya salah satu untai DNA (single strand break), atau putsnya kedua untai DNA (double strand breaks). Kerusakan pada DNA dapat menyebabkan kelainan atau mutasi.

3) Interaksi dengan Kromosom

Radiasi dapat menyebabkan aberasi kromosom, yakni perubahan pada jumlah kromosom maupun strukturnya sehingga memungkinkan timbulnya kelainan genetik. Perubahan jumlah kromosom misalnya menjadi 47 buah pada sel somatik yang memungkinkan timbulnya kelainan genetik. Kerusakan struktur kromosom berupa patahnya lengan kromosom terjadi secara acak dengan peluang yang semakin besar dengan meningkatnya dosis radiasi. Efek radiasi terhadap basa lebih penting dan berperan secara langsung

dalam proses mutasi gen, seperti terjadinya substitusi, penambahan atau hilangnya basa dalam molekul DNA. Radiasi juga dapat menginduksi perubahan struktur kromosom, yaitu terjadinya pematahan kromosom. Pada dosis rendah dapat menyebabkan terjadinya delesi, dan semakin tinggi dosisnya akan terjadi duplikasi, inversi atau translokasi kromosom (Devy, 2006).

4) Interaksi dengan Sel

Kerusakan yang terjadi pada DNA dan kromosom sel sangat bergantung pada proses perbaikan yang berlangsung. Bila proses perbaikan berlangsung dengan baik dan tepat atau sempurna, dan juga tingkat kerusakan yang dialami sel tidak terlalu parah, maka sel bisa kembali normal seperti keadaannya semula. Bila proses perbaikan berlnagsung tetapi tidak tepat makan sel tetap dapat hidup tetapi mengalami perubahan. Bila tingkat kerusakan yang dialami sel sangat parah atau bila proses perbaikan tidak berlangsung dengan baik, maka sel akan mati. Tingkat kerusakan yang dialami sel akibat radiasi sangat bervariasi bergantung kepada tingkat sensitifitas sel terhadap radiasi. Sel yang paling sensitif adalah sel kelamin, sedangkan sel yang tidak mudah rusak akibat pengaruh radiasi adalah sel kulit. Kerusakan sel akan mempengaruhi fungsi jaringan atau organ bila jumlah sel yang mati/rusak dalam jaringan/organ tersebut cukup banyak. Semakin banyak sel yang rusak/mati, semakin parah perubahan fungsi yang terjadi sampai akhirnya organ tersebut kehilangan kemampuannya untuk menjalankan fungsinya dengan baik (Sari, 2015).

2.5 Dosis Radiasi

Radiasi tidak dapat dideteksi secara langsung dengan pancaindra tetapi harus dengan peralatan khusus yang disebut detector radiasi, misalnya film fotografi, tabung Geiger-muller (*Geiger Muller counter*) dan pencacah sintilasi. Hasil pencatatan dari detektor radiasi ini diinterpretasikan sebagai energi radiasi terserap oleh seluruh tubuh atau jaringan tertentu. Banyaknya energi radiasi pengion terserap oleh tubuh disebut dosis terserap yang dinyatakan dalam satuan Gray (*Gy*), dan untuk satuan yang lebih kecil dinyatakan dengan mili Gray (*mGy*). Besar dosis yang sama untuk setiap jenis radiasi belum tentu punya

efek biologis yang sama karena setiap radiasi pengion memiliki kemampuan yang berbeda-beda dalam merusak jaringan atau organ tubuh manusia. Karena perbedaan tersebut diperlukan besaran dosis yang tidak tergantung dari jenis radiasi yaitu dosis ekivalen dengan satuan Sievert (*Sv*) dan untuk satuan yang lebih kecil digunakan milisievert (*mSv*) (Bandunggawa, 2009).

Dosis radiasi merupakan seberapa banyak paparan radiasi yang akan diterima oleh suatu jaringan (materi). Dosis radiasi ada 3 (tiga) macam, diantaranya dosis serap, dosis equivalen dan dosis efektif.

1) Dosis Serap

Dosis serap merupakan banyaknya energi yang diterima suatu bahan per satuan massa bahan tersebut. Dosis serap dapat dirumuskan sebagai berikut :

$$D = \frac{\Delta E}{\Delta m} \tag{2.6}$$

Satuan dari dosis serap adalah $\frac{J}{kg}$ atau Gy, dengan 1 Gy = 100 rad.

2) Dosis Ekivalen

Dosis ekivalen merupakan dosis terserap dikalikan faktor bobot radiasi. Faktor bobot radiasi untuk elektron (radiasi beta), foton (gamma) dan sinar-X bernilai 1 sedangkan untuk radiasi alfa bernilai 20. Ini berarti bahwa radiasi alfa bisa mengakibatkan kerusakan pada jaringan tubuh 20 kali lebih besar dibandingkan dengan radiasi beta, gamma, dan sinar-X.

Tabel 2.1 Faktor Bobot Radiasi

Jenis	Faktor Bobot
Radiasi	Radiasi (W _R)
A	20
N	5 – 20
P	5
В	1-5
Χ, γ	1

Dengan adanya dosis ekivalen ini maka 1 Sv yang berasal dari radiasi alfa akan mengakibatkan kerusakan yang sama dengan dosis 1 Sv dari radiasi sinar beta, gamma dan sinar-X. Dosis ekivalen dapat dirumuskan sebagai berikut :

$$H_T = W_R . D (2.7)$$

Satuan dari dosis ekivalen adalah Sievert (Sv). Dengan 1 Sv=100 rem. Semakin besar nilai W_R dari suatu radiasi, maka akan semakin besar pula daya rusak akibat radiasi tersebut. (Grupen, 2010).

3) Dosis Efektif

Dosis efektif merupakan dosis yang mempertimbangkan faktor bobot jaringan (W_T). Setiap jaringan tubuh juga mempunyai kepekaan masing-masing terhadap radiasi (faktor bobot organ), misalnya sel kelamin punya faktor bobot organ lebih tinggi dari sumsum tulang, ginjal, paru dan lain-lain. Oleh karena itu dibuatlah dosis efektif yang menyatakan jumlah dari dosis ekivalen yang diterima tubuh dikalikan dengan faktor bobot organ (Gabriel, 2005). Dosis efektif dapat dirumuskan sebagai berikut:

$$H_E = H_T.W_T = W_R.D.W_T$$
 (2.8)

Satuan dari dosis efektif adalah Sievert (Sv) dengan 1 Sv=100 rem. Semakin besar nilai W_T dari suatu jaringan menunjukkan bahwa jaringan tersebut memiliki sensitivitas yang tinggi.

Tabel 2.2 Faktor Bobot Jaringan

Jaringan	Faktor Bobot Jaringan (W _T)	
Gonad	0,20	
Sumsum Tulang Belakang	0,12	
Paru-paru	0,12	
Payudara	0,12	
Hati	0,05	
Esofagus	0,05	
Thyroid	0,03	
Permukaan tulang	0,01	
Kulit	0,01	
Lain-lain	0,05	

(Grupen, 2010).

2.6 Penggunaan Radiasi

Radiasi mempunyai banyak manfaat yang bisa digunakan dalam berbagai bidang. Bidang yang menggunakan radiasi antara lain

bidang kedokteran, ilmu pengetahuan dan teknologi, serta komunikasi. Pada bidang kedokteran radiasi banyak dimanfaatkan baik itu untuk diagnosis maupun untuk pengobatan (Suyatno, 2010). Contoh radiasi yang digunakan untuk diagnosis adalah radiasi sinar X yang bisaa digunakan untuk rontgen. Sedangkan contoh radiasi untuk pengobatan adalah radiasi sinar gamma yang digunakan untuk terapi penyembuhan kanker.

2.6.1 Radioterapi

Radioterapi merupakan penggunaan sinar-X langsung pada sasaran untuk menghancurkan sel-sel kanker sekaligus meminimalisir dampak radiasi pada sel-sel yang sehat. Lama pengobatan radioterapi tergantung dari beberapa faktor, seperti lokasi, jenis dan stadium kanker, dan apakah radioterapi merupakan pengobatan tunggal atau dikombinasikan dengan jenis pengobatan kanker lainnya, seperti kemoterapi atau operasi. Radioterapi dapat diterapkan untuk mengatasi kanker di banyak bagian tubuh. Tujuan dilakukannya radioterapi adalah untuk menghilangkan jaringan kanker yang ada dalam tubuh. Selain itu juga ada digunakan untuk pembersihan, yaitu membersihkan sisa-sisa kanker yang ada setelah dilakukan pengangkan, untuk menghilangkan jaringan kanker yang mungkin tertinggal (Suvatno, 2010).

Sinar X, elektron, dan sinar γ (gamma) banyak digunakan dalam radioterapi disamping partikel lain. Pada prinsipnya apabila berkas sinar radioaktif atau partikel dipaparkan ke jaringan, maka akan terjadi berbagai peristiwa antara lain peristiwa ionisasi molekul air yang mengakibatkan terbentuknya radikal bebas di dalam sel yang pada gilirannya akan menyebabkan kematian sel. Lintasan sinar juga menimbulkan kerusakan akibat tertumbuknya DNA yang dapat diikuti kematian sel. Radioterapi digunakan sebagai pengobatan mandiri untuk mengecilkan tumor atau menghancurkan sel-sel kanker termasuk yang berkaitan dengan leukemia dan limfoma, dan juga digunakan dalam kombinasi dengan pengobatan kanker (Siswono, 2002).

Penggunaan radiasi ionisasi yang paling luas dalam dunia kedokteran adalah sinar-X dan sinar gamma. Hubungan antara sinar gamma dengan material biologis sangat kuat, sehingga mampu memukul elektron pada kulit atom yang akan menghasilkan pasangan ion. Cairan tubuh intraselular maupun ekstraselular akan terionisasi

yang menyebabkan kerusakan dan kematian pada mikroorganisme, sehingga sinar gamma banyak dipakai sebagai sterilisasi peralatan kedokteran. Radiasi sinar gamma dapat membunuh semua bentuk kehidupan mikroorganisme (Siswono, 2002).

Dalam setiap proses radiasi ditentukan berapa besar dosis radiasi yang digunakan. Banyak hal yang bisa mempengaruhi pemberian dosis ini antara lain kondisi pasien, jenis kanker, lokasi kanker, ukuran kanker, dan masih banyak lagi. Setiap proses radioterapi maka radiasi yang dipancarkan akan terfokus ke bagian kanker. Tetapi selalu ada kemungkinan bahwa jaringan sehat disekitarnya juga akna terkena radiasi. Sehingga setiap penyinaran akan terlebih dahulu diperhitungkan sehingga efek sampingnya bisa dikurangi. Radioterapi dibagi menjadi dua macam yaitu:

1. Radiasi Eksternal

Radiasi eksternal merupakan radiasi yang penyinarannya dilakukan dari luar tubuh. Radiasi eksternal dilakukan dengan menempatkan sumber radiasi diluar tubuh pasien kemudian pasien disinari sehingga radiasi akan menembus kulit dan masuk kedalam jaringan yang dituju. Radiasi ini bisa diterapkan untuk hampir semua jenis pasien (Suyatno, 2010).

2. Radiasi Internal

Radiasi internal atau bisa disebut *brachytherapy* merupakan penyinaran yang dilakukan dari dalam tubuh. Sehingga sumber radiasi yang digunakan akan dimasukkan dalam tubuh melalui sebuah kabel atau kateter. Sumber radiasi yang digunakan juga berupa kapsul yang akan ditanamkan di jaringan kanker. Penggunaan radiasi eksternal lebih efektif untuk membunuh kanker sekaligus mengurangi dampak radiasi terhadap jaringan sehat disekitar kanker. Radiasi ini bisaanya digunakan untuk mengobati kanker di daerah kepala, leher, selangkangan, dan saluran kencing, serta kanker thyroid, prostat, leher rahim, dan payudara (Suyatno, 2010).

2.7 Efek Radiasi

Sel dalam tubuh manusia terdiri dari sel genetik dan sel somatik. Sel genetik adalah sel telur pada perempuan dan sel sperma pada laki-laki, sedangkan sel somatik adalah sel-sel lainnya yang ada dalam tubuh. Berdasarkan jenis sel, maka efek radiasi dapat dibedakan atas efek genetik dan efek somatik. Efek genetik atau efek pewarisan merupakan efek radiasi yang terjadi pada sel genetik dan dirasakan oleh keturunan dari individu yang terkena paparan radiasi. Sedangkan bila efke radiasi terjadi pada sel somatik maka akibatnya akan dirasakan langsung oleh individi yang terpapar radiasi.

Waktu yang dibutuhkan sampai terlihatnya gejala efek somatik sangat bervariasi sehingga dapat dibedakan atas efek segera dan efek tertunda. Efek segera adalah kerusakan yang secara klinik sudah dapat teramati dalam waktu singkat setelah pemaparan, seperti rontoknya rambut, memerahnya kulit, luka bakar dan penurunan jumlah sel darah. Kerusakan tersebut akan terlihat dalam waktu beberapa hari sampai minggu setelah dikenai radiasi dengan dosis yang tinggi. Efek tertunda merupakan efek radiasi yang baru timbul setelah selang waktu yang lama (orde tahunan) setelah terkena radiasi, contohnya adalah dan kanker. Dalam masalah proteksi radiasi, efek radiasi juga dibedakan atas efek stokastik dan efek non stokastik (deterministik) (Akhadi, 2000).

a. Efek Stokastik

Efek stokastik ialah efek yang belum tentu terjadi (probabilistik). Efek stokastik tidak mempunyai batas ambang. Artinya, dosis radiasi serendah apapun mempunyai kemungkinan untuk menimbulkan perubahan pada sistem biologik, baik pada tingkat molekul maupun sel. Pada efek stlastik tidak terjadi kematian sel melainkan terjadi perubahan sel. Efek stokastik baru akan muncul setelah masa laten, yang lama (jangka panjang). Semakin besar dosis, semakin besar peluang terjadinya efek stokastik, sedangkan keparahannya tidak tergantung kepada dosis (Akhadi, 2000).

b. Efek Deterministik

Efek ini terjadi karena adanya kematian sel sebagai akibat dari paparan radiasi baik pada sebagian atau seluruh tubuh. Efek deterministik timbul bila dosis yang diterima di atas dosis ambang dan umumnya timbul dengan waktu tunda yang relatif singkat dibandingkan dengan efek stokastik (jangka pendek). Keparahan efek ini akan meningkat bila dosis yang diterima semakin besar. Beberapa contoh efek deterministik adalah eritema atau kulit yang menjadi merah,

repository.ub.a

pelepuhan dan terkelupas, katarak pada lensa mata, peradangan akut paru, gangguan proses pembentukan sel sperma, bahkan sampai sterilitas gangguan proses pembentukan sel-sel darah dan gangguan perkembangan janin dalam kandungan (Akhadi, 2000).

