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RINGKASAN 

 

Krisna Febrian, Magister Teknik Sipil, Jurusan Teknik Sipil, Fakultas Teknik 

Universitas Brawijaya, Oktober 2017, Dynamic Analysis of Irregular Bridges with 

Polynomial Rocking Bearings, Dosen Pembimbing: Ari Wibowo, S.T., M.T., Ph.D 

dan Professor Tzu-Ying Lee. 

 

Friction Pendulum System (FPS) adalah salah satu dari sistem penahan gempa 

konvensional yang sudah banyak digunakan dan terbukti secara efektif dapat 

mengurangi bahaya akibat gempa dalam. Namun, teknologi ini mungkin tidak efektif 

ketika struktur terkena gempa dangkal, karena periode dari gempa dangkal biasanya 

akan mendekati periode dari struktur tersebut. Pada studi ini, Polynomial Rocking 

Bearing (PRB) yang mempunyai kekakuan isolasi yang dapat berubah-ubah, 

digunakan untuk meningkatkan performa dari sistem penahan gempa pada gempa 

dangkal. PRB tersusun atas articular joint dan concave rocking surface. 

Kelengkungan dari rocking surface ini didefinisikan dengan menggunakan fungsi 

pangkat enam. 

Berdasarkan penelitian terdahulu pada struktur bangunan dan jembatan dengan kolom 

beraturan (kolom dengan tinggi yang sama), PRB telah terbukti secara efektif dapat 

mengurangi perpindahan isolator pada gempa dangkal. Namun teknologi ini belum 

penah diterapkan pada struktur jembatan dengan kolom tidak beraturan (kolom 

dengan tinggi yang berbeda). Studi ini bertujuan untuk menganalisis perilaku dari 

PRB yang akan diterapkan pada jembatan dengan kolom tidak beraturan. Pada studi 

ini juga dilakukan optimisasi pada desain parameter dari PRB dengan menggunakan 

metode Particle Swarm Optimization-Simulated Annealing (PSO-SA). Jika 

dibandingkan dengan Friction Pendulum Systems (FPS), performa dari PRB jauh 

lebih baik dalam mengurangi perpindahan dari dek jembatan pada jenis gempa 

dangkal maupun gempa dalam. 

 

Kata kunci: kekakuan isolasi yang berubah-ubah, polynomial rocking bearing, 

irregular bridges, gempa dangkal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

SUMMARY 

 

Krisna Febrian, Department of Civil Engineering, Faculty of Engineering, 

University of Brawijaya, October 2017, Dynamic Analysis of Irregular Bridges with 

Polynomial Rocking Bearings, Supervisors: Ari Wibowo, S.T., M.T., Ph.D and 

Professor Tzu-Ying Lee. 

 

Conventional sliding isolators such as Friction Pendulum System (FPS) are widely 

used and effectively proved to mitigate seismic hazard in far-fault earthquakes. 

However, it may not be effective when the structures are subjected to near-fault 

earthquakes because the earthquake’s period is usually close to the isolation period. In 

this study a Polynomial Rocking Bearing (PRB) which has variable isolation stiffness 

is used to improve the performance of seismic isolation systems under near-fault 

earthquakes. A PRB is composed of an articular joint and concave rocking surface. 

The rocking surface is defined by a sixth-order polynomial function. 

According to previous studies, the PRB has been verified to effectively suppress the 

large isolator displacement induced by near-fault earthquakes on building and regular 

bridges. However it has not been used yet in the irregular bridges. This study aims to 

analyze the behavior of Polynomial Rocking Bearing installed on an irregular bridge. 

Also the optimal design parameters of PRBs are found out by using the Particle 

Swarm Optimization-Simulated Annealing (PSO-SA) hybrid searching algorithm. As 

compared with conventional Friction Pendulum Systems (FPS), the performance of 

PRBs is superior to effectively suppress the displacement of the bridge deck in both 

near and far-fault earthquakes. 

 

Keywords: variable isolation stiffness, polynomial rocking bearing, irregular bridges, 

near-fault earthquakes. 
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CHAPTER I: INTRODUCTION 

 

1.1. Background 

Nowadays, a transportation system becomes very important in human life. 

People need a well-ordered transportation system to help them to move from one 

place to another conveniently, and to support their economic, social, politic activity, 

and so forth. Besides, the facilities and infrastructures, such as highways and railways 

are important to construct the transportation system. Bridges are the most vital and 

vulnerable components in the transportation system. Bridges are designed based on its 

function, ground condition, material construction, and the available funds. No matter 

what kinds of bridges will be constructed, in order to provide the users safety and 

comfort, they must be able to carry any loads especially seismic loading. 

In the past extreme earthquakes, a number of bridges suffered serious damage 

even collapse. Once bridges failure or collapse during an earthquake, it will impede 

recovery and rehabilitation such as the 1994 Northridge Earthquake in California, the 

1995 Kobe Earthquake in Japan, the 1999 Chi-Chi Earthquake in Taiwan, and the 

2010 Haiti Earthquake in Haiti (e.g., Basoz and Kiremidjian, 1998; Basoz et al, 1999; 

Bruneau et al, 1999; Ghobarah and Ali, 1988; Kawashima, 2002; Kosa et al, 2002; 

Lee and Loh, 1999; Otsuka, 1997). Hence, it becomes very important to understand 

about how to design the bridges for mitigating the seismic risks by developing a good 

method. 

To protect bridges from seismic damage, bridges must be designed based on 

the bridge seismic design codes. However, a modern technique of mitigating seismic 

induced forces of structures is structural control. Structural control can be classified 

into passive, active, and semi-active control. More than 20 years, most of the previous 

researchers use passive control, especially base isolation systems or seismic isolation 

systems as shown in Figures 1.1-1.2 (e.g., Asher et al, 1995; Bozorgnia et al, 1998; 

Çelebi, 1996; Fujita, 1998; Kelly, 1998; Martelli and Forni, 1998). 

Seismic isolators are usually placed between structure and foundation on 

buildings. The main concept of seismic isolation is to increase the fundamental period 

of structures and/or dissipate the seismic energy transmitted directly onto the structure 

systems (Matsagar and Jangid, 2006). Thus, such systems can protect the structural 

and non-structural systems from earthquakes. Generally, a seismic isolation system 
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has five characteristics. First, it has a soft isolation layer to mitigate the seismic force 

transmitted to the main structure. Second, it should have the ability to recover into 

initial position in order to reduce the residual displacement of structure after 

earthquakes. Third, it has an energy dissipation mechanism to avoid an excessive 

isolator displacement. Fourth, it should have a sufficient vertical stiffness to retain the 

stability of structures. The last, it should have the appropriate stiffness to resist small 

vibration (Bukle and Mayes, 1990). Seismic isolators can be divided into two groups, 

namely, sliding bearings and elastomeric bearings (e.g., Kelly, 1986; Koh and Kelly, 

1988; Naeim and Kelly, 1999). A Friction Pendulum System (FPS) is commonly-used 

sliding bearings. Previous research has shown that the FPS has good isolation effect 

when structures are subjected to far-fault earthquakes. However, it may result in an 

excessive isolator displacement under near-fault earthquakes. 

