BAB IV HASIL DAN PEMBAHASAN

4.1 Data Hasil Pengujian

4.1.1 Laju Pendinginan

Nilai laju pendinginan didapatkan dengan mencari selisih temperatur awal dan akhir terjadinya solidifikasi, dan kemudian membaginya dengan waktu yang dibutuhkan sepanjang proses tersebut berlangsung. Adapun perhitungan laju pendinginan dapat dirumuskan sebagai berikut :

$$\dot{Q} = \frac{\Delta T}{\Delta t} = \frac{T2 - T1}{t2 - t1} = \frac{T}{t} \dots (4-1)$$

dengan :

T₂ = Temperatur awal terjadinya solidifikasi [°C]

 T_1 = Temperatur akhir terjadinya solidifikasi [°C]

 Δt = Waktu awal dan akhir terjadinya solidifikasi [s]

Temperatur awal dan akhir terjadinya solidifikasi dihasilkan melalui perekaman data penurunan temperatur atau *data logger* dan termokopel tipe K. Proses perekaman dilakukan ketika mulai dari proses *preheating* cetakan coran, proses penuangan logam cair ke dalam cetakan coran, hingga proses penurunan temperatur spesimen hingga 100 °C dengan interval 1 detik. Laju pendinginan dengan cetakan permanen baja dengan variasi penyisipan material pasir, baja, dan tembaga pada bagian alas cetakan ditunjukkan pada tabel 4.1 berikut.

Tabel 4.1.					
Laju Pendinginan dengan Variasi P Variasi Penyisipan Material	<i>Yenyisipan Material</i>				
Desig					
Pasir	0,073				
Ваја	0,963				
Tembaga	1,169				

46

4.1.2 Hasil Pengujian Mikrostruktur

Gambar 4.1 (a) Foto mikrostruktur perbesaran 100x laju pendinginan variasi penyisipan baja 0,963 °C/s (b) variasi penyisipan tembaga 1,169 °C/s (c) variasi penyisipan pasir 0,673 °C/s

Pengolahan data pengujian mikrostruktur dilakukan dengan metode Planimetri untuk mendapatkan ukuran diameter butir rata-rata. Nilai ukuran butir rata-rata spesimen ditunjukkan pada tabel 4.2 berikut.

Tabel 4.2						
Ukuran Butir Rata-Rata Spesimen						
Laju Pendinginan	Jumlah Butiran [mm-2]		NIA	Illeuron Dutin ASTM [C]	Diameter Rata-	
	Utuh	Intercept	NA	Okuran Butir ASTM [G]	Rata Butir (µm)	
PASIR	53	16	122	3,976	90,61	
BAJA	50	30	130	4,068	87,85	
TEMBAGA	104	30	238	4,94	64,94	

Perhitungan ukuran butir sebagai berikut :

Gambar 4.2 Perhitungan jumlah butir

Butiran Utuh: 53 butirButiran Terpotong: 16 butir

1. Menghitung nilai jumlah butir pada satuan luas tertentu (N_A)

$$N_A = f\left(N_{inside} + \frac{N_{intercepted}}{2}\right)$$
$$N_A = 2\left(53 + \frac{16}{2}\right)$$
$$N_A = 122 \ mm^{-2}$$

2. Menghitung ukuran butir ASTM (G)

 $G = (3,321928 \log_{10} N_A) - 2,954$ $G = (3,321928 \log_{10} 122) - 2,954$ G = 3,976

3. Menghitung ukuran diameter rata-rata (\overline{d})

48

Perhitungan ukuran diameter rata-rata butir menggunakan tabel hubungan ukuran butir yang terdapat pada ASTM E 112 – 96.