2.8 Mencit (Mus musculus)

Mencit (*Mus musculus*) memiliki ciri-ciri anatomi sebagai berikut:

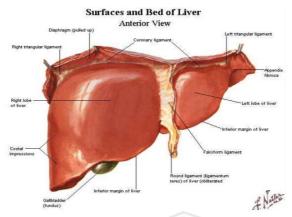
Tabel 2.3 Anatomi dan Fisiologi Mencit

Kriteria	Jumlah
Berat badan dewasa jantan	20-40 g
Berat lahir	0,5-1,5 g
Luas pemukaan badan	$20 \text{ g}: 36 \text{ cm}^2$
Jangka waktu hidup	1,5-3 th
Konsumsi makanan	15 g/100 g/hr
Konsumsi air	15 ml/100 g/hr
Waktu transit pencernaan	8-14 jam
Siklus seksual	4-5 hr
Lama hamil	19-21 hr
Jumlah kelahiran	10-12 ekor
Produksi anak	8/minggu
Temperature tubuh	36,5-38° C
Laju denyut jantung	325-780/menit
Volume darah	76-80 ml/kg
Tekanan darah	113-147 /81-10 ⁶ mmHg
Eritrosit	$7-12,5x106/\text{mm}^3$
Hematrokit	39-49%
Hemoglobin	10,2-16,6 mg/100 ml
Leukosit	$6-15x10^3 \text{ /mm}^3$
Neutrofil	10-40%
Limfosit	55-95%
Eosinofil	0-4%
Monosit	0,1-3,5%
Basofil	0-0,3%
Trombosit	160-410x10 ³ /mm ³

(Harkness, 1983).

Klasifikasi ilmiah dari mencit (Mus musculus) adalah sebagai

berikut:


Kingdom : Animalia
Divisi : Chordata
Kelas : Mammalia
Ordo : Rodentia
Famili : Muridae
Genus : Mus
Spesies : Musculus

Mencit (*Mus musculus*) sangat gampang sekali bertambah keturunannya, gampang merawatnya dalam jumlah yang banyak dan ciri anatomi serta fisiologi tubuhnya mirip manusia, sehingga mencit banyak yang digunakan sebagai hewan percobaan di laboratorium. Setiap harinya, mencit membutuhkan makanan sebanyak 3-5 gram. Pemberian makanan tersebut harus memperhatikan kualitas bahan pangan (untuk daya cerna), karena kualitas makanan mencit sangat berpengaruh terhadap kondisi mencit, yang meliputi kemampuan untuk tumbuh, berkembang biak atau perlakuan terhadap pengobatan (Zulkarnain, 2013).

2.9 Hepar (Hati)

Hepar (hati) adalah kelenjar terbesar dalam tubuh dengan berat sekitar 1300-1550 gram dan berwarna merah cokelat, mempunyai banyak pembuluh darah serta lunak. Hepar berbentuk baji dengan permukaan dasarnya pada sisi kanan dan puncaknya pada sisi kiri tubuh, terletak di kuadran kanan atas abdomen (hipokondria kanan). Permukaan atasnya berbatasan dengan diafragma dan batas bawahnya mengikuti pinggiran kosta kanan.

Hepar merupakan salah satu organ ekskresi dan juga organ pencernaan dan disuplai oleh dua pembuluh darah yaitu vena porta hepatika yang berasal dari lambung dan usus yang kaya akan nutrien seperti asam amino, monosakarida, vitamin yang larut dalam air dan mineral. Arteri hepatika, cabang dari arteri koliaka yang kaya akan oksigen. Pembuluh darah tersebut masuk hati melalui porta hepatis yang kemudian dalam porta tersebut vena porta dan arteri hepatika bercabang menjadi dua yakni ke lobus kiri dan ke lobus kanan (Hadi, 2002). Darah dari cabang-cabang arteri hepatika dan vena porta

Gambar 2.6 Struktur Hati

Sumber: Netter, 2006

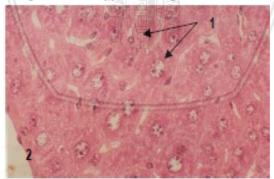
mengalir dari perifer lobulus ke dalam ruang kapiler yang melebar yang disebut sinusoid. Sinusoid ini terdapat diantara barisan sel-sel hepar ke vena sentral. Vena sentral dari semua lobulus hati menyatu untuk membentuk vena hepatika (Sherwood, 2001).

Selain cabang-cabang vena porta dan arteri hepatika yang mengelilingi bagian perifer lobulus hati, juga terdapat saluran empedu yang membentuk kapiler empedu yang dinamakan kanalikuli empedu yang berjalan diantara lembaran sel hati (Amirudin, 2009).

Plexus (saraf) hepaticus mengandung serabut dari ganglia simpatis T7-T10, yang bersinapsis dalam plexuscoeliacus, nervus vagus dexter dan sinister serta phrenicus dexter (Sherlock, 1990).

2.9.1 Fungsi Hati

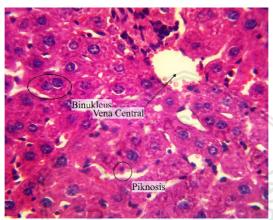
Hati adalah organ metabolik terbesar dan terpenting di tubuh. Organ ini penting bagi sistem pencernaan untuk sekresi empedu. Hati menghasilkan empedu sekitar satu liter per hari, yang diekskresi melalui duktus hepatikus kanan dan kiri yang kemudian bergabung membentuk duktus hepatikus komunis. Selain sekresi empedu, hati juga melakukan berbagai fungsi lain, mencakup hal-hal berikut:


- 1. Pengolahan metabolik kategori nutrien utama (karbohidrat, lemak, protein) setelah penyerapan mereka dari saluran cerna.
- 2. Detoksifikasi atau degradasi zat-zat sisa dan hormon serta obat dan senyawa asing lainnya.

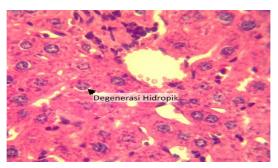
- 3. Sintesis berbagai protein plasma, mencakup protein-protein yang penting untuk pembekuan darah serta untuk mengangkut hormon tiroid, steroid dan kolesterol dalam darah.
- 4. Penyimpanan glikogen, lemak, besi, tembaga dan banyak vitamin
- 5. Pengaktifan vitamin D, yang dilaksanakan oleh hati bersama dengan ginjal.
- 6. Pengeluaran bakteri dan sel darah merah yang usang.
- 7. Ekskresi kolesterol dan bilirubin, yang merupakan produk penguraian yang berasal dari pemecahan sel darah merah yang sudah usang.

Hati merupakan komponen sentral sistem imun. Tiap-tiap sel hati atau hepatosit mampu melaksanakan berbagai tugas metabolik diatas, kecuali aktivitas fagositik yang dilaksanakan oleh makrofag residen atau yang lebih dikenal sebagai sel Kupffer (Sherwood, 2001). Sel Kupffer, yang meliputi 15% dari massa hati serta 80% dari total populasi fagosit tubuh, merupakan sel yang sangat penting dalam menanggulangi antigen yang berasal dari luar tubuh dan mempresentasikan antigen tersebut kepada limfosit (Amiruddin, 2009).

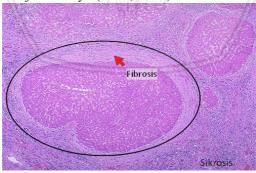
2.9.2 Histologi Organ Hati


Organ hati memiliki gambaran mikroskopis yang dapat dilihat dengan jelas apabila menggunakan perbesaran 400x. Apabila

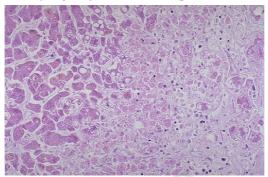
Gambar 2.7 Gambaran Mikroskopis Organ Hati Sehat Keterangan: 1) Hepatosit, 2) Vena Centralis Sumber: Hastuti, 2006


menggunakan perbesaran 100x atau 40x, maka sel normal tidak dapat terlihat dengan jelas.

Organ hati dapat dikatakan sehat apabila jumlah sel normalnya cukup besar. Sel normal memiliki ciri-ciri seperti pada Gambar 2.5, berbentuk bulat besar dengan sitoplasma yang terkomposisi dengan baik (tidak terlalu pekat). Apabila sel normal rusak, maka akan terjadi beberapa jenis kerusakan yaitu piknosis, binukleus, sikrosis, nekrosis, fibrosis dan degenerasi hidropik. Masing-masing jenis kerusakan pada hati memiliki cirinya masing-masing antara lain:


Gambar 2.8 Kerusakan pada Organ Hati Sumber: Sudiono dkk, 2003

- 1. Piknosis, merupakan suatu keadaan dimana inti sel hepatosit mengalami penyusutan dan berwarna sangat gelap. Hal ini dikarenakan DNA dan basophil menjadi lebih padat dan mengalami penurunan massa akibat radikal bebas yang berikatan dengan rantai DNA sel (Sudiono dkk, 2003).
- Degenerasi hidropik, merupakan tingkat kerusakan struktur ke-2 yang ditandai dengan ciri-ciri antara lain sitoplasma mengalami vakuolisasi, vakuola-vakuola nampak jernih dan terjadi karena peningkatan pemasukan air ke dalam sel dan kemudian air memasuki vakuola-vakuola tersebut (Hastuti, 2006).


Gambar 2.9 Degenerasi hidropik pada Organ Hati Sumber: Hastuti, 2006

- 3. Sel binukleus, ditandai dengan terdapatnya sel hepatosit yang memiliki dua inti dan saling berikatan satu sama lain. Sel binukleus dapat terjadi karena adanya kerusakan pada kromosom dan DNA sel, sehingga ketika sel melakukan mitosis (pembelahan sel) sitoplasma tidak terbelah dengan sempurna (Sudiono dkk, 2003).
- 4. Fibrosis, merupakan peningkatan deposisi komponen matriks ekstraseluler (kolagen, glikoprotein, proteoglikan) di hepar. Respon terhadap kerusakan sel hepar ini sering bersifat irreversibel (Klatt, 2016).
- 5. Sikrosis, merupakan tahap akhir dari kerusakan sel hepatosit. Ketika sel mengalami kerusakan secara terus menerus, ia akan menyebabkan munculnya nodul yang abnormal. Sikrosis ditandai dengan munculnya fibritisasi pada sekitar nodul, dan berubahnya warna hati menjadi oranye (Klatt, 2016).

Gambar 2.10 Sikrosis dan Fibrosis pada Organ Hati Sumber: Klatt, 2016

6. Nekrosis, merupakan proses degenerasi yang menyebabkan kerusakan sel yang terjadi setelah suplai darah hilang ditandai

Gambar 2.11 Nekrosis pada Organ Hati Sumber: Klatt, 2016

dengan pembengkakan sel, denaturasi protein dan kerusakan organ yang menyebabkan disfungsi berat jaringan. Sel yang mengalami denaturasi ini ditandai dengan mengecilnya sel dan bertambah padatnya sitoplasma di dalam sel, sehingga berwarna pekat. Pada Gambar 2.8, pada sisi kiri merupakan sel yang masih normal namun mulai mengalami kerusakan. Sedangkan pada sisi kanan, merupakan sel hepatosit yang mengalami nekrosis (Klatt, 2016).

2.10 Antioksidan

Secara kimia senyawa antioksidan adalah senyawa pemberi elektron (elektron donor). Secara biologis, pengertian antioksidan adalah senyawa yang dapat menangkal atau meredam dampak negatif oksidan. Antioksidan bekerja dengan cara mendonorkan satu elektronnya kepada senyawa yang bersifat oksidan sehingga aktivitas senyawa oksidan tersebut dapat di hambat (Winarti, 2010). Antioksidan dibutuhkan tubuh untuk melindungi tubuh dari serangan radikal bebas. Antioksidan adalah suatu senyawa atau komponen kimia yang dalam kadar atau jumlah tertentu mampu menghambat atau memperlambat kerusakan akibat proses oksidasi.

2.10.1 Jenis- jenis Antioksidan

1. Antioksidan primer

Antioksidan primer bekerja untuk mencegah pembentukan senyawa radikal baru, yaitu mengubah radikal bebas yang ada menjadi molekul yang berkurang dampak negatifnya sebelum senyawa radikal bebas bereaksi. Antioksidan primer mengikuti mekanisme pemutusan rantai reaksi radikal dengan mendonorkan atom hidrogen secara cepat pada suatu lipid yang radikal, produk yang dihasilkan lebih stabil dari produk awal. Antioksidan primer adalah antioksidan yang sifatnya sebagai pemutus reaksi berantai (*chain-breaking antioxidant*) yang bisa bereaksi dengan radikal-radikal lipid dan mengubahnya menjadi produk-produk yang lebih stabil (Kumalaningsih, 2006).

2. Antioksidan sekunder

Antioksidan sekunder bekerja dengan cara mengkelat logam yang bertindak sebagai pro-oksidan, menangkap radikal dan mencegah terjadinya reaksi berantai. Antioksidan sekunder berperan sebagai pengikat ion-ion logam, penangkap oksigen, pengurai hidroperoksida menjadi senyawa non radikal, penyerap radiasi UV atau deaktivasi singlet oksigen (Putra, 2008).