 To overcome such a problem, some researchers suggested the isolation 

systems with variable mechanical properties, which may be adaptive to a wider range 

of earthquakes. Polynomial Rocking Bearings (PRBs) proposed by Lu et al. (2013) 

has variable mechanical properties. In the previous study, Polynomial Rocking 

Bearing has applied on the building by Lu and Hsu (2013) and also it has applied to 

the regular bridge (bridge with the same dimensions of the pier) by Tzeng (2013). 

Based on both previous researches above, Polynomial Rocking Bearing is able to 

effectively suppress the large isolator displacement induced by strong near-fault 

earthquake. Bridges structure may be irregular in column heights due to complex 

terrain, route alignment, ramps, interchanges, and so on. In this study, PRBs are 

employed and installed between the deck and the pier for an irregular bridge. The 

behavior of the irregular bridge with PRBs is investigated through analysis using 

MATLAB®. The optimum parameters of PRBs are found out by using the Particle 

Swarm Optimization-Simulated Annealing (PSO-SA) hybrid searching algorithm. 

 

1.2 Literature Review 

1.2.1 Seismic Control System 

Generally, there are 3 types of seismic control systems: passive control system, 

active control system, and hybrid control system. The passive control system does not 

need any additional energy source to operate and it is activated by the earthquake 

input motion only. In general, the passive control system has three kinds of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

mechanical devices: energy dissipation systems, base isolation systems, and dynamic 

oscillators.  

Energy dissipation systems are typically designed mechanical systems to 

dissipate a large number of the earthquake in special devices or special details 

connection which will deform or yield during the earthquake. In general, this device is 

characterized by its capability to enlarge the energy dissipation in a structural system 

with a view to resist earthquake-induced forces. For example are friction dampers, 

metallic-yielding dampers, viscous-elastic dampers, and fluid viscous dampers. 

Base isolation systems or seismic isolation systems are applied to increase the 

structure’s natural period lead to decrease its natural frequency of vibration. In this 

way, the super-structure can be decoupled from earthquake-induced ground motion 

and its formidable energy. Decreasing on the frequency of vibration will also decrease 

the pseudo-acceleration of structures thereby reducing the base shears. 

Dynamic oscillators are kind of seismic control system includes supplemental 

oscillators which act as dynamic absorbers. For example of the dynamic oscillator is 

tuned mass damper. Its frequency of vibration-tuned to the exciting frequency is 

attached to the main structural system. During the excitation, tuned mass damper 

simply moves in out of phase of the main structural system thereby imparting 

opposing inertial forces of the external vibration forces acting on the structure. In this 

way, the motion of the main structural system almost ceased or highly diminished. 

Active control system provides seismic protection by imposing forces on a 

structure that counterbalance the earthquake-induced forces. This system is active in 

that it requires an energy source and computer-controlled actuators to operate special 

braces of tuned-mass dampers located throughout the building. It is more complex 

than passive control system because it relies on computer control, motion sensors, 

feedback mechanisms, and moving parts which may require service or maintenance. It 

also needs an emergency power source to ensure that it will operable during a major 

earthquake and any immediate aftershocks. This technology is highly sophisticated 

and expensive one and also may not be feasible for small projects. 

Hybrid control system combines features of both passive and active control 

systems. In general, it has reduced power demands, improved reliability, and reduced 

cost when compared to fully active seismic control systems. It could be used for civil 

infrastructures such as cable-stayed bridges, which need large control forces and good 

controller robustness to apply real structures. This system could relieve some of the 
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limitations of each system. For example, additional active or semi-active control 

devices in the LRBs-based hybrid control system could reduce the deformation of 

LRBs and LRBs could offer some degree of protection in the case of the power failure 

of the active controller. 

 

1.2.2 Structure Response with Seismic Isolation System 

In the past decades, seismic control system has been studied by many 

researchers to offers a promising solution for protecting structure from seismic 

hazard. Passive control system is one of the seismic control systems that used to 

increase the energy dissipation capacity of a structure (Symans and Constantinou, 

1999). This system has already reviewed by Soong and Constantinou (1994), ATC 

(1993 and 1994), Constantinou et al. (1998). The energy dissipation capacity can be 

enhanced by setting passive supplemental devices such as base isolation systems, 

tuned mass damper, fluid viscous dampers, viscous-elastic dampers, metallic-yielding 

damper, and friction dampers. Passive control utilized the structural response by the 

earthquake input motion to generate the control force so it doesn’t need any energy 

source. In practical application of some bridges, passive control system has been 

implemented worldwide since 1970’s [e.g., Robinson and Greenbank, 1976; 

Kawashima et al, 1991; Priestley et al., 1996; Roberts, 2005; Vaurigaud et al., 2011; 

Taflanidis, 2011; Chen et al., 2015; Rådeström et al., 2016; Shi et al., 2016]. 

Remarkable progress in analytical and experimental research had been established in 

order to improve the seismically response of bridge. Early work was performed by 

Kawashima et al. (1989, 1991, 1992a, 1992b) to investigate the seismic response 

control of highway bridges by using mass dampers and variable dampers. 

Lu et al (2003) studied the sliding isolated structure subjected to near-fault and 

far-fault ground motions. In the test, a set of pulse accelerations with various pulse 

periods were artificially generated on the isolated structure. Several effects of near-

fault earthquakes on the response of the isolated structure like the vertical ground 

motion, the over-turning moment of the structure, and the period of the pulse wave are 

investigated and discussed. The test results showed that the pulse component in the 

near-fault earthquake can lead to an isolation motion similar to resonant response. As 

a result, the isolator displacement of the sliding isolated structure was considerably 

amplified in the near-fault earthquake as compared with the far-fault earthquake. 
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Lu et al (2008) presented the stiffness controllable system for near-fault 

seismic isolation. This system is a kind of sliding base isolation system. Previously, 

many researchers used conventional passive isolation system, but this system usually 

had long-period structural system and may result excessive isolator displacement 

when subjected to near-fault earthquake. To overcome such a problem, stiffness 

controllable system is proposed in this study. By varying the stiffness of the isolation 

system, the restoring force provided by the system can be controlled by a proposed 

semi-active control method that is developed based on active feedback control. The 

result of numerical simulation has shown that the proposed system is able to 

effectively mitigate the effect of low frequency resonance induced by a near-fault 

earthquake. As a result, the base displacement and super-structure acceleration of the 

isolated structure can be reduced simultaneously. 

Lu et al (2011) developed the seismic isolation system using variable 

mechanical properties called Sliding Isolators with Variable Curvatures (SIVCs). 

SIVCs are similar to FPS isolator, except its sliding surface has variable curvature 

rather than being spherical. This research did the simulation and experimental study. 

The SIVC is put on the steel frame and did the cyclic element test and shaking table 

test. The result of both tests has verified that SIVC has the hysteretic property of 

variable stiffness. It was also demonstrated that the proposed SIVC is able to 

effectively reduce the isolator drift in a near-fault earthquake with strong long period 

components as compared to FPS with the same friction coefficient. 

Lu & Hsu (2013) analyzed the Variable-Frequency Rocking Bearings 

(VFRBs) as the seismic isolation system that applied to the building. VFRBs have 

variable mechanical properties. Generally, it has an axially symmetric rocking surface 

with a variable curvature. This research did the simulation and experimental study. 

This bearing is installed between the foundation and superstructure. The experimental 

results have a good agreement with the simulation. The experimental results also 

show that the VFRB system was able to effectively suppress the excessive isolator 

displacement induced by a near-fault earthquake while retaining good isolation 

efficiency for the superstructure. 