Tabel 4.3. *Hubungan Ukuran Butir*

Grain Size No.	\bar{N}_A Grains/Unit Area		Ā Average Grain Area		d Average Diameter		√ Mean Intercept		\bar{N}_L
G	No./in.2 at 100X	No./mm ² at 1X	mm ²	µm²	mm	μm	mm	μm	No./mm
00	0.25	3.88	0.2581	258064	0.5080	508.0	0.4525	452.5	2.21
0	0.50	7.75	0.1290	129032	0.3592	359.2	0.3200	320.0	3.12
0.5	0.71	10.96	0.0912	91239	0.3021	302.1	0.2691	269.1	3.72
1.0	1.00	15.50	0.0645	64516	0.2540	254.0	0.2263	226.3	4.42
1.5	1.41	21.92	0.0456	45620	0.2136	213.6	0.1903	190.3	5.26
2.0	2.00	31.00	0.0323	32258	0.1796	179.6	0.1600	160.0	6.25
2.5	2.83	43.84	0.0228	22810	0.1510	151.0	0.1345	134.5	7.43
3.0	4.00	62.00	0.0161	16129	0.1270	127.0	0.1131	113.1	8.84
3.5	5.66	87.68	0.0114	11405	0.1068	106.8	0.0951	95.1	10.51
4.0	8.00	124.00	0.00806	8065	0.0898	89.8	0.0800	80.0	12.50
4.5	11.31	175.36	0.00570	5703	0.0755	75.5	0.0673	67.3	14.87
5.0	16.00	248.00	0.00403	4032	0.0635	63.5	0.0566	56.6	17.68
5.5	22.63	350.73	0.00285	2851	0.0534	53.4	0.0476	47.6	21.02
6.0	32.00	496.00	0.00202	2016	0.0449	44.9	0.0400	40.0	25.00
6.5	45.25	701.45	0.00143	1426	0.0378	37.8	0.0336	33.6	29.73
7.0	64.00	992.00	0.00101	1008	0.0318	31.8	0.0283	28.3	35.36
7.5	90.51	1402.9	0.00071	713	0.0267	26.7	0.0238	23.8	42.04
8.0	128.00	1984.0	0.00050	504	0.0225	22.5	0.0200	20.0	50.00
8.5	181.02	2805.8	0.00036	356	0.0189	18.9	0.0168	16.8	59.46
9.0	256.00	3968.0	0.00025	252	0.0159	15.9	0.0141	14.1	70.71
9.5	362.04	5611.6	0.00018	178	0.0133	13.3	0.0119	11.9	84.09
10.0	512.00	7936.0	0.00013	126	0.0112	11.2	0.0100	10.0	100.0
10.5	724.08	11223.2	0.000089	89.1	0.0094	9.4	0.0084	8.4	118.9
11.0	1024.00	15872.0	0.000063	63.0	0.0079	7.9	0.0071	7.1	141.4
11.5	1448.15	22446.4	0.000045	44.6	0.0067	6.7	0.0060	5.9	168.2
12.0	2048.00	31744.1	0.000032	31.5	0.0056	5.6	0.0050	5.0	200.0
12.5	2896.31	44892.9	0.000022	22.3	0.0047	4.7	0.0042	4.2	237.8
13.0	4096.00	63488.1	0.000016	15.8	0.0040	4.0	0.0035	3.5	282.8
13.5	5792.62	89785.8	0.000011	11.1	0.0033	3.3	0.0030	3.0	336.4
14.0	8192.00	126976.3	0.000008	7.9	0.0028	2.8	0.0025	2.5	400.0

Sumber : ASTM E 112 – 96 (2004,p.8)

Setelah mendapatkan nilai ukuran butir ASTM, nilai diameter butir rata-rata didapatkan dengan menggunakan metode interpolasi.

 $\frac{3,5-3,976}{4-3,5} = \frac{106,8-d}{89.8-106,8}$ $\frac{-0.476}{0.5} = \frac{106,8-d}{-17}$ 8.092 = 53.4 - 0.5d $d = 90.61 \,\mu m$

4.1.3 Hasil Pengujian Kekerasan

Pengujian kekerasan dari hasil coran dilakukan dengan metode pengujian kekerasan indentasi Rockwell berdasarkan standar ASTM E 18 – 02. Spesimen dengan variasi laju pendinginan dengan media pendingin pasir, baja, dan tembaga yang berjumlah 3 buah diuji kekerasan sebanyak dua daerah. Masing – masing daerah dilakukan pengujian sebanyak 5 titik indentasi dan kemudian diambil rata – ratanya. Daerah pengujian ditunjukkan pada gambar 4.3 berikut.

Gambar 4.3 Daerah pengujian kekerasan

Adapun nilai kekerasan spesimen ditunjukkan pada tabel 4.4 berikut.

Tabel	4.4.	NV
Nilai	Kekerasan	Spesimen

			and the second				
	Bagian A [HRB]			Bagian B [HRB]			
	P1	P2	P3	P1	P2	P3	
~	25,9	26,60	28,30	32,50	28,30	33,10	
	25,80	28,90	26,80	30,30	29,80	36,30	
ASI	27.60	31,00	26,10	33,10	25,30	35,20	
٩.	26,20	28,50	28,40	31,40	28,40	34,80	
	26,20	25,50	27,20	32,80	27,80	36,50	
	T1	T2	Т3	T1	T2	Т3	
_	49,90	47,80	49,50	59,40	44,00	55,00	
VGA	53,90	48,00	51,70	47,60	46,50	56,00	
AB /	53,60	48,40	52,40	57,80	44,90	54,60	
TEA	54,50	48,10	52,20	54,10	43,50	55,50	
-	51,50	46,90	52,50	56,70	47,70	55,90	
	B1	B2	B3	B1	B2	B3	
	48,60	39,40	42,70	28,90	44,70	51,90	
BAJA	48,40	45,40	48,30	26,90	47,10	53,90	
	49,30	49,10	50,20	25,90	47,90	55,50	
	44,50	48,80	47,30	26,70	48,50	51,70	
	47,60	48,20	48,20	30,00	44,60	53,70	

Adapun nilai kekerasan rata – rata spesimen dapat dilihat pada tabel 4.5. berikut.