3. Antioksidan tersier

Antioksidan tersier bekerja memperbaiki kerusakan biomolekul yang disebabkan radikal bebas. antioksidan tersier adalah enzim enzim vang memperbaiki DNA dan metionin sulfida reduktase (Putra, 2008). Berdasarkan sumbernya antioksidan dibagi dalam dua kelompok, yaitu antioksidan sintetik (antioksidan yang diperoleh dari hasil sintesa reaksi kimia) dan antioksidan alami (antioksidan hasil ekstraksi bahan alami). Beberapa contoh antioksidan sintetik yang diizinkan penggunaannya secara luas diseluruh dunia untuk digunakan dalam makanan Butylated Hidroxyanisol (BHA), adalah Butylated (BHT), Tert-Butylated Hidroxyquinon Hidroxytoluene (TBHO) dan tokoferol. Antioksidan tersebut merupakan antioksidan yang telah diproduksi secara sintetis untuk tujuan komersial (Buck 1991).

4. Oxygen Scavanger

Oxygen Scavanger yang mengikat oksigen sehingga tidak mendukung reaksi oksidasi, misalnya vitamin C.

5. Chelators

Chelators atau Sequesstrants mengikat logam yang mampu mengkatalisi reaksi oksidasi misalnya asam sitrat dan asam amino (Kumalaningsih, 2006).

2.11 Mahkota Dewa

Mahkota dewa (*Phaleria macrocarpa*) merupakan salah satu tumbuhan di Indonesia yang sering digunakan sebagai obat dalam bentuk pil maupun ekstrak. Sistematika tumbuhan mahkota dewa adalah sebagai berikut:

Kingdom : Plantae

Divisi : Spermatophyta
Sub divisi : Dicotyledon
Kelas : Thymelaeales
Famili : Thymelaeaceae

Marga : Phaleria Spesies : Macrocarpa

Gambar 2.12 Mahkota dewa (*Phaleria macrocarpa*)
Sumber: Harmanto, 2003

Buah mahkota dewa diyakini sebagai salah satu sumber antioksidan dengan aktivitas yang tinggi secara tradisional ekstraknya (daun, batang, buah dan biji) dalam air panas digunakan untuk mengendalikan penyakit kanker, impotensi, hemorrhoids, diabetes, alergi, hati dan jantung, gagal ginjal, gangguan peredaran darah, jerawat, stroke, migrain dan berbagai macam jenis penyakit kulit (Harmanto, 2003). Metabolit sekunder tanaman mahkota dewa seperti tanin, saponin, resin, senyawa fenolik dan polifenol, terpenoid, alkaloid, dan flavonoid dilaporkan memiliki aktivitas antioksidan, antimikroba dan memiliki aktivitas cytotoxic sehingga digunakan di

bidang farmasi sebagai obat-obatan ataupun suplemen diet serta dapat pula digunakan sebagai agen pengawet alami pada pangan (Hendra, 2011).

2.12 Katuk

Katuk memiliki nama latin (*Saoropus androgynous*). Tumbuhan ini banyak dijumpai di Indonesia dan Asia Tenggara. Pada umumnya daun katuk terkenal untuk memperlancar ASI. Katuk termasuk dalam family Phyllanthaceae yang merupakan satu family dengan ceremai. Katuk merupakan jenis tumbuhan semak dan tumbuh pada dataran rendah hingga 1300 m di atas permukaan laut. Bagian tumbuhan katuk yang sering dimanfaatkan adalah bagian daunnya. Daun katuk berwarna hijau gelap, dengan panjang 5 hingga 6 cm.

Kingdom : Plantae

Divisi : Magnoliophyta
Kelas : Magnoliopsida
Ordo : Malphigiales
Famili : Phyllanthaceae
Genus : Saoropus
Spesies : Androgynus

Gambar 2.13 Daun katuk (*Saoropus androgynus*)
Sumber: Rukmana, 2007

Katuk juga memiliki bunga berwarna merah gelap atau kuning dengan bercak merah gelap dan berbunga sepanjang tahun, terdapat juga yang berwarna merah muda namun sangat jarang ditemui. Buah dari pohon katuk ini tidaklah besar, berbentuk bulat kecil dan berwarna hijau kekuningan serta keras.

Hasil penelitian Kelompok Kerja Nasional Tumbuhan Obat Indonesia menunjukkan bahwa tanaman katuk mengandung beberapa

senyawa kimia, antara lain alkaloid papaverin, protein, lemak, vitamin, mineral, saponin, flavonoid, dan tanin. Beberapa senyawa kimi yang terdapat dalam tanaman katuk diketahui berkhasiat obat (Rukmana, 2007).

Daun katuk selain dapat melancarkan ASI karena mengandung asma seskuiterna, dapat membersihkan darah kotor pasca melahirkan, menyembuhkan frambusia dan sulit buang air kecil, serta borok, bisul dan sembelit.

2.13 Bunga Sepatu

Bunga sepatu banyak dijumpai pada daerah iklim tropis dan subtropis. Tanaman bunga sepatu ini merupakan tanaman semak dengan bunga besar berwrna merah, putih, kuning, merah muda, oranye tergantung dari spesiesnya dan tidak berbau. Mahkota bunga terdiri dari 5 lembar atau lebih. Tangkai putiknya berbentuk silinder panjang dikelilingi tangkai sari berbentuk oval. Bijinya berbentuk pipih dan berwarna putih. Bunga sepatu pada umumnya digunakan sebagai tanaman hias dan masih jarang penggunaanya sebagai obatobatan.

Kingdom : Plantae

Divisi : Magnoliophyta
Kelas : Magnoliopsida
Ordo : Malvales
Famili : Malvaceae
Genus : Hibiscus
Spesies : Rosa-sinensis

Gambar 2.14 Bunga sepatu (*Hibiscus rosasinensis*) Sumber: Hembing, 2000

Tanaman bunga sepatu ini mulai dari akar, daun hingga bunganya memiliki berbagai macam kandungan antioksidan. Akar tanaman ini mengandung saponin, skopoletin, tanin, cleomiscosin A, dan clemiscosin C. Sedangkan daunnya mengandung saponin, polifenol dan taraxeryl asetat.Bunganya sendiri mengandung polifenol, cyanidin diglucosid, hibisetin, zat pahit dan lendir.

Bunga dari tanaman ini, memiliki beberapa kegunaan antara lain, untuk batuk berdahak dan bernanah, batuk rejan (*pertussis*), radang saluran pernafasan (*bronchitis*), TBC, mimisan (*epistaxis*), disentri, infeksi saluran kemih, gonorrhea, keputihan, haid tidak teratur, melancarkan haid, furunkulus, bisul di kepala anak, dan borok (*ulcustripicum*). Sedangkan daunnya dapat berguna untuk penyakit radang kulit, sariawan, gondongan, radang usus, radang selaput lendir hidung, radang selaput mata (*conjunctivitis*), dan demam karena malaria (Hembing, 2000).

2.14 Kenikir

Kenikir memiliki nama latin *Cosmos caudatus*. Kenikir berasal dari Amerika Tengah, Amerika Latin. Spesies ini dibawa ke Asia Tenggara oleh Spanyol melalui Filipina dan merupakan satu famili dengan aster. Kenikir juga merupakan tanaman perdu dengan tinggi 75-100 cm, yang memiliki batang tegak bergaris-garis membujur, berbulu dan bercabang banyak. Daunnya bertangkai panjang, majemuk, berwarna hijau dengan panjang 15-25 cm dan berhadapan. Kenikir juga memiliki bunga yang berwarna kuning dan buah yang keras serta berbentuk seperti jarum. Kenikir sudah sangat umum

Gambar 2.15 Kenikir (*Cosmos caudatus*) Sumber: Hidayat, 2015

dimanfaatkan sebagai obat herbal. Bagian tumbuhan yang sering digunakan adalah daunnya.

Kingdom : Plantae

Divisi : Spermatophyta Kelas : Magnoliophyta

Ordo : Fabales
Famili : Asteraceae
Genus : Cosmos
Spesies : Caudatus

Daun dari tanaman ini mengandung saponin, flavonoid, polifenol dan minyak atsiri (Adi, 2008). Sebuah penelitian menunjukkan bahwa kenikir atau dikenal dengan nama *ulam raja* di Malaysia, pada dosis 500 mg/kg berpotensi sebagai agen terapi guna mengembalikan kerusakan tulang pada wanita yang sudah mengalami menopause, sementara itu penelitian lainnya menyebutkan bahwa kenikir berpotensi sebagai anti radang karena kandungan flavonoid yang berpotensi sebagai antioksidan (Hidayat, 2015).

Efek farmakologis yang dimiliki oleh kenikir, di antaranya penambah nafsu makan, penguat jantung, dan sebagai pengusir serangga (Hariana, 2013). Selain itu, manfaat kenikir dalam dunia pengobatan adalah sebagai obat maag dan lemah lambung, obat kanker, gondongan, payudara bengkak, meningkatkan sistem imun tubuh, menguatkan tulang, dan mengatasi bau mulut.

2.15 Beluntas

Beluntas umumnya ditanam sebagai tanaman pagar maupun tumbuh liar di tanah kering. Beluntas merupakan tanaman semak dan memiliki batang dengan cabang banyak dan berbulu lembut. Tanaman ini dapat tumbuh hingga 3 meter dan memerlukan cukup cahaya matahari agar dapat tumbuh. Daun dari beluntas ini bertangkai pendek, berbentuk bulat telur dengan ujung bundar melancip bergerigi, dan letaknya berselang-seling. Bunga dari beluntas berwarna ungu dan muncul di ujung cabang daun atau ketiak daun. Buahnya seperti berbentuk gasing dan berwarna kecoklatan.

Kingdom : Plantae

Divisi : Magnoliophyta Kelas : Magnoliopsida

Ordo : Asterales Famili : Asteraceae Genus : Pluchea Spesies : Indica

Beberapa bahan kimia yang terkandung dalam beluntas di antaranya alkaloid dan minyak asiri, efek farmakologis daun beluntas adalah menambah nafsu makan dan membantu pencernaan (Hariana,

Gambar 2.16 Beluntas (*Pluchea indica*) Sumber: Dalimartha, 2013

2013). Beluntas memiliki rasa yang pahit dan getir. Meskipun memiliki rasa yang getir, dan digunakan sebagai tanaman pagar, beluntas memiliki beberapa manfaat pada kesehatan, yaitu menghilangkan bau badan, bau mulut, gangguan pencernaan anak, TBC, nyeri pada rematik, nyeri tulang, sakit pinggang, demam dan keputihan (Dalimartha, 2013).

Bagian daun yang bisaanya diolah sebagai obat herbal. Dalam beberapa penelitian, daun beluntas telah terbukti mampu menangkap radikal bebas 1,1-difenil-2-pikrilhidrasil (DPPH) dan asam ABTS.

BAB III METODOLOGI PENELITIAN

3.1 Waktu dan Tempat Penelitian

Penelitian ini dilakukan pada bulan April 2017 hingga Agustus 2017, bertempat di Laboratorium Fisika Lanjutan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Brawijaya dan Laboratorium Fisiologi Hewan Universitas Islam Negeri Maulana Malik Ibrahim Malang.

3.2 Alat dan Bahan Penelitian

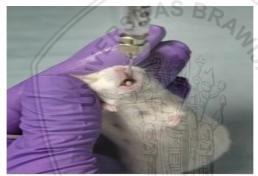
3.2.1 Alat Penelitian

Alat-alat yang digunakan dalam penelitian ini antara lain box plastik sebagai kandang dengan ukuran 30 x 20 x 15 cm 3 , sumber radiasi gamma Co-60, Cs-137, Am-241, Na-22, dan Sr-90, seperangkat alat bedah, sonde lambung atau stomach tube (1,5 x 80 mm 2), pipet tetes, mikrotom, parafin block, oven, handskun, masker, timbal hitam, cawan petri, hot plate dan timbangan digital.

3.2.2 Bahan Penelitian

Bahan – bahan yang digunakan dalam penelitian ini antara lain adalah mencit jantan berumur 2 bulan dengan kisaran berat 20 gram sebanyak 60 ekor, pakan mencit berupa pellet jenis BR1, air mineral isi ulang untuk minum mencit, aquades 1000 ml, PBS 1000ml, xylol, formalin 10%, alkohol (70%, 75%, 80%, 90%, 95% dan 96%), pewarna hematoxilin-eosin (HE), entellan, sekam kayu, dan bunga sepatu, mahkota dewa, daun katuk, kenikir, beluntas sebagai bahan ekstrak antioksidan.

3.3 Prosedur Penelitian


3.3.1 Persiapan Alat dan Bahan

Sebelum pemaparan, mencit dikelompokkan menjadi 12 kelompok dengan masing-masing kelompok berjumlah 5 mencit. Kemudian, dilakukan proses adaptasi selama tujuh hari di Laboratorium Fisiologi Hewan UIN Malang. Selanjutnya dilakukan persiapan terhadap alat radiasi. Sumber radiasi gamma pada penelitian ini digunakan Co-60, Cs-137, Am-241, Na-22 dan Sr-90 sebagai sumber radiasinya. Sumber-sumber radiasi gamma tersebut kemudian diletakkan pada suatu wadah berbentuk setengah lingkaran yang terbuat dari kayu dimana pada bagian tengah kayu terdapat lubang

untuk menempatkan sumber radiasi. Digunakan timbal dengan tebal 2 mm sebagai proteksi radiasinya. Kemudian mencit diletakkan di bawah sumber radiasi dan dibiarkan terpapar selama waktu yang telah ditentukan sebelumnya selama 14 hari. Sedangkan untuk kelompok mencit yang diberi antioksidan, antioksidan tersebut diberikan 4 jam sebelum dilakukan pemaparan. Selanjutnya dilakukan pembedahan dan pembuatan preparat organ hati mencit.