Lu et al (2013) presented Polynomial Friction Pendulum Isolators (PFPIs) for 

building floor isolation. This research studied numerically and experimentally. Due to 

its variable-stiffness behavior, PFPIs was able to achieve multiple design objectives. 

The shaking table tests verify that the prototype system possesses the desired 
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hysteretic property with variable stiffness and the measured responses match with the 

simulation. The simulation results demonstrate that the isolation performance 

complies with the designated dual performance objectives, which yield either 

acceleration or displacement control depending on the earthquake intensity and 

isolator drift. 

Tzeng (2013) investigated the regular bridges (bridges with the same size of 

the column) with the Polynomial Rocking Bearings (PRBs) as the seismic isolation 

system. Previous research has confirmed that PRBs have good isolation effect on the 

building structure and it has not been applied to the bridge. This research did the 

simulation and experimental study. PRB were installed between the column and deck 

of bridges. The result was a hysteretic property of PRB has softening and hardening 

section. Both of this section can reduce the structural acceleration and inhibit the 

excessive isolator displacement, respectively. In order to find the optimum parameters 

of the PRB, this research also did the optimization using PSO-SA (Particle Swarm 

Optimization-Simulated Annealing). For the simulation result, PRBs were able to 

suppress excessive isolator displacement better than FPS. 

Wang (2014) investigated the Polynomial Friction Pendulum Isolators (PFPIs) 

that applied on the regular bridges (bridges with the same size of the column). The 

sliding surface of PFPIs is defined by a sixth-order polynomial function. The restoring 

force processes a softening and a hardening section. The restoring stiffness is 

decreasing in softening section to mitigate the acceleration response, and the restoring 

stiffness is increasing in hardening section to reduce the displacement response. It has 

been proven that PFPI can reduce the response of structure efficiently both in a far-

field and near-field earthquake. This research also did the optimization using Particle 

Swarm Optimization-Simulated Annealing (PSO-SA) to find the optimum parameters 

of PFPI. The results show that the bridges with PFPIs designed by this simple 

procedure can also reduce the seismic response effectively.  

Tsao (2016) studied the Polynomial Friction Pendulum Isolators (PFPIs) that 

applied on the irregular bridges (bridges with different size of the column). Compare 

with typically isolated bridges, the isolated bridges with different height of column 

have the different stiffness of columns, and the characteristic of PFPIs will also 

different, therefore the numerical analysis is more complicated. This research did the 

simulation and experimental study. The results show that the analysis method 

developed in this study has the good agreement with the experimental result. In the 
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last part of this research, this research also did the optimization using Particle Swarm 

Optimization-Simulated Annealing (PSO-SA) to find the optimum parameters for 

PFPI. The results show that the structural response can effectively achieve the goal set 

by the PSO-SA objective function. 

Cheng & Chao (2017) studied the seismic performance of base-isolated 

structure with the rocking bearing. The rocking bearing is designed to move until 

moderate earthquakes and the structure will rock in the rigid body motion, so it can 

isolate the seismic energy under the earthquakes. Based on the force-displacement 

relations and the effective damping of the systems, the seismic response may be 

estimated through the modified elastic response spectrum. To verify this idea, the 

shaking table tests did for one story spaced structure with rocking bearing isolation. 

The results showed that structures with a lower aspect ratio of bearing or a rocking toe 

with polynomial curve vibrated in a higher natural frequency. 

 

1.3 Research Objectives 

This research is aimed to analyze the behavior of Polynomial Rocking Bearing 

installed on an irregular bridge subjected to the seismic loading. The optimum 

parameters of PRBs are found out using PSO-SA hybrid searching algorithm. The 

seismic performances of the irregular bridge with PRBs and FPS are compared to 

verify the superiority of PRBs.  

 

1.4 Outline 

The outline of this research is as follows: 

Chapter 1 presents general introduction and background of this study. In this part also 

explain about the previous study related to this study, brief literature review, 

and research objectives. 

Chapter 2 explains the theory of Polynomial Rocking Bearings (PRBs). 

Chapter 3 presents the main idea of this study and do the modeling of the irregular 

bridges with Polynomial Rocking Bearing. In this chapter also explain more 

about the discrete time state space as the method to simulate the bridge’s 

model. 

Chapter 4 explains about the optimization of Polynomial Rocking Bearing using 

Particle Swarm Optimization-Simulated Annealing (PSO-SA) hybrid 

searching method and shows the results of optimization. In this chapter will 
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also explain about the conventional system Friction Pendulum System (FPS) 

that will be compared with Polynomial Rocking Bearing. 

Chapter 5 will be the conclusion of this study and gives some recommendations for 

future work. 
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Figure 1.1 Seismic Isolation Systems on Building 

 

 

 

 

 

 

 

 

 

Figure 1.2 Seismic Isolation Systems on Bridge 

 

 

 

 

 

 

 

 

                        (a)                                                                     (b) 

Figure 1.3 Experimental Test (a) PRBs Installed on Building; (b) PRBs Installed on 

Regular Bridge 
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CHAPTER II: POLYNOMIAL ROCKING BEARINGS 

 

2.1 Configuration of a General Polynomial Rocking Bearing 

 Polynomial rocking bearing (PRB) is an axially symmetric rocking surface 

with a variable curvature. It has an articular (ball and socket) joint on the upper part 

and a concave rocking surface with a base plate on the lower part (Lu et al, 

2013:117). The articular joint is mounted on the footing of the superstructure, while 

the base plate is mounted on the foundation (Lu et al, 2013:117). When the 

earthquake occurred, the rocking surface of the bearing will rock back and forth on 

the base plate, thus provide an isolation layer to reduce the ground motion transmitted 

into the super-structure. The geometry of the rocking surface must be concave. In 

order to provide variable isolation frequency, the rocking surface may have a variable 

curvature that can be determined depend on the designer. 

 Based on the experiment, PRB is able to suppress excessive isolator 

displacement induced by a near-fault earthquake (Lu et al, 2013:118). PRB is one of 

the seismic isolation systems. It has 2 main functions, first is to protect the structural 

systems and their facilities inside from earthquakes, another is to mitigate the seismic 

load transmitted onto the structure. Based on the Figure 2.1, PRB has 3 design 

parameters: height of bearing (h), the radius of the spherical head (r), and the 

geometrical function of rocking surface Y = G(X). In this study, the sixth-order 

polynomial function is chosen to make the bearing with variable stiffness. Therefore, 

it will be an even function which is symmetrical about Y-axis. 

 ( )     
     

     
                 (2.1) 

Note: c1, c2, c3 are determined by using numerical optimization 

 

2.2 Horizontal Restoring Force of a Polynomial Rocking Bearing 

 The mechanical properties of an isolator are also important besides the 

configuration. However, before discussing mechanical properties, for simplicity, some 

assumptions will be made. First, rocking surface and base plate of bearing should 

have a point contact anytime. Second, the friction coefficient between them should be 

large enough to prevent slippage (both of them are always in rolling contact). Third, 

the inertial moment due to the rocking motion is negligible as compared to the forces 
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applied to the bearing. At last, the radius of curvature should be larger than height to 

retain stability. 