Tabel 4.5. Kekerasan Rata-Rata Spesimen

Rekerusun Ruta-Ruta Spesimen				
Kekerasan Rata-Rata [HRB]				
	Bagian A	Bagian B		
PASIR	27,242	31,71		
BAJA	47,07	42,53		
TEMBAGA	50,73	51,95		

4.2 Grafik dan Pembahasan

Gambar 4.4 Grafik variasi penyisipan material pada bagian alas terhadap laju pendinginan

Laju pendinginan pada proses pengecoran cetakan permanen baja dengan variasi penyisipan material pasir memiliki nilai terendah yaitu 0,673 °C/s, variasi penyisipan material baja 0,963 °C/s, sedangkan dengan variasi penyisipan material tembaga memiliki nilai tertinggi yaitu 1,169 °C/s. Hal ini disebabkan oleh nilai konduktivitas termal yang dimiliki oleh masing-masing material penyisip, dimana pasir memiliki nilai konduktivitas termal terendah 1,93-2,90 W/m°C, baja 36-55 W/m°C, dan tembaga 401 W/m°C. (Pratiwi, 2012)

Konduktivitas termal merupakan kemampuan suatu material untuk menghantarkan panas, adapun proses perpindahan panas terjadi dari temperatur yang lebih tinggi ke temperatur yang lebih rendah. Oleh karena itu, ketika proses pendinginan pada pengecoran logam berlangsung, semakin tinggi konduktivitas termal material penyisip pada bagian alas cetakan maka semakin cepat penurunan temperatur yang terjadi, sehingga laju pendinginan yang dihasilkan semakin tinggi.

50

BRAWIIAYA

4.2.2 Pengaruh Laju Pendinginan terhadap Ukuran Butir

Pada grafik diatas dapat dilihat bahwa laju pendinginan dengan nilai terendah (0,673 °C/s) dengan variasi penyisipan material pasir pada bagian alas memiliki ukuran butir tertinggi yaitu 90.61 μ m. Adapun ukuran butir dengan laju pendinginan variasi penyisipan material baja (0,963 °C/s) 87.85 μ m, dan tembaga (1,169 °C/s) 64.94 μ m. Hal ini disebabkan oleh pada laju pendinginan tinggi, pertumbuhan butir terhambat oleh waktu solidifikasi yang dibutuhkan sehingga ukuran butir yang terbentuk lebih kecil.

4.2.3 Pengaruh Laju Pendinginan terhadap Kekerasan

Berdasarkan gambar 4.1 diatas, nilai kekerasan dengan laju pendinginan pasir 0,673 °C/s sebesar 27,24 HRb pada bagian A dan 31,71 HRb pada bagian B, sedangkan laju pendinginan baja 0,963 °C/s sebesar 47,07 HRb pada bagian A dan 42,53 HRb pada bagian B, dan laju pendinginan tembaga 1,169 °C/s sebesar 50,73 HRb pada bagian A dan 51,95 HRb pada bagian B.

Kekerasan rata – rata yang paling tinggi sebesar 50,73-51,95 HRb ditunjukkan oleh spesimen dengan laju pendinginan tertinggi yaitu 1,169 °C/s dengan variasi penyisipan tembaga pada bagian alas cetakan. Adapun nilai kekerasan terendah sebesar 27,24-31,71 HRb dengan laju pendinginan terendah yaitu 0,673 °C/s dengan variasi penyisipan pasir pada bagian alas cetakan. Hal ini menunjukkan bahwa laju pendinginan yang terjadi mempengaruhi sifat mekanik secara langsung yaitu semakin cepat laju pendinginan pada proses pengecoran maka kekerasan akan semakin meningkat. Hal ini disebabkan ukuran butir rata-rata yang terbentuk pada laju pendinginan tertinggi (1,169 °C/s) sebesar 77,27 μm yang mana berukuran lebih kecil dibandingkan dengan laju pendinginan terendah (0,673 °C/s) sebesar 127 μm. Butir dengan ukuran kecil memiliki luas permukaan yang menghalangi deformasi plastis lebih besar, sehingga nilai kekerasan meningkat.

52