3.3.2 Persiapan Ekstrak Antioksidan

Ekstrak antioksidan Bikotans yang diberikan pada mencit berupa campuran ekstrak dari mahkota dewa, daun katuk, kenikir, beluntas, bunga sepatu dan 1 ml aquades yang dibuat sendiri. Antioksidan kemudian diberikan kepada mencit secara oral dengan menggunakan sonde lambung dengan dosis yang telah ditetapkan sebelumnya berdasarkan berat badan mencit, satu kali sehari selama 14 hari.

Gambar 3.1 Sonde lambung pada mencit

3.3.3 Persiapan Hewan Coba Mencit

Penelitian eksperimental ini dilakukan dengan 2 perlakuan utama yaitu 5 variabel waktu penyinaran radiasi dan 5 variabel konsentrasi antioksidan Bikotans. Mencit jantan digunakan pada penelitian ini dimana 5 mencit sebagai kontrol negatif, 25 mencit diradiasi dengan dengan 5 variabel waktu penyinaran, 5 mencit sebagai kontrol positif dan 25 mencit diberi antioksidan Bikotans dengan 5 variabel konsentrasi. Perlakuan masing-masing dilakukan 14 hari, kemudian mencit dibedah dan diamati. Mencit yang telah disiapkan kemudian dipilih dengan kondisi fisik yang paling prima, kondisi fisik mencit yang baik tersebut dapat dilihat dari pergerakan mencit yang paling aktif dan tidak adanya luka atau cacat lain pada

seluruh tubuh mencit. Mencit yang telah terpilih kemudian dimasukkan ke dalam kandang dan di aklimatisasi selama 1 minggu untuk proses adaptasi terhadap habitatnya yang baru sekaligus menyeragamkan seluruh kondisi mencit yang terpilih. Pembagian 4 kelompok perlakuan mencit sebagai berikut:

Kontrol negatif (K-) :Mencit tidak diradiasi dan tidak diberi antioksidan.

Radiasi negatif (R-) :Mencit diradiasi dan tidak diberi antioksidan Kontrol positif (K+) :Mencit diradiasi 40 menit dan tidak diberi

antioksidan.

Radiasi positif (R+) : Mencit diberi antioksidan dan diradiasi **Tabel 3.1** Pengelompokan Mencit Berdasarkan Perlakuan

[keterangan : (-) tanpa, (+) dengan]

Kelompok	Perlakuan		
	Radiasi	Ekstrak Antioksidan	
Kontrol Negatif (K-)	<u>'</u>	-	
Kontrol Positif (K+)		+	
Radiasi Negatif (R-)		X -	
Radiasi Positif (R+)		//	

3.3.4 Pemberian Perlakuan

Mencit yang telah dikelompokkan kemudian dibagi berdasarkan perlakuan yang diberikan. Masing-masing kelompok perlakuan menggunakan 5 mencit. Pada kelompok radiasi negatif (R-) digunakan 5 variasi waktu pemaparan radiasi. Sedangkan pada kelompok radiasi positif (R+) digunakan 5 variasi antioksidan dengan lama waktu pemaparan 40 menit.

Tabel 3.2 Pengelompokan Dosis Paparan Radiasi dan Pemberian Ekstrak (keterangan · BB = Berat Badan)

LKSHAK (KC	terangai	1 . DL	5 – Berat Badan)	
Kontrol Negatif	K-	Tanpa pemaparan radiasi dan tanpa pemberian ekstrak Bikotans		
Radiasi Negatif	R-	1	Paparan radiasi 10 menit	
		2	Paparan radiasi 20 menit	
		3	Paparan radiasi 30 menit	
		4	Paparan radiasi 40 menit	
		5	Paparan radiasi 50 menit	
Kontrol Positif	K+	Pemaparan selama 40 menit dan pemberian ekstrak Bikotans 7,8 mg/kg BB		
Radiasi Positif	R+	1	Paparan radiasi 40 menit dan ekstrak Bikotans 3,8 mg/kg BB	
		2	Paparan radiasi 40 menit dan ekstrak Bikotans 4,8 mg/kg BB	
		3	Paparan radiasi 40 menit dan ekstrak Bikotans 5,8 mg/kg BB	
		4	Paparan radiasi 40 menit dan ekstrak Bikotans 6,8 mg/kg BB	
		5	Paparan radiasi 40 menit dan ekstrak antioksidan 7,8 mg/kg BB	

3.4 Pengamatan dan Pembedahan

Pembedahan mencit dilakukan dengan menggunakan alat bedah dan meja bedah. Mencit terlebih dahulu di dislokasi pada bagian lehernya. Kemudian, mencit dibedah dengan sangat hati-hati dan diambil organ hati yang akan dijadikan preparat. Organ hati yang diambil harus berada pada kondisi utuh dan tanpa goresan agar preparat yang dihasilkan maksimal.

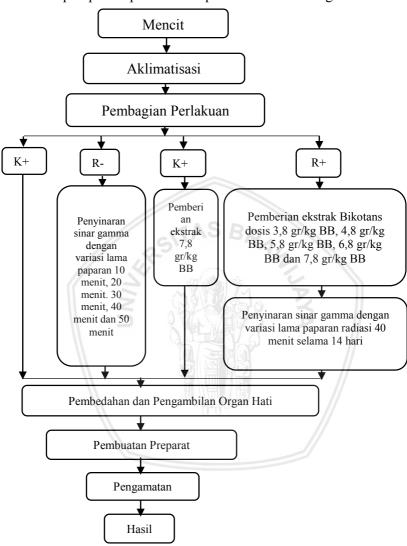
Organ hati kemudian diambil dan dipotong dengan ukuran sekecil mungkin, namun mewakili struktur jaringan secara keseluruhan. Organ kemudian direndam kedalam larutan formalin 10% selama lebih dari 24 jam untuk proses fiksasi. Preparat yang telah

difiksasi kemudian direndam ke dalam larutan etanol 70%, 80%, 90%, 95% dan 96 % masing-masing dalam waktu 30 menit, khusus untuk etanol 95% dan 96% dilakukan 2x perendaman.

Preparat yang telah direndam etanol kemudian dimasukkan kedalam xylol untuk menghilangkan kadar etanol pada preparat dengan proses dehidrasi selama 30 menit sebanyak 3x pengulangan. Setelah itu preparat dipindah kedalam parafin cair dalam blok preparat untuk dicetak. Setelah itu, preparat dipotong kemudian ditempelkan pada gelas obyek yang sebelumnya sudah diberi entellan dan kemudian dipanaskan dalam dengan suhu 2-5°C dibawah titik lebur parafin (sekitar 40°C) hingga preparat kering. Setelah kering, kemudian preparat dimasukkan ke dalam xilol murni selama 5-10 menit. Selanjutnya, preparat kembali direndam dalam larutan etanol 96%, 95%, 90%, 80% dan 70% selama 5-10 menit. Setelah direndam dalam etanol, preparat kemudian dibilas dengan air dan dilakukan pewarnaan dengan hemaktosilin-eosin direndam selama 1-2 menit. Selanjutnya preparat dibilas dengan air mengalir, dan dikeringkan pada suhu kamar. Apabila preparat telah kering, kemudian preparat ditutup dengan gelas obyek dan diamati di bawah mikroskop binokuler Olympus ex-31 dengan perbesaran 400x. Pada penelitian ini digunakan software Image Raster dan Opti Lab untuk menganalisis preparat yang diamati.

3.5 Analisis Data

Data yang diperoleh dari penelitian ini kemudian ditabulasi dan dilakukan pengolahan data dengan Microsoft Office Excel untuk dianalisis lebih lanjut. Untuk mengetahui berapa presentase sel yang rusak, dapat dilihat sel fibroblas yang rusak. Rusaknya sel hepatosit pada organ dapat diketahui dengan adanya banyak sel yang memiliki ukuran sel dan inti yang berbeda, inti sel membesar, kromatin menebal, kasar, tidak rata, serta terjadi banyak pembelahan mitosis. Dapat pula ditemukan banyak susunan sel yang tidak teratur (basophil). Penghitungan sel kemudian dinyatakan dalam persen, yaitu jumlah seluruh sel hepatosit yang mengalami kerusakan dibandingkan dengan seluruh sel hepatosit baik yang rusak maupun tidak dalam satu lapang pandang dikalikan 100%.


$$\% Kerusakan = \frac{\sum Sel \ Rusak}{\sum Sel \ dalam \ 1 \ lapang \ pandang} \ x \ 100\% \tag{3.1}$$

Interpretasi data dilakukan dengan melihat bentuk pola yang dihasilkan dari grafik hasil ploting. Pola yang dihasilkan dari grafik akan menunjukkan hubungan dan korelasi di antara parameter yang bersangkutan, dalam hal ini yaitu lamanya paparan radiasi, dosis ekstrak antioksidan, presentase kerusakan sel. Dengan diketahuinya korelasi antara faktor-faktor tersebut, maka dapat diketahui pula pengaruh diantara parameter-parameter yang lain.

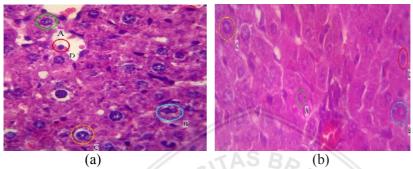
3.6 Diagram Alur Penelitian

Adapun proses penelitian dapat dilihat dalam diagram

Gambar 3.2 Diagram Alur Penelitian

BAB IV ANALISA DAN PEMBAHASAN

4.1 Hasil Penelitian

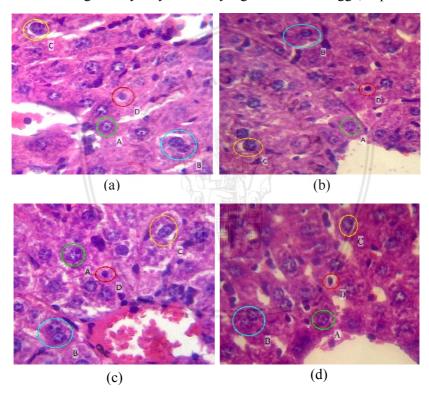

4.1.1 Pengamatan pada organ hati mencit

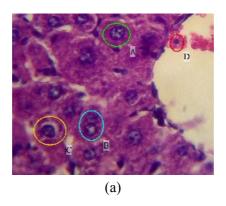
Berdasarkan penelitian yang telah dilakukan, terdapat perubahan pada sel hati yaitu kerusakan pada sel hepatosit mencit. Kerusakan ini dipicu karena adanya perubahan pada keadaan lingkungan, asupan nutrisi yang diterima, kelainan genetik, keadaan psikologis mencit dan adanya materi toksik yang masuk ke dalam sel. Sel hati atau hepatosit dapat dikatakan rusak apabila perbandingan presentase sel normal lebih kecil atau sama dengan presentase sel rusaknya. Pada penelitian ini terjadi 3 (tiga) macam jenis kerusakan yang diamati, yaitu piknosis, degenerasi hidropik dan binukleus. Piknosis merupakan suatu keadaan dimana inti sel hepatosit mengalami penyusutan dan berwarna sangat gelap. Hal ini dikarenakan DNA dan basophil menjadi lebih padat dan mengalami penurunan massa akibat radikal bebas yang berikatan dengan rantai DNA sel (Sudiono dkk, 2003). Degenerasi hidropik, merupakan tingkat kerusakan struktur ke-2 yang ditandai dengan ciri-ciri antara lain sitoplasma mengalami vakuolisasi, vakuola tampak jernih, namun sitoplasma tampak pekat dan keruh karena materi yang tercampur aduk di dalamnya. Selain itu, ukuran sel terlihat lebih besar karena adanya air yang masuk ke dalam sel (Hastuti, 2006). Sel binukleus, ditandai dengan terdapatnya sel hepatosit yang memiliki dua inti dan saling berikatan satu sama lain. Sel binukleus dapat terjadi karena adanya kerusakan pada kromosom dan DNA sel, sehingga ketika sel melakukan mitosis (pembelahan sel) sitoplasma tidak terbelah dengan sempurna (Sudiono dkk, 2003).

Preparat yang diamati terdiri dari 5 lapang pandang dari masing-masing hewan coba yang berbeda. Kemudian diamati dengan menggunakan software *Image Raster* dan digunakan teknik skoring. Dimana menghitung jumlah sel normal dan sel rusak, yang kemudian dirata-rata dan dihitung persentase kerusakan per lapang pandang.

repository.up.a

Pada masing-masing kelompok didapatkan gambaran mikroskopis yang berbeda-beda. Perbedaan yang sangat mencolok terlihat antara sesudah dan sebelum diberi ekstrak. Demikian pula dengan kontrol negatif dan kontrol positifnya. Kontrol positif digunakan untuk mengamati apakah ekstrak Bikotans mengandung toksik bagi organ.

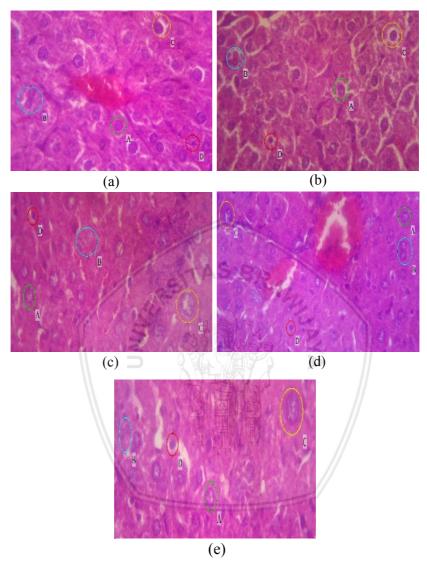



Gambar 4.1 Gambaran mikroskopis organ hati mencit (a) kontrol negatif, (b) kontrol positif

Keterangan: (A) Sel Normal, (B) Binukleus, (C) Degenerasi hidropik, (D) Piknosis

Gambar 4.1 merupakan pencitraan organ hati mencit dengan perbesaran 400x menggunakan mikroskop binokuler *Olympus-cx31*. Mencit (Mus musculus) pada kontrol negatif maupun kontrol positif sama sekali tidak mendapatkan paparan radiasi. Namun, meskipun tidak mendapatkan paparan radiasi sama sekali, tetap terdapat beberapa inti sel yang rusak. Pada Gambar 4.1 (a) dapat dilihat bahwa terdapat banyak inti sel yang mengalami degenerasi hidropik dan piknosis, yang ditandai dengan warna inti sel jauh lebih gelap dibandingkan dengan sel normal. Sedangkan pada Gambar 4.1 (b) mayoritas inti sel tidak berwarna gelap dan sangat sedikit yang mengalami piknosis maupun degenerasi hidropik. Selain itu susunan dari sel sendiri lebih padat dan lebih teratur. Dari kedua gambar tersebut dapat diketahui bahwa tingkat kerusakan pada Gambar 4.1 (a) jauh lebih besar dibandingkan Gambar 4.1 (b). Kerusakan sel ini dapat disebabkan oleh berbagai kemungkinan, salah satunya adalah faktor keadaan awalnya, perubahan lingkungan, dan faktor genetik. Namun, sel dapat dikatakan benar-benar rusak apabila persentase sel normalnya lebih dari sama dengan persentase sel rusaknya.