 There are 2 coordinate systems on this isolator, x-y and X-Y. The x-y is a fixed 

coordinate system which x-axis attached to the ground. The X-Y is moving coordinate 

system of PRB attached to bearing and will rock along the bearing. Therefore, when 

the bearing is on its origin position, both of the coordinate systems coincides each 

other. However, when the systems are on rocking state, there will be a rotation angle 

between x-y and X-Y that denoted by   . In Figure 2.3, since it assumed that the 

rocking surface of PRB has a point contact with ground, so the x-axis is tangent to the 

contact point A. 

      
     

     
   (  )       

 

 
    

 

 
              (2.2) 

Note: 

θa = rotation angle 

Xa = moving coordinate for contact point 

Other parameters are four forces that work on the isolator. W is the structural weight, 

U is the horizontal resultant forces, N is the normal forces at contact point A, and F is 

the friction forces at contact point A. W and U are actually the forces that occur 

between superstructure and the bearing. Moreover, the force U as horizontal resultant 

forces transmitted onto isolated structure is an important parameter. The force U is 

defined by taking the moment equilibrium at contact point A and written as follows: 

∑                                     (2.3) 

∑                                    (2.4) 

∑          
 (     )

  
               (2.5) 

Note: 

W = structural weight 

U = horizontal resultant forces 

N = normal forces at contact point A 

F = friction forces at contact point A 

ur = bearing restoring force 

xa = x coordinate of the contact point A in the x-y coordinates 

xb = x coordinates of the point B 

yb = y coordinates of the point B 
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Since it assumed that friction coefficient between the rocking surface and base plate 

should be large enough to prevent slippage, so xa should be equal to the arc length (Sa) 

between A and center axis of moving coordinate system. 

      ∫ √    (  )
   

  

 
               (2.6) 

Using the coordinate transformation relation between x-y and X-Y systems, the value 

of xb and yb can be determined as: 

   (   (  ))                                                     (2.7) 

   (   (  ))                                        (2.8) 

Refer to equation 2.2, with eliminating variable   , the value of xb and yb can be 

determined in another form. 

      
    (   (  )) 

 (  )

√    (  )
 

                (2.9) 

   
   

 (  ) (   (  ))

√    (  )
 

               (2.10) 

From the equations above, variables xa, xb, and yb are depend on variable Xa which 

represents the X coordinate of the contact point A. Refer to equation 2.5, equation 2.6, 

equation 2.9, and equation 2.10, the existence of restoring force ur can be shown as: 

     (  )  
 [ (   (  )) 

 (  )   ]

(   (  ))    
 (  )

            (2.11) 

Thus, to express the restoring force    of Polynomial Rocking Bearing, it should be 

defined first about the geometric function of Polynomial Rocking Bearing. 

 

2.3 Isolation Stiffness and Frequency of a Polynomial Rocking Bearing 

 The stiffness (kr) of an isolator can be defined as the rate of change or first 

derivative of the restoring force (ur) respect to the isolator displacement (xb). 

However, since the ur is not an explicit function of xb, so the stiffness should derive 

one by one like equation below: 

     (  )  
   (  )

   (  )
 

   (  )

   
   (  )

   

             (2.12) 

Once the geometric function G(X) is known, the stiffness (kr) can be calculated by the 

equation above. It should be noted that the equation above is just for a single isolator. 

For the multi-stiffness isolation system, the total stiffness is equal to the sum of all the 
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stiffness (Kr). This provision also applies to the mass of the super-structure. Finally, 

the total mass is also equal to the sum of all the mass (M). 

   ∑     
 
                   (2.13) 

∑       
                   (2.14) 

Note: 

kr,i = stiffness of the i
th

 bearing 

Wi = vertical load of the i
th

 bearing 

n = total number of bearings used in the system 

g = gravitational acceleration 

With assuming that the superstructure is a rigid body and all of the bearings are 

designed identically and have the same displacement, so we can calculate the period T 

of the overall Polynomial Rocking Bearing as: 

    √
 

  
                 (2.15) 

    √
 

 
∑    ∑   

 
   

 
                 (2.16) 

    
  
 (  )

  ̅ 
 (  )

                (2.17) 

 

 From some equations above, the restoring force (ur), stiffness (kr), and period 

(T) of the Polynomial Rocking Bearing are depend on the geometric function of 

isolator G(X) and its derivatives. In another hand, the isolation stiffness and period are 

also a function of Xa. It is different from the conventional system that the isolation 

stiffness and period are constant. Therefore, it becomes important to choose the 

proper geometric function to achieve the desired properties. Moreover, from equation 

2.17, period T is independent of the isolated structure mass. Hence, this property can 

be advantageous for the structure with a variable mass that needs to be isolated. 

 

2.4 Horizontal Friction Force of a Polynomial Rocking Bearing 

 Since the spherical head of Polynomial Rocking Bearing has the friction 

effect, it will provide the energy dissipation of the bearing. So, when the friction is 

considered, the behavior of spherical head will change like the Figure 2.4. This figure 

represents the resultant friction force and resultant normal force with the symbol F 
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and N, respectively. For the resultant normal force, because it measured from the 

vertical axis, so there will be an angle ϕ. Note that the force N and F are 

perpendiculars each other. 

 For the convenience, the force system in the Figure 2.4(a) is slightly replaced 

by the equivalent calculation of force system in the Figure 2.4(b), in which W and U 

are the equivalents vertical and horizontal force components. The Force W and U are 

interactive forces between the structure and bearing, so it should be affected by the 

structural weight and dynamic response. Furthermore, in the Figure 2.4(b), the 

equivalent couple moment produce by friction force F to point B can be expressed as: 

                      (2.18) 

Note: 

Mf = moment produce by F 

Looking back to the Figure 2.4, it is assumed that the bearing has a positive 

displacement and its rocking outward (the articular joint moving away from the 

neutral position). If the bearing has the opposite direction, so the directions of F and 

Mf should be reversed. Generally, the directions of F and Mf should be determined by 

the rocking direction of the bearing, once it moving outward or inward. 

 Horizontal force U is consists of restoring force and friction force. 

                       (2.19) 

Note: 

   
  

  
 

 (     )

  
               (2.20) 

   
  

  
 

  

  
                (2.21) 

Unlike the restoring force, the friction force cannot be easily expressed as an explicit 

function of the system response, because it has two possible states, slip state and stick 

state. When F in the slip state, it means its absolute value should be equal to its slip 

force. When F is in stick state, its value will be determined by the current excitation 

and motion of superstructure. Using the Coulomb’s friction law to express the friction 

force, and it should satisfy the condition below: 

| |             slip state                        (2.22) 

| |           stick state             (2.23) 
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Note: 

μ = friction coefficient in articular joint 

Fmax = maximum friction force 

 

Since Figures 2.4(a) and 2.4 (b) are equivalent, so the normal force can be expressed 

as: 

                            (2.24) 

 

W is known value, however, U is the unknown value. So, it will be more complicates 

to find the N when the U is still unknown. To simplify this condition, it assumes that 

the horizontal force is smaller than vertical force (U < W) and also the angle   is 

small enough (   ), thus N  W. By using the previous condition, finally the 

friction force can be shown as: 

|  |          (  )     slip state            (2.25) 

|  |                                     stick state            (2.26) 

Note: 

uf,max = maximum value of uf 

 

 (  )  
 √    (  )

 

   (  )    
 (  )

 = modification factor of μ           (2.27) 

Since ur and uf are proportional to the vertical load W based on previous equations, so 

when the superstructure experience rocking behavior, it causes the vertical load W 

varies, so the total horizontal force U will be varied also. If W decreases to zero, so U 

will also approach to zero. Hence, as long as the assumption     is true, the derived 

formula of PRB is applicable even though the vertical load W is a variable. 

 

2.5 Equivalent Horizontal Friction Coefficient 

 The friction coefficient of a sliding isolator can be defined as the ratio between 

the maximum friction force and vertical load. 

 ̅  
      

 
  (  )                 (2.28) 
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Therefore, if the chosen geometric function is symmetric about Y-axis and passes 

through the origin of X-Y coordinate, then we have G(0) = G’(0) = 0 at Xa = 0. 

 ̅   ̅( )   ( )  
 

 
                (2.29) 

 ̅ = the initial equivalent friction coefficient.  

 

Initial equivalent friction coefficient is the friction coefficient when the bearing is at 

its neutral position. Its value is important since it determines the threshold seismic 

force that will activate the PRB. For the given material friction coefficient, the value 

of initial equivalent friction coefficient can be easily adjusted by change the design 

value of .
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Figure 2.1 Polynomial Rocking Bearings Installed under Bridge’s Deck 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Polynomial Rocking Bearings 
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Figure 2.3 Free Body Diagram of Polynomial Rocking Bearings 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Equivalent Force Systems at Spherical Head of PRBs 
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CHAPTER III: NUMERICAL ANALYSIS MODEL AND 

ANALYSIS METHOD 

 

 This chapter describes the numerical analysis model of PRB isolation system 

that applied on the irregular bridge and uses the numerical analysis method called 

discrete-time state-space method to analyze the behavior of PRB under the seismic 

loading. 

 

3.1 Design of Target of Bridge 

 The bridge which consists the superstructures, bearing isolation systems, 

columns are designed based on the Japan Highway Bridge Design Codes. As shown 

in the Figure 3.1, the bridges consist of the three-span deck with 2 abutments and 2 

different heights of piers. The detail parameters of irregular bridges are shown in the 

Table 3.1. This study is based on single span bridge deck with a different high of the 

pier. The following assumption is considered to simplify the analysis. First, the soil 

condition along the bridge is uniform. Second, the vertical ground motion 

characteristics of the structure are not considered. Third, the friction coefficient of the 

bearing is constant. Lastly, the maximum static friction coefficient is equal to its 

dynamic friction coefficient. 

 

3.2 Equation of Motion Derivation 

 Figure 3.2 shows the mathematical model of the irregular bridge. In order to 

simplify the calculation, free body diagram is presented on Figure 3.3 and it will 

divide the system into two parts, the upper part and a lower part. The upper part is a 

bridge’s deck, and the lower part is bridge’s pier. md denotes the mass of deck, mc 

denotes the mass of pier, cc denotes the damping of the pier, and kc denotes the 

stiffness of pier. The horizontal force of bearing is denoted by U, it is the combination 

from restoring force (ur) and friction force (uf). xd, xc are the relative displacement of 

the bearing and the pier, respectively.   ̈  is the ground motion acceleration. The 

equation of motion can be obtained from the Figure 3.3. 
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   ̈   (     )     ̈                 (3.1) 

    ̈       ̇                 ̈               (3.2) 

    ̈       ̇                 ̈               (3.3) 

 

Equations 3.1 to 3.3 are transformed into the matrix form. 

[

    
     
     

] [

 ̈ 

 ̈  

 ̈  

]  [

   
     
     

] [

 ̇ 

 ̇  

 ̇  

]  [

   
     
     

] [

  

   

   

]  [
    
  
  

] [
  

  
]  [

    
     
     

] [
  
  
  

]  ̈   (3.4) 

 

Generally, from the matrix form above, the equation of motion can be obtained as: 

  ̈( )    ̇( )    ( )      ̈ ( )     ( )           (3.5) 

For the mass (M), damping (C), and stiffness (K) matrix can be defined as: 

  [
    
     
     

]    [
   
     
     

]    [
   
     
     

]              (3.6) 

L1 and L2 are the seismic force distribution vector and the total horizontal force 

distribution matrix, respectively. 

   [
  
  
  

]     [
    
  
  

]                 (3.7) 

x(t) and U(t) are the structure displacement vector and total horizontal force vector, 

respectively. 

 ( )  [

  ( )

   ( )

   ( )
]   ( )  [

  ( )
  ( )

]              (3.8) 

 

The equation 3.5 is rewritten as the state space equation of motion as follows: 

 ̇( )    ( )    ̈ ( )    ( )             (3.9) 

Note: 

 ( )  [
 ̇( )
 ( )

]    [          
  

]    [       

 
]    [ 

    

 
]      (3.10) 

 

Equation 3.9 is a continuous-time system. It will be converted into a discrete-time 

system using external linear interpolation as follows: 

 ,   -     , -     ̈ , -     ̈ ,   -     , -     ,   -            (3.11) 
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Note: 

 ,   -  [
 ̇,   -

 ,   -
]               (3.12) 

 

 ,   -    ,   -    ,   -             (3.13) 

 

        ∑
  

  

 
     

                         (3.14) 

 

   .∑
(  )   

  (   )
 
     /               (3.15) 

 

   .∑
(  )   

  (   )
 
      ∑

(  )   

  (   )
 
     /  (3.16) 

 

   .∑
(  )   

  (   )
 
     /                           (3.17) 

 

   .∑
(  )   

  (   )
 
      ∑

(  )   

  (   )
 
     /             (3.18) 

From above equations 3.11-3.18, k is the k
th

 step and (k+1) is the (k
th

+1) step, Δt is the 

time step. 

 

3.3 Horizontal Friction Force of PRB 

In equation 3.13, the component ur that represents the restoring force can be 

determined by the bearing geometric parameters as shown in the previous chapter. 

Because the physical properties of the PRBs are complex, then the behavior of PRBs 

must be obtained by two coordinate systems, namely fixed coordinate system (x-y) 

and moving coordinate system (X-Y). As describe in second chapter, the value of Xa, 

xb(Xa), yb(Xa), xa(Xa) are obtained by coordinate transformation systems. In this study, 

the bisection method is selected as the numerical solver to find Xa and others 

parameters. 
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 Unlike the restoring force (ur), the friction force (uf) cannot be easily 

expressed as an explicit function of the system response, because the friction forces 

have two possible states, namely sticking state and rocking state. Furthermore, 

because the bridge model has different height for each column, it may cause the 

friction force has one another possible state, namely partial rocking state. Thus, in this 

case, the friction force totally has three possible states: sticking state (all bearing is 

sticking), rocking state (all bearing is rocking), and partial rocking state (partial 

bearing is sticking while the partial bearing is rocking). When the moment of the 

bearing (Mf) is less than the maximum moment (Mf,max), it is called the sticking state. 

On the other hand, when the moment (Mf) is equal or more than the maximum 

moment (Mf,max), it will be in rocking state. For the third state, it may happen because 

the bridge has different height for the both columns, so this state needs to be 

considered. For the detail, analysis process will be shown in the Figure 3.4. 

Before doing the calculation about the three possible states, some assumption needs to 

be considered. When the sticking state occurred in [k+1] step, so the velocity of the 

bearing is equal to zero. 

 ̇ ,   -    ,   -                 (3.19) 

  ,   
  -                (3.20) 

Matrix D is the configuration matrix. 