Pembagian kelompok kontrol negatif dan kontrol positif dilakukan untuk mengetahui apakah ekstrak Bikotans memiliki efek toksik bagi organ hati. Dosis ekstrak yang diberikan pada kontrol positif sebesar 7,18 mg, yang merupakan dosis maksimum pada penelitian ini. Berdasarkan Gambar 4.1, dapat diketahui bahwa kerusakan pada Gambar 4.1 (b) kontrol positif jauh lebih kecil dibandingkan pada Gambar 4.1 (a) kontrol negatif. Hal ini membuktikan bahwa ekstrak Bikotans tidak mengandung senyawa toksik yang berbahaya bagi organ hati. Namun, justru sebaliknya, ekstrak Bikotans membuat organ hati mencit menjadi lebih sehat yang ditandai dengan banyaknya inti sel yang normal. Sehingga, dapat


Gambar 4.2 Gambaran mikroskopis hati mencit (a) 10 menit, (b) 20 menit, (c) 30 menit, (d) 40 menit, (e) 50 menit

Keterangan: (A) Sel Normal, (B) Binukleus, (C) Degenerasi hidropik, (D) Piknosis

disimpulkan bahwa dosis maksimum dari ekstrak Bikotans tersebut tidak mengandung senyawa toksik untuk organ hati mencit

Gambaran mikroskopis tersebut memperlihatkan semakin banyaknya sel yang mengalami piknosis dan degenerasi hidropik seiring bertambahnya durasi paparan radiasi (banyaknya inti sel yang berwarna hitam). Apabila diamati lebih teliti, jumlah sel normal juga semakin berkurang seiring dengan bertambahnya durasi paparan. Pada Gambar 4.2 (e) dapat dilihat struktur sel sangat tidak teratur (banyaknya ruang antar sel), yang menunjukkan bahwa sel hepatosit mencit mengalami kerusakan. Ketidakteraturan sel semakin tidak teratur ketika lama durasi paparan radiasi semakin bertambah. Sehingga dapat disimpulkan bahwa kerusakan sel semakin bertambah sebanding dengan lamanya paparan radiasi.

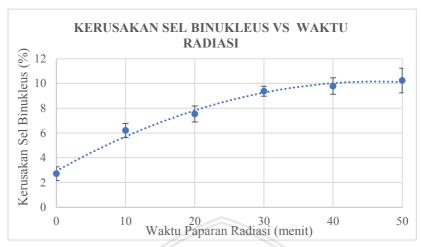
Gambar 4.3 menunjukkan gambaran mikroskopis organ hati mencit setelah diberi ekstrak Bikotans. Dalam tahap pemberian ekstrak ini, variasi dilakukan pada dosis ekstraknya. Penentuan dosis ekstrak dilakukan dengan cara menghitung dosis normal untuk manusia, dan kemudian dikonversikan dengan berat badan mencit untuk mendapatkan dosis mencitnya. Dosis normal digunakan sebagai

Gambar 4.3 Gambaran mikroskopis hati mencit dengan dosis antioksidan (a) 3,18 mg, (b) 4,18 mg, (c) 5,18 mg, (d) 6,18 mg, (e) 7,18 mg

Keterangan: (A) Sel Normal, (B) Binukleus, (C) Degenerasi hidropik, (D) Piknosis

repository.ub.ac

dosis tengah (5,18 mg), dan kemudian digunakan variasi dosis 1 mg, untuk mendapatkan dosis yang lain.

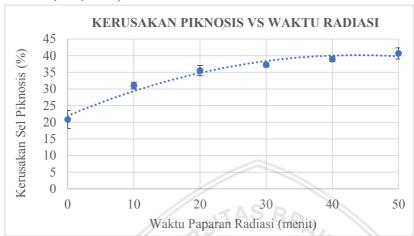

Pada Gambar 4.3 dapat dilihat bahwa tingkat keteraturan sel jauh lebih teratur dibandingkan dengan Gambar 4.2, yang menandakan bahwa tingkat kerusakan sel setelah diberi ekstrak jauh lebih sedikit dibandingkan sebelum diberi ekstrak. Inti sel pada Gambar 4.2 juga jauh lebih terang dibandingkan dengan Gambar 4.2. Hal ini menandakan bahwa pemberian ekstrak dapat mengurangi piknosis dan degenerasi hidropik sel. Pengamatan lebih lanjut juga menunjukkan bahwa jumlah sel normal pada Gambar 4.2 jauh lebih kecil dibandingkan Gambar 4.3. Dari Gambar 4.3 diatas dapat diamati bahwa seiring bertambahnya dosis ekstrak, kerusakan sel semakin menurun. Hal ini ditandai dengan semakin sedikitnya inti yang berwarna hitam (piknosis dan degenerasi hidropik) serta banyaknya inti sel yang normal. Sehingga dapat disimpulkan penambahan dosis ekstrak dapat mengurangi kerusakan organ hati yang telah dipapari radiasi gamma. Semakin besar dosis ekstrak yang diberikan, maka semakin baik pula organ hati mencit.

4.1.2 Pengaruh Waktu Paparan Radiasi Gamma terhadap Kerusakan Organ Hati Mencit

Penelitian ini dibagi menjadi dua tahap, tahap yang pertama adalah meneliti pengaruh waktu paparan radiasi gamma terhadap kerusakan organ hati mencit, dan tahapan kedua adalah pengaruh variasi dosis ekstrak. Pada tahap ini, sel normal, sel lisis, sel degenerasi hidropik dan sel binukleus dihitung jumlahnya dan dihitung persentase kerusakannya dengan menggunakan persamaan 3.1. Persentase kerusakan yang didapat kemudian dibuat dalam bentuk grafik polinomial orde dua.

Dari data yang didapatkan persentase kerusakan sel binukleus meningkat sejauh 3,49% setelah mendapat paparan radiasi selama 10 menit. Sel piknosis juga mengalami peningkatan 12,1%, sedangkan sel yang berdegenerasi hidropik meningkat 2,55%. Total kerusakan yang

terjadi juga meningkat 18,13%. Hal ini membuktikan bahwa radiasi sinar gamma memberikan efek rusak bagi sel hepatosit mencit. Dari Gambar 4.4 tersebut didapatkan persamaan $y = -0.0034x^2 + 0.3118x + 2.9238$ dengan $R^2 = 0.9889$. R^2 menunjukkan koefisien deterministik

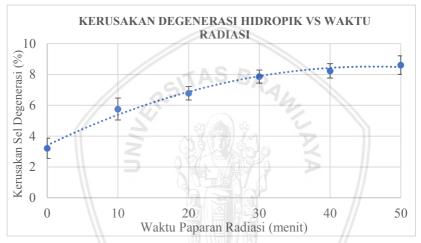


Gambar 4.4 Grafik hubungan antara persentase kerusakan binukleus dengan lama paparan radiasi

sebesar 0,9889. Koefisien deterministik sendiri merupakan koefisien yang menunjukkan hubungan titik data dengan garis interpolasi yang dibuat. Koefisien deterministik bernilai 0-1 semakin dekat titik data dengan garis interpolasinya, maka nilainya semakin mendekati 1, sehingga apabila R² = 0,9889, maka dapat dikatakan titik data dengan garis interpolasinya cukup dekat. Apabila. Persentase sel binukleus terus mengalami peningkatan hingga lama paparan 30 menit. Namun setelah 40 menit, kenaikan persentase kerusakan hanya memiliki selisih yang cukup kecil yaitu 0,42% saja. Demikian pula dari menit 40 ke menit 50, selisih kenaikannya hanya 0,46%. Kenaikan yang cukup kecil ini disebabkan oleh kondisi sel yang telah kebal terhadap paparan radiasi gamma. Jadi ada semacam proses imunisasi yang terjadi pada sel, dalam hal ini kerusakan sel akibat paparan radiasi akan diimbangi bukan hanya dalam bentuk perbaikan kembali sel yang rusak melainkan juga kekebalan sel terhadap radiasi berikutnya.

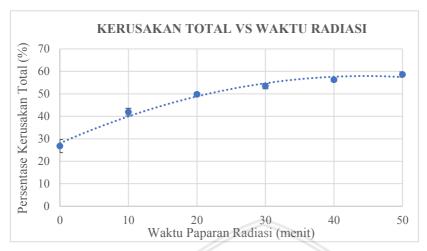
Pada sel binukleus, radikal bebas berinteraksi dengan kromosom dan menimbulkan disentrik. Disentrik ini kemudian mengakibatkan sel menjadi berikatan saat terjadi pembelahan. Oleh sebab itu sel kemungkinan sel binukleus muncul hanya terjadi saat pembelahan saja, sedangkan pembelahan sel sendiri membutuhkan waktu beberapa jam hingga beberapa hari. Selain itu, kemungkinan sel melakukan pembelahan diri juga menurun akibat adanya radikal

bebas. Radikal bebas dapat menghilangkan kemampuan sel untuk membelah diri (poliferasi) setelah tiga atau dua kali melakukan mitosis (Sari, 2015).



Gambar 4.5 Grafik hubungan antara persentase kerusakan piknosis dengan lama paparan radiasi

Persentase sel piknosis yang muncul semakin meningkat seiring dengan bertambahnya durasi paparan radiasi. Pada menit ke 30 dan 40 didapatkan kenaikan persentase yang cukup kecil. Hal ini disebabkan karena proses imunisasi terhadap radiasi gamma dosis rendah. Apabila dibandingkan dengan Gambar 4.4, persentase sel piknosis lebih besar dibandingkan dengan persentase sel binukleus. Piknosis terjadi dalam waktu yang singkat, ketika radikal bebas berinteraksi dengan membran sel, maka protein channel yang terdapat pada membran akan menutup terus sehingga sel tidak dapat melakukan metabolisme dan menjadi mengkerut. Hal ini kemudian mengakibatkan, sel hepatosit mengalami kekurangan ion, air dan nutrisi lain yang dibutuhkan sel untuk melakukan metabolismenya. Pada kasus sel binukleus, sel hepatosit kemungkinan telah kehilangan kemampuannya untuk membelah diri, sehingga persentase sel binukleus jauh lebih sedikit daripada persentase sel piknosis. Grafik yang terbentuk membentuk suatu persamaan $y = -0.0096x^2 + 0.8363x$ +21,932 dengan $R^2 = 0,971$.

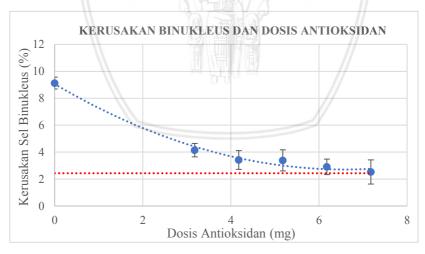

Pada menit ke 50 persentase sel binukleus menurun sebanyak 0,14% sedangkan pada menit sebelumnya terus mengalami

peningkatan. Hal ini terkait dengan imunitas yang telah dibahas sebelumnya. Persentase sel degenerasi hidropik ini jauh lebih sedikit dibandingkan dengan sel piknosis dan sel binukleus. Ketika radikal bebas berinteraksi dengan membran sel, protein channel terus membuka, sehingga ion yang berada di luar membran terus menerus masuk, protein carrier dan pompa juga tidak bekerja, mengakibatkan konsentrasi ion dalam sel meningkat dan beberapa organel sel rusak, sehingga seluruh ion, zat dan enzim bercampur menjadi satu dalam sitoplasma dan membuatnya berwarna keruh. Selain itu, sel akan membengkak. Pada kondisi lebih lanjut, degenerasi akan berujung pada lisis.

Gambar 4.6 Grafik hubungan antara persentase kerusakan degenerasi hidropik dengan lama paparan radiasi

Grafik pada Gambar 4.6 membentuk persamaan $y = -0,0024x^2 + 0,2217x + 3,4052$ dengan $R^2 = 0,9881$, yang artinya titik data berada cukup dekat dengan garis ekstrapolasinya. Hal ini ditandai dengan koefisien dererministiknya. Dari grafik di atas dapat dilihat bahwa semakin lama paparan radiasinya, maka semakin tinggi pula kerusakan hidropiknya.