 

Based on the discrete-time system in equation 3.11, by the assumption above, the 

internal force in the sticking state will be like equation below. 

   ,   -   ,   -     , -     ̈ , -     ̈ ,   -     , -          (3.21) 

    ,   -    (   , -     ̈ , -     ̈ ,   -     , -)          (3.22) 

(   )
      ,   -   (   )

   (   , -     ̈ , -     ̈ ,   -     , -) (3.23) 

 ̅,   -   (   )
   (   , -     ̈ , -     ̈ ,   -     , -)                     (3.24) 

 

The internal force is also equal to: 

 ̅,   -   ̅ ,   -    ,   -             (3.25) 

 ̅ ,   -   ̅,   -    ,   -             (3.26) 
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Moment of the bearing and the maximum moment can be shown as: 

 ̅ ,   -   ̅ ,   -  ,   -             (3.27) 

           (  )               (3.28) 

Note: 

W = vertical force/structural weight. 

μ = friction’s coefficient. 

r = radius of spherical head. 

 

3.3.1 Sticking State 

| ̅ ,   -|                                  (3.29) 

It means all of the bearings are in the sticking state. 

  ,   -   ̅ ,   -               (3.30) 

 ,   -   ̅ ,   -    ,   -             (3.31) 

 

3.3.2 Rocking State 

| ̅ ,   -|                       (3.32)  

It means all of the bearings are in the rocking state. The friction force should be 

updated into uf, max. 

      ,   -  
      ,   -

  ,   -
              (3.33) 

 ,   -        ,   -    ,   -            (3.34) 

 

3.3.3 Partial Rocking State 

It means at the same time, both of bearings may have different state, one is sticking 

state and the other is rocking state. Because the restoring force (ur) can be defined 

easily by the bearing geometric parameters, so for this condition just need to concern 

for the friction force (uf). When one of the bearings is in the sticking state, so equation 

3.29-3.31 can be considered. And for another bearing is in the rocking state, so 

equation 3.32-3.34 can be used to calculate the friction force. 
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Table 3.1 Parameter of Irregular Bridges 

Mass of Bridge's deck 2038.8 ton 

Short Column 
Mass of column 37.1 ton 

Stiffness of column 124400 kN/m 

Long Column 
Mass of column 74.2 ton 

Stiffness of column 15740 kN/m 
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Figure 3.1 Model of Irregular Bridges 
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Figure 3.2 Mathematical Model of Irregular Bridges 
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(b) 

 

 

 

 

 

Figure 3.3 Free Body Diagram of Irregular Bridges: (a) Upper Part (b) Lower Part 
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Figure 3.4 Analysis Process 
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CHAPTER IV: OPTIMAL DESIGN OF POLYNOMIAL 

ROCKING BEARINGS USING PSO-SA METHOD 

 

 PRBs use the sixth-order polynomial function at the rocking surface in order 

to provide variable isolation frequency. PRBs have three key design parameters: the 

geometric function Y=G(X) which equal to the sixth-order polynomial function, the 

bearing height (h), and the radius of the spherical head (r). Thus, by properly choosing 

the value of these parameters, the mechanical properties of the PRBs may get the 

desired specifications. Lu et al. have studied about the sliding isolators with variable 

curvatures (SIVCs) which stiffness is a function of the isolator displacement. They 

proposed a fifth-order polynomial function with the proper coefficient values to define 

the restoring force as a function of displacement. Nevertheless, the restoring force of 

the PRBs actually cannot be expressed as a fifth-order polynomial, so their study 

cannot be used for the PRBs case. Therefore, in this study, PSO-SA hybrid searching 

algorithm based on Particle Swarm Optimization (PSO) and Simulated Annealing 

(SA) is adopted to explore the optimal parameters of the PRB isolation system. 

 

4.1 PSO-SA Hybrid Searching Method 

 This section introduces the mathematical model of the optimization problem, 

as well as the Particle Swarm Optimization (PSO) and Simulated Annealing (SA) 

method, and also the combining of PSO method and SA method becoming PSO-SA 

hybrid searching method. 

4.1.1 Mathematical Model of Optimization Problem 

 The optimization problem should be based on the description of the problem. 

Then, the mathematical model can build from this optimization problem and after that 

using a mathematical model to optimize the design. Considering the structural 

optimization problem of the inequality beam condition, then the mathematical model 

can be expressed as: 

 Minimize  ( )                 (4.1) 

 Subject to   ( )  |
  

(  ) 
|     ,         j = 1 n                      (4.2) 

                         (4.3) 
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The above formulas mean the way to determine the design variable X in order to 

minimize the objective function f(X) and correspond to the constraint function gj(X). 

bj is the structural response and (ba)j is the structure response allowable value, n is the 

total of constraint function. The design variables X must be between the lower bound 

(Xlb) and the upper bound (Xub). The combination of the objective function f(X) and 

the constraint functions gj(X) multiplied by the penalty parameters lead to the fitness 

function like the equation 4.4. 

 ̃   ( )   ∑     (    ( ))
 
                              (4.4) 

  is the penalty parameters (λ=10
6
). 

 

4.1.2 Particle Swarm Optimization (PSO) 

 Optimization techniques have been widely applied in numerous fields of 

engineering. Recently, evolutionary computation techniques have become more 

popular, such as Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) 

(Kennedy and Blackwell, 2007). Particle Swarm Optimization, a population-based 

stochastic optimization, was motivated from the optimization of the social behavior of 

animals, such as the flocking of birds and schooling of fish (Kennedy and Eberhart, 

1995). In the implementation of the PSO, a candidate solution of the concern problem 

is called a particle. In the beginning of searching, the population of particles, i.e. a 

swarm of particles, are initialized with random “positions” (i.e. solutions) and 

“velocities” in an l-dimensional search space where l denotes the number of design 

variables. All particles in the swarm exchange information about their best solutions 

with one another and then each particle adjusts its searching “velocity” for the next 

“position” according to its own “experience” as well as the group “experiences”. The 

position and velocity of the i
th

 particle updated from the current generation t to the 

next generation t +1 and it can be related by the following equations: 

    
    

      (  
    

 )      (  
 
   

 )               (4.5) 

    
    

      
                              (4.6) 

The superscript   indicates the     particle while the subscript   indicates the 

generation number;   and    are the velocity and position vectors of the particle, 

respectively;   
  is the best position vector of the     particle, corresponding to the 

individual best fitness value obtained so far, and   
 
 is the global best position vector, 

corresponding to the overall previous best fitness value in the whole swarm; r1 and r2 
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are two independent uniform random numbers between 0 and 1; c1 and c2 are positive 

acceleration constants denoting the weights of the stochastic acceleration terms that 

drag each particle toward the positions of the global and local best solutions, usually 

uses the value is 2. 

 In the original process of the PSO, the velocities of the particles on each 

dimension should be limited between -     and     . A larger value of      

promotes global exploration, while a smaller      inspires local exploitation. Thus, 

the parameter     is an important one for the PSO. Shi and Eberhart (1998b) 

introduced the inertia weight (w) with constant      to balance the global exploration 

and local exploitation, aimed at improving the performance of the PSO within a 

reasonable number of generations. 

    
     

      (  
    

 )      (  
 
   

 )              (4.7) 

      (       )                             (4.8) 

In which Xub is the upper bound of particles and Xlb is the lower bound of particles, 

and γ is a fraction for decreasing the initial search space, usually uses the value is 1. 

Fourie and Groenwold (2002) proposed a rule to dynamically decrease the inertia 

weight and maximum velocity if no more improved solutions are obtained after 

running h consecutive generations. Such a rule is utilized in this study, which can be 

written as: 

If  ̃(  
 
)   ̃(    

 
) then,                  (4.9) 

         and     
       

                            (4.10) 

In which α and β are the decrease factors between 0 and 1. 

 When the global best solution is entrapped in a poor local optimal solution, 

then the searching efficiency decreases significantly. In this connection, the global 

best solution plays a more important role in guiding the search direction than the local 

one. In order to prevent the solution of the PSO from converging early to a poor local 

minimum, Juang and Chuang (2007) proposed inserting a simulated annealing 

algorithm into the PSO procedure to provide the possibility of jumping away from a 

local minimum. 

 

4.1.3 Simulated Annealing (SA) 

 Simulated Annealing (SA) is an optimization algorithm motivated by an 

analogy to the annealing in solids in statistical mechanic (Kirkpatrick et al., 1983). SA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

is also a generic probabilistic meta-heuristic for the global optimization problem, can 

be seen as analogous to the behavior of physical systems in a heat bath (Kirkpatrick et 

al., 1983). When no further improvements to the global best solution can be found 

after h consecutive generations, a new solution in the neighborhood of the global best 

solution   
 
 is generated by using two uniform random numbers, R1 and R2 in the 

range from 0 to 1. 

If R1 > 0.5,  ̂ 
 
   

 
   (      

 
)              (4.11) 

If R1 ≤ 0.5,  ̂ 
 
   

 
   (  

 
    )              (4.12) 

SA is not only accepted a near local optimal but also a worse solution, so it offers the 

possibility of escaping from poor local optimal, where the solutions are entrapped 

during the process of the PSO. Whether the new solution can be accepted or not is 

decided according to the Boltzmann probability factor P: 

      ( 
  ̃

   
)                           (4.13) 

In which,   ̃ is the difference of the fitness value between the new solution and the 

current global solution, k is Boltzmann’s constant, usually the value is 1, and Tj is the 

current temperature. 

If    ̃ is smaller than or equal to zero, the new solution is accepted as the new 

global best solution. If   ̃ is larger than zero, a uniform random number is generated 

in the value between 0 and 1 and then compared with the Boltzmann probability 

factor P. If the generated random number is smaller than P, the new solution is 

accepted as the new global best one. Otherwise, the current global best solution is 

maintained. 

In processing the SA, the initial temperature (Tstart) and the final temperature 

(Tend) are chosen in advance. At each iterative search, the temperature Ti is updated by 

multiplying the previous temperature Ti-1 by a reduction factor (Tred). The searching 

process is continued until the temperature reaches the final temperature Tend. Then, the 

final solution is saved as the new global best solution. 

 

4.1.4 Particle Swarm Optimization-Simulated Annealing (PSO-SA) 

 As mentioned above, a hybrid searching algorithm combining the PSO with 

the SA is employed in this study to find the optimal parameters of the PRB isolation 

system for an irregular isolated bridge. An inner loop of the SA is inserted in the 
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process of the PSO, giving an interference to create a new solution and then determine 

the acceptance based on the Boltzmann probability factor if the new solution moves 

up. After completing a cooling cycle, the operation returns to the PSO algorithm. The 

procedure of the hybrid searching algorithm is summarized as follows: 

(i) Create an initial population array of particles with random positions 

and velocities on l dimensions in the searching space. 

(ii) Select v
max 

according to equation 4.8. 

(iii) Loop of PSO. 

(iv) Evaluate the fitness function of the t
th

 generation according to equation 

4.4 for each particle i. 

(v) Compare each particle’s fitness function value with its previous best 

value. If the fitness function value < previous best value, so the best 

position vector of the i
th

 particle is equal to position vectors of the 

particle, also the best value is equal to the fitness function value. 

(vi) Compare each particle’s fitness function value with the previous global 

best value. If the fitness function value < previous global best value, so 

the global best position vector is equal to position vectors of the 

particle, also the global best value is equal to the fitness function value. 

(vii) If no more improved solutions obtained after running h consecutive 

generations like equation 4.9, do the following: 

(a) Decrease inertia weight (w) and maximum velocity (    ) 

according to equation 4.10. 

(b) Choose the initial temperature (Tstart), final temperature (Tend), and 

reduction factor (Tred) for the SA algorithm. 

(c) Loop of SA. 

(d) Generate two uniform random numbers (R1 and R2) in the range 

from 0 to 1. 

(e) Create a new solution according to equations 4.11 and 4.12, then 

calculate the difference of the fitness value (  ̃) between the new 

solution and the current global best solution. 

(f) If   ̃ is smaller than or equal to zero, the new solution is accepted 

as the new global best solution. 
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(g) If   ̃ is larger than zero, generate a random number in the value 

between 0 and 1 and then compared with the Boltzmann 

probability factor (P) according to equation 4.13. 

(h) If the final temperature Tend is reached, exit loop of SA. 

(i) End the loop of SA. 

(viii) Change the velocity according to equation 4.7 and the position of a 

particle according to equation 4.8 for each particle. 

(ix) If the specific number of generations is reached, exit loop of PSO. 

(x) End the loop of PSO. 

In order to select a suitable set of parameters in the process of optimization to control 

the structure response of irregular isolated bridge, a number of running cases were 

carried out with various sets of parameters. The population size was 30, the number of 

generation was 100, and the set of other parameters used is listed in Table 4.1. 

 

4.2 Bearing’s Objective Function 

 PSO-SA is adopted to explore the optimal parameters and solution of the PRB 

isolation system. Based on the mathematical model of optimization problem, 

equations 4.1 to 4.3 are used to determine the design variable X in order to minimize 

the objective function f(X) correspond to the constraint function gj(X). In this paper, 

the objective function depends on the deck displacement and the horizontal force of 

each column. 

 ( )     
   (|   |)    (|   |)

  
    

   (|  |)

  
                                       (4.14) 

Vc1 is the horizontal force of short column, Vc2 is the horizontal force of long column, 

xd is deck displacement. Dc and Dd are the normalized denominators. Dc is a maximum 

horizontal force (using hinged support) for each column, and Dd is maximum deck 

displacement (using roller support). Because in this study has two different height of 

columns, so Dc has two numbers, for the first column Dc1=7168.304 kN, and for the 

second column Dc2=912.9679 kN. The maximum deck displacement Dd=0.058 m. wc 

and wd are scalar weights related to the peak of column horizontal forces and the peak 

of deck displacement, respectively. Because the bridge is not expected to have a large 

displacement when an earthquake occurs, hence set wd > wc, wc=0.35 and wd=0.65. 

However, it is also not expected the horizontal force of columns will be too large and 

make the columns going into non-linear stage, therefore it needs to use the fitness 
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function as the combination of the objective function f(X) and the constraint functions 

gj(X) multiplied by the penalty parameters to avoid this situation. 