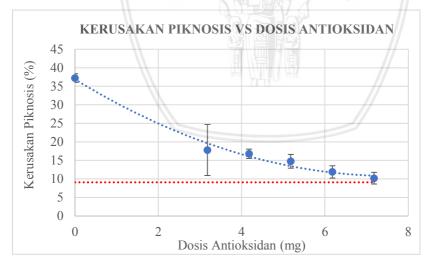
Gambar 4.7 Grafik hubungan antara persentase kerusakan total dengan waktu radiasi


Dari grafik di atas, dapat dilihat bahwa semakin lama waktu paparan radiasinya, semakin tinggi pula kerusakan totalnya. Kerusakan total pada menit ke 40 menurun dikarenakan terjadi penurunan pada grafik sel binukleus. Sedangkan pada menit ke 0 menuju menit 10 peningkatannya sangat besar yaitu 15,13%. Hal ini dikarenakan pada menit ke 0, mencit belum mendapatkan paparan radiasi sama sekali, sehingga kerusakan yang terhitung, merupakan kerusakan dasar atau kerusakan bawaan dari mencit tersebut. Pada menit ke 10, mencit mulai menerima paparan radiasi, sehingga radikal bebas yang disebabkan oleh radiasi gamma mulai muncul dan berinteraksi dengan sel, sehingga memicu kerusakan pada sel. Pada menit selanjutnya, kerusakan sel terus mengalami kenaikan. Selisih kenaikan yang terhitung berbeda-beda (kenaikannya tidak konstan). Selain tidak konstan, pada menit ke 30, 40 dan 50, kenaikan yang terhitung cenderung sangat kecil. Keadaan ini terjadi karena pada menit tersebut, sel telah berada pada titik jenuhnya, sehingga paparan radiasi tidak lagi menimbulkan efek yang signifikan. Persamaan yang didapatkan pada grafik diatas adalah $y = -0.015x^2 + 1.3403x + 28.054$ dengan $R^2 = 0.9842$.

Seperti yang telah dibahas sebelumnya, sel mengalami proses imunisasi, ketika sel terkena radiasi gamma, diimbangi bukan hanya dalam bentuk perbaikan kembali sel yang rusak melainkan juga kekebalan sel terhadap radiasi berikutnya. Sel normal yang bertahan akan menjadi kebal dan bahkan ada yang memperbaiki diri sebagai hasil adaptasi terhadap radiasi gamma. Inilah yang menyebabkan kenaikan yang sangat kecil dan penurunan persentase sel rusak.

4.1.3 Pengaruh Dosis Ekstrak Bikotans terhadap Organ Hati Mencit

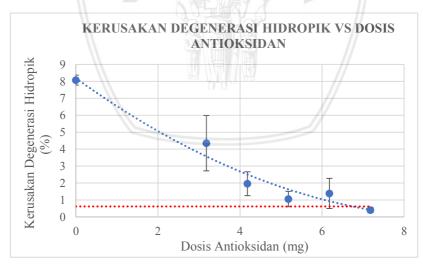
Ekstrak Bikotans adalah antioksidan yang digunakan untuk mengurangi radikal bebas yang disebabkan oleh radiasi gamma. Pada penelitian ini, dicari berapakah dosis yang tepat agar sel dapat sembuh atau kembali normal setelah terpapar radiasi gamma.


Ekstrak Bikotans merupakan campuran dari 5 macam ekstrak, yaitu mahkota dewa, kenikir, beluntas, daun katuk dan bunga sepatu. Dosis antioksidan yang digunakan pada penelitian ini merupakan dosis untuk penyakit ringan hingga berat. Hal ini dikarenakan dosis radiasi yang diterima mencit merupakan radiasi dosis rendah, namun dilakukan secara bertahap selama 14 hari. Penggunaan ekstrak antioksidan pun dilakukan 2 jam sebelum penyinaran, sehingga diharapkan ketika penyinaran berlangsung, antioksidan yang terdapat di dalam tubuh mencit, dapat mengurangi radikal bebas dan tidak menghambat pembelahan sel. Berdasarkan penelitian tahap ini, jumlah sel normal jauh lebih banyak dibandingkan dengan tahap

Gambar 4.8 Grafik hubungan antara persentase kerusakan binukleus dengan dosis antioksidan

sebelumnya. Sehingga dapat diasumsikan, pemaparan radiasi gamma dapat menghambat jalannya pembelahan sel.

Pada titik pertama yaitu dosis ekstrak 0 mg, merupakan data pemaparan radiasi selama 40 menit pada penelitian tahap sebelumnya vaitu 9,13%. Digunakan data tahap sebelumnya bertujuan untuk membandingkan persentase sebelum dan sesudah diberi ekstrak Bikotans. Pada pemaparan selama 40 menit, sebagian besar sel telah tahan terhadap paparan radiasi gamma, maka dari itu data yang digunakan adalah data pemaparan radiasi selama 40 menit. Pada Gambar 4.8 dapat dilihat penurunan persentase binukleus dari titik 0 mg menuju titik 3,18mg sangatlah besar yaitu 5,66%. Hal ini disebabkan karena setelah diberi ekstrak bikontans jumlah sel normal vang terhitung sangatlah banyak, bahkan hampir dua kali lipat daripada sel normal pada kelompok K-, persentase sel normal yang meningkat menyebabkan persentase sel binukleus menurun. Kenaikan persentase sel normal ini disebabkan oleh berkurangnya persentase radikal bebas dalam organ hati mencit, ekstrak Bikotans memberikan elektron pada radikal bebas sehingga radikal bebas tersebut menjadi stabil. Akibatnya, kemampuan sel untuk membelah diri (proliferasi) 1,926x + 9,0564 dengan $R^2 = 0,9891$, seperti dapat dilihat, persamaan

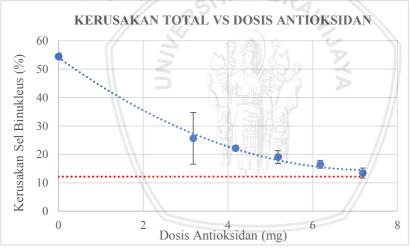


Gambar 4.9 Grafik hubungan antara persentase kerusakan piknosis dengan dosis antioksidan

yang didapat berbeda dengan tahap sebelumnya. Hal ini dikarenakan grafik yang terbentuk jauh berbeda.

Garis merah putus-putus merupakan kontrol positif sebesar 2,43%. Penurunan pada grafik menunjukkan, bahwa hampir seluruh dosis mendekati garis merah. Hal ini menunjukkan bahwa persentase sel binukleus pada seluruh dosis memiliki nilai yang mendekati atau bahkan lebih rendah daripada kontrol positifnya.

Apabila dibandingkan dengan tahap sebelumnya, persentase sel piknosis pada tahap pemberian ekstrak ini menurun hampir separuhnya. Penurunan persentase sel piknosis ini disebabkan adanya ekstrak yang telah menstabilkan radikal bebas, sehingga tidak berinteraksi dengan membran sel. Akibatnya proses metabolisme baik di luar maupun di dalam sel dapat berjalan dengan baik. Meski demikian. ekstrak Bikotans ini tidak dapat sepenuhnya menghilangkan efek negatif dari radikal bebas. Hal ini dibuktikan dengan masih adanya sel piknosis pada sel hepatosit mencit. Pemberian ekstrak Bikotans ini dilakukan selama 14 hari berturutturut, dengan pemberian satu kali dalam sehari. Pada grafik ini, persamaannya $y = 0.4505x^2 - 6.8556x + 36.875$ dengan $R^2 = 0.9871$. Dari grafik tersebut dapat dilihat bahwa pada dosis 3,18 mg, 5,18 mg dan 7,18 mg persentase sel piknosis mendekati garis merah (kontrol



Gambar 4.10 Grafik hubungan antara persentase kerusakan degenerasi hidropik dengan dosis antioksidan

repository.ub.ac

positif) yang bernilai 9,09%. Terutama pada dosis 7,18 mg menunjukkan bahwa dengan pemberian ekstrak 7,18 mg, sel dapat kembali normal seperti pada kontrol positif untuk lama pemaparan 40 menit.

Pada Gambar 4.10 persamaan grafiknya adalah $y = 0.0924x^2$ - 1.7458x + 8.1893 dengan $R^2 = 0.9653$. Penurunan persentase degenerasi hidropik terhitung hampir setengah dari tahap 1. Seperti hal nya dengan sel piknosis, persentase radikal bebas dalam tubuh berkurang, yang kemudian membuat metabolisme sel menjadi lancar. Kontrol positif pada grafik ini adalah 0,62%. Dari Gambar 4.10 dapat dilihat bahwa pada dosis 7,18 mg berada di bawah garis merah (kontrol positif), demikian pula dengan dosis 6,18 mg dan 5,18 mg, persentase yang terhitung mendekati garis merah. Sehingga dapat dikatakan bahwa pada dosis 5,18 mg, 6,18 mg dan 7,18 mg persentase sel degenerasi hidropik di dalam sel hepatosit mencit dapat mencapai nilai normalnya seperti pada kontrol positif.

Gambar 4.11 Grafik hubungan antara persentase kerusakan total dengan dosis antioksidan

Persentase kerusakan total pada dosis 0 mg ke dosis 3,18 mg mengalami penurunan yang sangat besar, hal ini ditandai dengan grafik yang menurun dengan curam pada titik ke dua. Penurunan yang sangat besar ini menandakan bahwa kerusakan sel berkurang secara drastis hingga dua kali lipatnya. Dengan kata lain, pemberian ekstrak dengan dosis paling kecil yaitu 3,18 mg sudah dapat mengurangi

kerusakan total sel hingga dua kali lipatnya. Sehingga dapat disimpulkan bahwa pemberian ekstrak Bikotans dapat mengurangi persentase radikal bebas. Kontrol negatif (tidak diberi antioksidan dan tidak dipapari radiasi gamma) menunjukkan persentase kerusakan total 54,43%, sedangkan setelah diberi antioksidan, kerusakan total yang terhitung seluruhnya 25,6%. Hal ini membuktikan selain mengurangi radikal bebas, antioksidan tersebut juga memberi sel ion, nutrisi, juga zat lain yang dibutuhkan sel untuk melakukan metabolisme, sehingga sel menjadi lebih sehat. Seiring dengan bertambahnya dosis antioksidan yang diberikan, persentase kerusakan total sel semakin menurun, namun bukan berarti penambahan hingga terus menerus dapat mengurangi persentase kerusakan sel. Pada dosis tertentu, dapat terjadi kemungkinan dimana anntioksidan tersebut justru bersifat toksik bagi sel hepatosit mencit. Dosis yang terlampau tinggi dapat menyebabkan kondisi sel menjadi tidak stabil, karena konsentrasi ion akan meningkat baik di dalam maupun di luar sel, peristiwa ini kemudian menyebabkan sel untuk bekerja sangat keras dalam melakukan metabolismenya.

Kontrol positif pada grafik tersebut adalah 12,14%. Pada dosis 7,18 mg, persentase kerusakan total sel mendekati garis merah. Sehingga dapat disimpulkan dengan dosis ekstrak Bikotans sebesar 7,18 mg, sel hepatosit mencit yang rusak (baik kerusakan binukleus, piknosis dan degenerasi hidropik) dapat kembali normal (acuannya adalah kontrol positif mencit). Persamaan grafik dari persamaan diatas adalah y = $0.7293x^2 - 10.75x + 54.069$ dengan $R^2 = 0.9945$.

4.2 Pembahasan

Berdasarkan data yang didapat, dapat disimpulkan bahwa pada penelitian ini, terdapat kesinambungan antara lama paparan radiasi dengan persentase kerusak sel hepatosit mencit. Dimana semakin bertambahnya waktu paparan radiasi gamma, maka semakin bertambah pula kerusakan pada sel hepatosit mencit. Namun sel hepatosit akan mengalami titik jenuh pada waktu tertentu. Pada titik jenuh ini, sel hepatosit telah menjadi imun terhadap radiasi berikutnya, sehingga peningkatan persentase kerusakan tidaklah signifikan. Terdapat pula relasi antara dosis antioksidan (ekstrak Bikotans) dengan persentase kerusakan sel hepatosit mencit. Semakin bertambahnya dosis antioksidan yang diberikan kepada mencit, maka

semakin berkurang pula persentase kerusakannya. Pemberian ekstrak Bikotans dapat mengurangi persentase kerusakan sel hingga dua kali lipatnya. Pemberian ekstrak Bikotans pada dosis maksimal yaitu 7,18 mg tidak menunjukkan adanya tanda-tanda keracunan pada sel hepatosit mencit. Justru sebaliknya, persentase kerusakan sel hepatosit menurun hingga dua kali lipat kontrol negatif.

4.3 Pengaruh Radiasi Gamma terhadap Organ Hati Mencit4.3.1 Pengaruh Dosis Radiasi dengan Organ Hati

Pada penelitian ini digunakan lima sumber radiasi yang berbeda beda, antara lain Co-60, Cs-137, Na-22, Sr-90 dan Am-241. Dengan penggunaan sumber radiasi yang berbeda-beda, maka dapat dikatakan dosis yang diterima oleh mencit merupakan akumulasi dari kelima sumber radiasi tersebut. Dosis yang diterima mencit pun semakin meningkat seiring dengan bertambahnya waktu pemaparan radiasi. Dosis radiasi terhadap waktu berhubungan dengan laju dosisnya, dan laju dosis dapat dihitung dengan persamaan:

$$\dot{D} = \Gamma \frac{A}{R^2} \tag{4.1}$$

Dimana $\dot{\mathbf{D}}$ adalah laju dosis, Γ adalah faktor gamma, A adalah aktivasi dan R adalah jarak antara sumber radiasi dengan mencit yaitu 2 cm. Sedangkan hubungan antara dosis radiasi dengan waktu dapat dinyatakan dengan persamaan:

$$D = \dot{D}.t \tag{4.2}$$

Tabel 4.1 Dosis yang Diterima Mencit Selama 14 Hari

Sumber	Dosis (μSv)					
Radiasi	10 menit	20 menit	30 menit	40 menit	50 menit	
Co-60	159,85	319,69	479,54	639,38	799,23	
Cs-137	200,47	400,93	601,40	801,86	1002,33	
Na-22	156,26	312,53	468,79	625,05	781,32	
Am-241	2,20	4,39	6,59	8,78	10,98	
Sr-90	2,90	5,79	8,69	11,58	14,48	
Total	521,67	1043,33	1565,00	2086,67	2608,34	

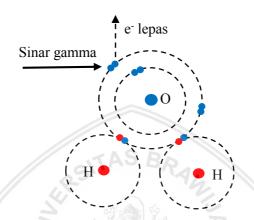
Pada dosis radiasi $521,67~\mu Sv$, mencit telah mengalami kerusakan sel, meskipun demikian efek yang timbul pada mencit hanyalah kerusakan didalam sel hepatosit. Mencit tidak menunjukkan efek deterministik,

RAWIJAYA

dimana kulit mencit mengalami eritrema (berbintik bintik merah) dan tidak menunjukkan efek stokastik dalam jangka waktu 14 hari. Demikan pula degan dosis 74,52 μ Sv dan 111,79 μ Sv. Pada dosis radiasi 149,05 μ Sv, terdapat benjolan di beberapa mencit, namun belum diketahui lebih lanjut apakah benjolan tersebut akibat luka, virus ataukah efek dari pemaparan radiasi gamma. Apabila dibandingkan dengan teori yang ada, maka seharusnya mencit tidak menunjukkan efek deterministik. Hal ini disebabkan karena penyinaran dilakukan dengan dosis rendah namun secara bertahap. Dosis radiasi hingga 2608,34 μ Sv belum mampu memimbulkan efek deterministik pada mencit, meski terjadi kerusakan pada sel hepatosit, kerusakan tersebut belum dapat memicu terjadinya kerusakan total ataupun kanker pada organ hati mencit.

Tabel 4.1 diatas menunjukkan dosis yang diterima oleh mencit selama 14 hari. Sel hepatosit mencit mengalami titik jenuh setelah mendapatkan dosis sebesar 2086,67 uSv. Hal ini menandakan sel hepatosit mencit mulai menjadi kebal setelah menerima paparan 1565 µSv. Karena pemaparan radiasi yang dilakukan terhadap mencit ini berdosis rendah namun terus menerus, maka ada kemungkinan adanya efek stokastik yang akan muncul pada jangka waktu beberapa tahun kemudian. Kemungkinan terjadi cacat keturunan pun dapat terjadi. Dari Tabel 4.1, dapat diketahui bahwa ekstrak Bikotans dapat bekerja efektif hingga dosis 2608,43 µSv, dan juga efektif dengan dosis dibawahnya. Berdasarkan laporan UNSCEAR pada tahun 2000 rata-rata dosis yang diterima oleh setiap orang diseluruh dunia adalah sekitar 2,8 mSv/tahun, dengan perincian 2,4 mSv dari alam dan 0,472 mSv dari aplikasi teknik nuklir (foto rontgen, kedokteran nuklir, PLTN). Sehingga belum diketahui apakah antioksidan Bikotans dapat menutupi efek radiasi yang diterima manusia per tahunnya karena dosis maksimal yang digunakan pada penelitian ini adalah 2,6 mSv. Namun, meski demikan, ada kemungkinan besar ekstrak Bikotans dapat bekerja efektif pada dosis 2,8 mSv. Hal ini karena pada penelitian yang dilakukan, ekstrak Bikotans diberikan selama 14 hari penyinaran dengan total dosis hingga 2,6 mSv sedangkan dosis radiasi yang diterima manusia setiap harinya kurang lebih 7,7 μSv, jauh di bawah dosis pada penelitian.

Dari Tabel 4.1 tersebut dapat diketahui juga bahwa dosis yang diterima mencit adalah sekitar 3.73E-02 mSv - 1.86E-01 mSv setiap


harinya. Dosis ini merupakan dosis rendah, yang dimaksud dengan radiasi dosis rendah di sini adalah dosis radiasi dari 0,25 sampai dengan 1.000 μSv (Akhadi,2000). Namun meskipun sekecil apapun dosis radiasi yang diterima tubuh ada kemungkinannya akan menimbulkan kerusakan sel somatik maupun sel genetik. Meski demikian, data epidemiologi mengenai efek radiasi dosis rendah menimbulkan kanker dan kerusakan genetik masih sangat minim. Di sisi lain, terdapat beberapa asumsi dari pakar biologi radiasi yang menyebutkan bahwa ditemukannya bukti-bukti tentang adanya efek stimulatif akibat paparan radiasi dosis rendah yang disebut hormesis. Hormesis sendiri mengandung pengertian bahwa penyinaran radiasi dosis rendah dapat memberikan efek yang menguntungkan bagi kehidupan (Akhadi, 2000). Namun, anggapan mengenai hormesis sendiri masih diperdebatkan hingga sekarang.

Pada hasil penelitian sebelumnya, dapat dilihat bahwa sel mengalami titik jenuh pada menit ke 40 dan 50, dimana pada menitmenit tersebut, sel sudah menjadi kebal terhadap radiasi berikutnya. Apabila hal ini dikaitkan dengan hormesis, maka dapat dikatakan anggapan peneliti mengenai penyinaran dosis rendah ini ada benarnya. Seperti yang telah diketahui mahkluk hidup memiliki kemampuan untuk beradaptasi terhadap lingkungannya. Pada penelitian ini, sel normal yang bertahan dari paparan radiasi sebelumnya akan menjadi terangsang fungsi-fungsi selnya dan mengurangi kerusakan akibat paparan radiasi berikutnya. Akibatnya, sel-sel yang tersisa pada organ hati mencit adalah sel-sel yang telah mengalami adaptasi. Apabila sel-sel yang telah beradaptasi tersebut kemudian melakukan pembelahan, maka sebagian besar sel yang terdapat pada organ adalah sel yang kebal terhadap paparan radiasi dosis rendah.

Berdasarkan penelitian lain dari beberapa ahli, dari data yang dikumpulkan selama 24 tahun, antara tahun 1958 hingga 1982, korban bom atom Hiroshima dan Nagasaki yang selamat diperkirakan menerima dosis antara 0,12-0,36 Sv justru tercatat tingkat kematiannya akibat leukemia paling minim dibandingkan penduduk lain yang tidak menerima paparan radiasi. Dari hasil penelitian yang telah didapatkan, maka dapat disimpulkan sebuah hipotesis dimana dalam penelitian ini radiasi dosis rendah dapat berguna bagi mahkluk hidup.

4.3.2 Interaksi Radiasi dengan Organ Hati Mencit

Ketika radiasi mengenai mencit, maka radiasi tersebut akan berinteraksi dengan suatu materi. 60%-70% dari berat tubuh manusia mengandung H₂O. Karena kandungannya yang sangat banyak di dalam tubuh manusia, radiasi yang mengenai tubuh akan segera berinteraksi dengannya. Energi radiasi kemudian akan terserap oleh

Gambar 4.12 Interaksi Radiasi dengan Molekul Air

organ hati dan mengakibatkan terjadinya ionisasi dan eksitasi, efek Compton, dan efek produksi pasangan. Baik proses ionisasi maupun eksitasi menyebabkan terbentuknya radikal bebas. Radikal bebas tersebut kemudian akan berinteraksi dengan sel, atom, atau senyawa lain yang terdapat di dalam tubuh. Selain berinteraksi dengan H₂O, radiasi juga berinteraksi dengan atom-atom penyusun organ hati. Interaksi dengan atom penyusun tersebut berupa efek fotolistrik, efek Compton, dan efek produksi pasangan.

Gambar 4.12 mejelaskan radiasi gamma menyebabkan elektron di kulit atom terlepas. Pada gambar di atas, molekul H_2O yang semulanya stabil, akan menjadi tidak stabil setelah kehilangan satu elektron pada kulit terluarnya. Proses ini berlangsung sangat singkat dalam orde 10^{-16} detik. Keseluruhan proses ini disebut sebagai tahap fisik.

$$H_2O$$
 + radiasi pengion \longrightarrow $H_2O^+ + e^-$

Molekul H2O kemudian kekurangan satu elektron, dan menjadi H₂O⁺. Karena H₂O⁺ bersifat tidak stabil, maka ia akan memecah menjadi H⁺

repository.ub.ac.

dan OH^* . Di sisi lain, elektron yang terlepas dari H_2O kemudian akan berikatan dengan molekul H_2O lainnya yang stabil dan menghasilkan H_2O^- . Sama halnya dengan H_2O^+ , H_2O^- juga bersifat tidak stabil dan akhirnya terpecah menjadi H^* dan OH^- .

$$H_2O \longrightarrow H_2O^+ + e^ H_2O^+ \longrightarrow H^+ + OH^*$$
 $e^- + H_2O \longrightarrow H^* + OH^-$

H* dan OH* merupakan radikal bebas. OH* kemudian dapat berinteraksi dengan OH* lainnya dan meghasilkan hidrogen peroksida.

$$OH^* + OH^* \longrightarrow H_2O_2$$

Hidrogen peroksida (H₂O₂) merupakan oksidator kuat yang bersifat racun bagi tubuh. Radikal bebas kemudian dapat berinteraksi dengan membran sel, atau dengan kromosom. Meskipun radiasi juga berinteraksi dengan molekul selain air, namun efek yang dihasilkan terhadap sel biologisnya tidaklah besar jika dibandingkan dengan efek melalui media air tersebut. Proses ionisasi ini berlangsung singkat yaitu 10⁻⁵ detik. Tahap ini disebut sebagai tahap fisikokimia (Akhadi, 2000).

Ketika radikal bebas dan peroksida berinteraksi dengan membran sel hepatosit mencit, maka ia akan menyebabkan protein channel membuka/menutup terus, pompa dan carrier juga tidak akan berjalan. Selain dengan membran sel, radikal bebas juga akan berinteraksi dengan inti sel yang terdiri dari kromosom-kromosom yang dapat menyebabkan rantai DNA putus, atau dapat juga memicu terjadinya mutasi genetik seperti inversi, translokasi, disentrik dan ring. Radikal bebas juga dapat berinteraksi dengan molekul protein dan enzim di dalam sel. Apabila radikal bebas berinteraksi dengan protein, ia akan memutus rangkaian panjang molekul protein (Pratama, 2016). Molekul yang putus tersebut kemudian menjadi terbuka dan dapat melakukan reaksi lainnya. Radikal bebas dan peroksida juga dapat merusak struktur biokimia molekul enzim sehingga fungsi enzim dapat terganggu. Tahapan ini dikenal sebagai tahap kimia dan biologi (Akhadi, 2000).

Pada tahap biologi, sel mulai mengalami kerusakan. Proses ini dapat berlangsung selama berpuluh-puluh menit hingga beberapa puluh tahun setelah terkena paparan radiasi. Sel dapat menunjukkan berbagai kerusakan, seperti kematian sel secara langsung, pembelahan sel terhambat atau tertunda serta terjadinya perubahan secara permanen pada sel anak setelah sel induknya membelah. Kerusakan vang teriadi dapat meluas hingga ke skala organ, jaringan bahkan dapat menyebabkan kematian (Bappeten, 2005). Kerusakan pada tahap biologis yang terlihat pada penelitian ini masih dalam lingkup organ saja. Tidak ditemui tanda-tanda adanya tumor atau sel yang membelah secara tidak normal. Pada tubuh mencit sendiri juga tidak ditemui adanya eritrema atau bintik-bintik hitam. Keadaan psikologis mencit pun terbilang stabil. Namun apabila diamati lebih teliti, barulah dapat diketahui beberapa kerusakan pada sel hepatosit mencitnya. Hal ini disebabkan dosis radiasi yang digunakan merupakan dosis rendah dan penyinaran dilakukan hanya 14 hari.

4.3.3 Pengaruh Antioksidan terhadap Radikal Bebas

Radikal bebas merupakan molekul yang tidak stabil dan merupakan molekul yang sangat reaktif di dalam tubuh. Radikal bebas memiliki dua atau lebih elektron yang tidak berpasangan pada kulit terluarnya. Supaya stabil, radikal bebas ini akan mengambil elektron yang terdapat pada molekul lain, baik dari molekul penyusun tubuh maupun molekul air. Antioksidan berperan sebagai penyumbang elektron kepada radikal bebas, sehingga ia tidak lagi memiliki elektron tidak berpasangan dan menjadi stabil. Hasil dari penelitian menunjukkan ekstrak Bikotans efektif memulihkan sel hepatosit mencit dan mengurangi radikal bebas sehingga metabolisme dan pembelahan sel dapat berjalan dengan baik.

Gambar 4.13 Struktur Kimia Flavonoid

repository.ub.a

Bikotans terdiri dari mahkota dewa, beluntas, kenikir, daun katuk dan bunga sepatu. Bikotans mengandung berbagai macam senyawa antioksidan yang berguna bagi tubuh, antara lain flavonoid, minyak atsiri, saponin, polifenol, dan tanin. Flavonoid merupakan senyawa yang paling berpengaruh dalam pemulihan sel hepatosit mencit. Banyak penelitian yang telah menyatakan bahwa senyawa flavonoid memiliki potensi sebagai antioksidan karena memiliki gugus hidroksil yang terikat pada karbon cincin aromatik sehingga dapat menangkap radikal bebas yang dihasilkan dari reaksi peroksidasi lemak, senyawa flavonoid akan menyumbangkan satu atom hidrogen untuk menstabilkan radikal peroksi lemak (Hamid, 2010).

Posisi dan jumlah gugus hidroksil mempengaruhi aktivitas senyawa antioksidan flavonoid. Flavonoid bekerja dengan cara *scavenging* dimana ia akan menangkap radikal bebas dengan menggunakan gugus hidroksilnya.

Gambar 4.14 Proses Scanvenging oleh Flavonoid

Flavonoid menyumbangkan atom H untuk menangkap radikal bebas, sehingga radikal bebas yang semula tidak stabil akan menjadi stabil. Atom H akan berikatan dengan radikal bebas dan menghasilkan RH. Hal ini menyebabkan flavonoid juga menjadi radikal karena kehilangan satu atom H. Namun, flavonoid menjadi lebih stabil, setelah melepas atom H lain untuk menangkap radikal bebas.

Dalam penelitian ini, radikal bebas yang terbentuk adalah H* dan OH*. Suatu molekul dapat dikatakan sebagai radikal bebas apabila memiliki elektron tidak berpasangan. Radikal bebas juga sangat reaktif dan hanya dapat menjadi stabil setelah menerima

elektron. Hal ini berbeda dengan ion, dimana ion tidak memiliki elektron tidak berpasangan, selain itu ion hanya dapat menjadi stabil dengan cara berikatan dengan ion lain yang memiliki muatan yang berbeda. Dalam penelitian ini, H* dapat berikatan dengan atom H flavonoid dikarenakan H* memiliki keelektronegatifan yang besar. Keelektronegatifan merupakan sifat kimia atom, yang menunjukkan seberapa besar kemampuan suatu atom untuk menarik elektron menuju dirinya. H* merupakan radikal bebas yang memiliki satu elektron tidak berpasangan, sehingga ketika terdapat atom H dari flavonoid, ia akan menarik atom H tersebut agar tidak terdapat lagi elektron tidak berpasangan. Atom H sendiri memiliki energi ikat yang rendah yaitu 63 kJ/mol, sehingga ia akan lebih mudah melepaskan diri dari gugusan flavonoid. Sedangkan pada OH*, ia memiliki satu elektron tidak berpasangan, untuk menjadi stabil, ia harus mengambil satu elektron untuk menjadi berpasangan. Karena radikal bebas ini bersifat sangat reaktif, maka ia akan mengambil satu elektron dari atom H flavonoid untuk menjadi stabil.

Besarnya energi ikat tergantung dari jumlah elektron yang digunakan bersama dalam ikatan. Semakin banyak pasangan elektron yang digunakan bersama, maka semakin besar pula energi ikat antar atomnya (Pratama, 2010).

Tabel 4.2 Energi Ikat Antar Atom

Ikatan	Energi	Ikatan	Energi	Ikatan	Energi
	Ikatan	3	Ikatan		Ikatan
	(Kj/Mol)		(Kj/Mol	/	(Kj/Mol
H-F	436	N-H	391	Br — F	237
H - F	567	N-N	163	Br - F	218
H - Cl	431	N - O	201	Br - F	193
H - Br	366	N-F	272	I - Cl	208
H - I	299	N - Cl	200	I - Cl	175
C - H	413	N - Br	243	I - Cl	151
C - C	348	O - H	63	C = C	614
C-N	293	O - O	146	C = N	839
C - O	358	O - F	190	C-N	615
C - S	259	O - I	203	C = O	891
C - F	485	O - H	234	C = O	749
C-Cl	328	S-H	339	N-N	1072

(Pratama, 2010)

4.4 Pengaruh Radiasi Gamma terhadap Organ Lain

Pada penelitian ini, radiasi gamma terbukti secara kuantitatif merusak organ hati. Namun, selain organ hati, radiasi juga merusak organ lain. Hal ini disebabkan karena radikal bebas yang terbentuk akibat proses ionisasi dengan molekul air, terbawa ke seluruh tubuh melalui sistem peredaran darah. Darah sendiri tersusun atas 95% molekul air, sehingga jumlah radikal bebas yang terbentuk di dalam darah cukup banyak. Darah yang mengandung radikal bebas tersebut kemudian di bawa menuju ginjal untuk di filtrasi. Radikal bebas yang berukuran cukup besar tidak mampu menembus saringan pada ginjal yang berukuran cukup kecil. Akibatnya radikal bebas mengendap pada ginjal. Hal ini dibuktikan pada penelitian lain yang menggunakan organ ginjal. Didapatkan persentase kerusakan organ ginjal yang lebih kecil yaitu 65% sedangkan organ hati mencapai 68%.

Selain dibawa menuju ke ginjal, darah juga bersikulasi pada paru-paru. Darah dibutuhkan paru-paru untuk mengikat oksigen, yang kemudian dibawa menuju jantung. Pada saat terjadi pertukuran antara oksigen-karbondioksida di dalam paru-paru, radikal bebas yang terkandung dalam darah akan berinteraksi dengan sel-sel organ paru. Akibatnya sel paru mengalami kerusakan. Hal ini juga telah dibuktikan pada penelitian lain yang menggunakan organ paru. Didapatkan persentase kerusakan yang cukup besar yaitu 75%.

Radikal bebas yang muncul akibat radiasi juga berpengaruh pada organ limpa. Organ limpa memiliki fungsi untuk imunisasi. Sehingga ketika ada radikal bebas yang muncul di dalam tubuh, limpa akan merespon dengan mengirim sel-sel imunnya. Apabila jumlah radikal bebas terlampau banyak, maka limpa pun akan berkerja sangat keras. Akibatnya, sel limfosit mengalami kerusakan. Hal ini dibuktikan dari penelitian sebelumnya. Didapatkan persentase kerusakan hingga 70%. Dari penelitian-penelitian tersebut dapat dikatakan bahwa radikal bebas yang muncul akibat radiasi gamma dapat merusak organ lain di seluruh tubuh, tidak terbatas pada organ hati saja.

BAB V PENUTUP

5.1. Kesimpulan

Terjadi kerusakan mikroskopis organ hati, dimana secara kualitatif, semakin lama paparan radiasi, semakin meningkat persentase kerusakan sel. Sementara kerusakan akan semakin berkurang berdasarkan penambahan dosis antioksidan yang diberikan. Sebelum diberi ekstrak Bikotans, kerusakan total sel hepatosit adalah 54,43%. Setelah diberi ekstrak Bikotans kerusakan total sel hepatosit adalah 18,14%. Dosis ekstrak 3,18 mg merupakan dosis efektif, karena pada dosis tersebut persentase kerusakan sel berkurang paling besar yaitu 28,81%.

5.2. Saran

Perlu dilakukan penelitian lebih lanjut menggunakan software yang otomatis dapat menentukan jenis kerusakan dari sel dan menggunakan antioksidan yang lain.

DAFTAR PUSTAKA

- Adi, Lukas Tersono. 2008. *Tanaman Obat & Jus untuk Mengatasi Penyakit Jantung, Hipertensi, Kolesterol dan Stroke*. Jakarta: PT Agromedia Pustaka.
- Akhadi, Mukhlis. 2000. *Dasar-Dasar Proteksi Radiasi*. Jakarta: PT Rineka CIpta.
- Alatas, Z., & dkk. 2010. *Buku Pintar Nuklir (Ruslan, Ed.)*. Jakarta: Pusat Diseminasi Iptek Nuklir BATAN.
- Alatas, Z., & Lusiyanti, Y. 2001. *Efek Kesehatan Radiasi Non- Pengion pada Manusia*. Tangerang: BATAN-Litbang Keselamatan Radiasi dan Biomedika Nuklir.
- Amirudin, Rifai. 2009. Fibrosis Hati dalam Buku Ajar Ilmu Penyakit Hati Ed.1. Jakarta: Jayabadi.
- Bandunggawa, Sandi IN, dan Merta IW. 2009. *Bahaya Radiasi dan Cara Proteksinya*. Denpasar: Mediana.
- Bappeten. 2005. Efek Biologi Radiasi Diklat Inspektur Pratama Tingat 1. Jakarta: Juli 2005
- Buck, D.F. 1991. Antioxidant di dalam: J. Smith, editor Food Additive User's Handbook. United Kingdom: Blackie Academic and Professional.
- Bushong, C.S. 2001. Radiologic Science for Technologists: Physics, Biology, and Protection 7th Edition. Washington: Mosby Company
- Dalimartha, Setiawan. 2013. *Tanaman Obat di Lingkungan Sekitar*. Jakarta: Niaga Swadaya.
- Danusantoso, H. 2003. Peran Radikal Bebas terhadap Beberapa Penyakit Baru. Jakarta: Fakultas Kedokteran Universitas Trisakti.
- Dawn, B., Marks, Allan D Marks dan Collen M. Smith. 2000. Biokimia Kedokteran Dasar Sebuah Pendekatan Klinis. Jakarta: EGC.
- Devy, Lukita & Dodo, R. S. 2006. Pengaruh Terapi Kurkumin terhadap Kadar Malondialdehid (MDA) Hasil Isolasi Parotis dan Profil Protein Tikus Putih yang Terpapar Lipopolisakarida (LPS). Kima Student 1: 133-139.
- Ermawati. 1999. *Interaksi Radiasi dengan Materi*. Jakarta: Universitas Gunadarma

- Farb, A., Burke AP, Tang AL, Liang TY, Mannan P., Smialek J. 2009. Coronary Plaque Erosion without Rupture into a Lipid Core. J. Med: 1354-63.
- Fitri, M. 2008. Hubungan Antara Gambaran Vena Hepatika Segmen Perider Pada Pemeriksaan USG Hati dan Peningkatan Kadar SGPT Dalam Darah. Surakarta: Universitas Sebelas Maret.
- Gabriel, J. F. 2005. Fisika Kedokteran. Jakarta: EGC.
- Grupen, C. 2010. *Introduction to Radiation Protection*. Universitas Siegen: Jurusan Fisika.
- Hadi, Sujono. 2002. *Sirosis Hepatis dalam Gastroenterologi*. Bandung: Alumnu pp: 637-638.
- Hamid, A., dkk. 2010. Comparison of Different Extraction Methods for the Extraction of Major Biactive Flavonoid Compounds from Spearmint (Mentha spicata L.) Leaves. Food and Bioproducts Processing, 89: 1-6.
- Hariana, Arief. 2013. *262 Tumbuhan Obat dan Khasiatnya*. Jakarta: Penebar Swadaya Grup.
- Harkness, J. E, The Mous. 1983. *The Biology and Medicine od Rabbits and Rodents second edition*. Philadelphia: Lea and Febringer.
- Harmanto, Ning. 2003. *Menaklukan Penyakit Bersama Mahkotadewa*. Jakarta: Agro Media Pustaka.
- Hastuti, Sri Utami. 2006. Pengaruh Berbagai Dosis Citrinin terhadap Kerusakan Struktur Hepatosit Mencit (Mus musculus) pada Tiga Zona Lobulus Hepar. Malang: Jurusan Biologi Universitas Negeri Malang.
- Hembing, H. M. 2000. *Ensiklopedia Milenium Tumbuhan Berkhasiat Obat Indonesia*. Jakarta: Prestasi Insan Indonesia.
- Hendra, R. 2011. Antioxidant, Anti-Inflammatory and Cytotoxicity of Phaleria macrocarpa. BMC: 11-110.
- Hidayat, Syamsul dan Rodame M. Napitupulu. 2015. *Kitab Tumbuhan Obat*. Jakarta: Penebar Swadaya Grup.
- Junqueira, L. 1995. Histologi Dasar. Jakarta: Buku kedokteran EGC.
- Klatt. 2016. The Internet Pathology Laboratory for Medical Education. Utah: Ecless Health Sciences Library University of Utah.
- Kumalaningsih, Sri. 2006. *Antioksidan Alami-Penangkal Radikal Bebas, Sumber, Manfaat, Cara Penyediaan dan Pengolahan*. Surabaya: Trubus Agrisarana.

- Lusiyanti, Y. 2008. Penerapan Efek Interaksi Radiasi Dengan Sistem Biologi Sebagai Dosimeter Biologi. Jurnal Fisika Nuklir. 2, 1–15.
- Netter, F. H. 2006. *Atlas of Human Anatomy* 4th *edition*. Philadelphia: pp. 294.
- Pratama, Guntur. 2016. Pengaruh Ekstrak Temulawak terhadap Gambaran Mikroskopis Organ Limpa Mencit yang Terpapar Radiasi Gamma. Malang: Jurusan Fisika. Universitas Brawijaya
- Pratama, M. A. 2010. Penyinaran Tanaman Otomatis Menggunakan Lampu LED Penumbuh Tanaman Berbasis Mikrokontroler Atmega 16. Palembang: Jurusan Teknik Komputer. Politeknik Negeri Sriwijaya,
- Putra, S.E. 2008. *Antioksidan Alami di Sekitar Kita*. Jakarta: Swadaya Graha.
- Rukmana, H. Rahmat dan Indra Mukti Harahap.2007. *Katuk Potensi dan Manfaatnya*. Jakarta: Penerbit Kanisius.
- Sari, Septiana K. 2015. Pengaruh Ekstrak Temulawak (Curcuma Xanthoriza) terhadap Kadar SGPT dan Identifikas Jenis Radikal Bebas akibat Paparan Radiasi Gamma pada Hepar Mencit (Mus musculus). Malang: Magister Ilmu Fisika Universitas Brawijaya.
- Sherlock, S. 1990. *Penyakit Hati dan Sistem Saluran Empedu Cetakan I.* Jakarta: Penerbit Widya Medika.
- Sherwood, L. 2001. *Fisiologi Manusia: dari Sel ke Sistem, edisi ke 2.* Jakarta: EGC.
- Sianturi, Agus Coco. 2011. Pengaruh Pemberian Ekstrak Air Daun Bangun-Bangun (Coleus amboinicus L.) terhadap Jumlah Sel Darah Merah dan Hemoglobin pada Tikus Putih (Rattus norvegicus) yang diberi Aktivitas Fisik Maksimal. Medan: Universitas Negeri Medan.
- Sibuea, P. 2003. *Antioksidan Senyawa Ajaib Penangkal Penuaan Dini*. Yogyakarta: Sinar Harapan.
- Siswono. 2002. *Kimia, Pangan dan Gizi*. Jakarta: PT Gramedia Pustaka Utama.
- Sudiono, J., dkk. 2003. *Patologi Cetakan I.* Jakarta: Penerbit Buku Kedokteran EGC.
- Suyatno, F. 2010. Aplikasi Radiasi dan Radioisotop Dalam Bidang Kedokteran. Yogyakarta: Seminar Nasional IV SDM Teknologi

repository.up.ac.

Nuklir 18 November 2010.

Winarti, S. 2010. Makanan Fungsional Edisi 1. Yogyakarta: Graha Ilmu.

Zulkarnain. 2013. Analisis Pengaruh Penyinaran Sinar Gamma (γ) terhadap Kadar Insulin Pankreas Sebelum dan Setelah Pemberian Ekstrak Buah Pare (Momordica charantia L.) pada Hewan Coba Mencit (Mus musculus) yang Dibebani Glukosa. Malang: Magister Ilmu Fisika Universitas Brawijaya.