  ( )  
   |    |

          
                             (4.15) 

 ̃   ( )       (    ( ))       (    ( ))                                  (4.16) 

                                    (4.17) 

 

4.3 PRB Parameter Setting 

PRB has three key design parameters: the geometric function Y=G(X) which 

equal to the sixth-order polynomial function, the bearing height (h), and the radius of 

the spherical head (r). For the spherical head radius, the value of this parameter is 

fixed in 0.044 m, because the size of the spherical head cannot too big. Thus, it has 4 

parameters need to find the optimal value in order to get the desired specifications. 

Before doing the PSO-SA, it needs to make the limitation value for each parameter. 

For the sixth-order polynomial function with 3 coefficients, the value of c1 is set 

between -20 and 700, the value of c2 is set between -40 and 20, and the value of c3 is 

set between 0 and 3. The value of bearing height (h) is set between 0.15 m and 0.65 

m. For the friction coefficient, because it assumes using the steel material for the 

spherical head and brass material for the ball socket, so the friction coefficient is 0.3. 

The summary of PRB parameter setting is listed in Table 4.2 and the result of design 

parameters is listed in Tables 4.4 and 4.5. 

 

4.4 FPS Parameter Setting 

FPS has two design parameters, the coefficient of friction and the radius of 

curvature, respectively. The friction coefficient depends on the types of material that 

used. Because it assumes using the steel material for the spherical surface and 

polytetrafluoroethylene (PTFE) material for the bearing material at articulated slider, 

so the friction coefficient is 0.1. Another important parameter of FPS is the radius of 

curvature. The radius of curvature determines the bearing stiffness and isolation 

period. 
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Note: 

W = weight of super-structure 

K = bearing stiffness 

T  = isolation period 

Since the commonly used isolation period is range between 1.5 seconds and 3 

seconds, so the range of curvature’s radius is converted from 0.56 m to 2.236 m based 

on the equation 4.19. The summary of FPS parameter setting is listed in Table 4.3 and 

the result of design parameters is listed in Tables 4.6. 

 

4.5 Ground Motion Input 

 Ground motions generated from earthquakes differ from one another in 

characteristics, magnitude, source, distance and direction from the rupture location, 

and also local soil conditions. These ground motions generally divide into two groups, 

near-fault earthquakes and far-fault earthquakes, respectively. Near-fault earthquakes 

are the earthquakes which occur in fields close to the fault. Generally, the distance is 

less than 15 kilometers from earthquake epicenter. Otherwise, the distance for far-

fault earthquakes is more than 15 kilometers. Besides, the characteristics of near-fault 

earthquakes are linked to the fault geometry and the orientation of the traveling 

seismic waves. The primary characteristics of near-fault earthquakes are the forward 

directivity and fling step effects which have caused severe structural damage in recent 

major earthquake. The velocity pulse duration in the near-fault earthquakes is larger 

than 1.0 s. In addition, the ratio of the peak ground velocity (PGV) to the peak ground 

acceleration (PGA) of the near-fault ground motions is larger than 0.1 s. On the 

contrary, another set of ground motion records, recorded at the same site condition 

from the same earthquake events with epicenter far away from the site, is employed to 

represent the characteristics of far-fault earthquakes. In this simulation, 7 ground 

motions are used to simulate the behavior of irregular bridge. For the near-fault 

earthquake, it has 5 ground motions, Imperial Valley, TCU068, Sylmar, JMA Kobe, 

and Northridge. The rest is for the far-fault earthquake, Hachinohe and El Centro. 

The 1979 Imperial Valley Earthquake affected Imperial Valley in Southern 

California and Mexicali Valley in Northern Baja California. This earthquake had a 

relatively shallow hypocenter. It caused by rupture along parts of the Imperial Fault, 

the Brawley fault zone, and the Rico Fault. Imperial Valley measured the surface 

acceleration from east to west. TCU068 is the 1999 Chi-Chi Earthquake, also known 
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as the 921 Earthquakes, was an earthquake in the central part of Taiwan. The depth of 

the epicenter was 7.0 km. This earthquake happened along the Chelungpu fault line in 

western part of the island of Taiwan. The fault is located along the foot hills of the 

Central Mountains in Nantou and Taichung counties. TCU068 measured the surface 

acceleration from east to west. The 1994 Sylmar Earthquake is also known as The 

1994 Northridge Earthquake. The difference is the direction measurement for surface 

acceleration. For the Sylmar, it is measured from east to west, while for the 

Northridge is from north to south. Its epicenter is located in Reseda, a neighborhood 

in the north-central San Fernando Valley region of Los Angeles, California. The 

earthquake struck in the San Fernando Valley about 20 miles (31 km) northwest of 

downtown Los Angeles. The depth of hypocenter was 11.4 miles (18.3 km). The 1995 

Great Hanshin Earthquake or JMA Kobe Earthquake struck Kobe, Japan, and its 

surrounding area. The focus of the earthquake was located 17 km beneath its 

epicenter, on the northern end of Awaji Island, 20 km away from the city of Kobe. 

The Great Hanshin Earthquake called an "inland shallow earthquake". Earthquakes of 

this type occur along active faults. Even at lower magnitudes, they can be very 

destructive because they often occur near populated areas and their hypocenters are 

located less than 20 km below the surface. It measured the surface acceleration from 

north to south. 

The 1968 Tokachi Earthquake is also known as Hachinohe Earthquake. It was 

located near the junction of the Kuril Trench and the Japan Trench. It is an inter-plate 

earthquake. The focal mechanism of this earthquake shows movement on a thrust 

fault with a considerable slip-strike component. This earthquake measured the surface 

acceleration from north to south. The 1940 El Centro Earthquake occurred in the 

Imperial Valley in south eastern Southern California near the international border of 

the United States and Mexico. It was characterized as a typical moderate-sized 

destructive event with a complex energy release signature. It was the result of a 

rupture along the Imperial Fault, with its epicenter 5 miles (8.0 km) north of Calexico, 

California. It measured the surface acceleration from north to south. The time history 

of ground motion is divided into two groups, the near-fault ground motions are shown 

in Figures 4.1(a) to 4.1(e), and the far fault ground motions are shown in Figures 

4.2(a) and 4.2 (b). 
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4.6 Numerical Analysis Results and Discussions 

 In this section, the optimal parameters of PRB and FPS obtained by PSO-SA 

and their seismic isolation performance will be presented and compared each other. 

Tables 4.4-4.6 show the best parameter of PRB and FPS based on PSO-SA method. 

Figures 4.3(a) to 4.3(g) show the PRB convergence characteristics. With the 100 

iterations, overall PRB obtained by PSO-SA present the constant solutions after the 

60
th

 iteration. Figures 4.4 to 4.10 show the PRB curvature for each of column. PRB 

curvatures obtained by PSO-SA present the reasonable curvature. It means that PSO-

SA method is appropriate to find the best parameter of PRB. Figures 4.11(a) to 

4.11(g) show the FPS convergence characteristics. With the 100 iterations, overall 

FPS obtained by PSO-SA present the constant solutions after some first iteration. It 

means that PSO-SA method is suitable to find the best parameter of FPS. 

 Figures 4.12 to 4.25 are the dynamic response of the irregular bridge subjected 

to 7 ground motions. Each of ground motion has 9 figures which are divided into two 

parts, the time history of structure’s displacement and the hysteretic loop of structures. 

For time history of displacement, there are 5 figures, (a) time history of deck 

displacement, (b) time history of bearing displacement in short column, (c) time 

history of bearing displacement in long column, (d) time history of short column 

displacement, (e) time history of long column displacement. For the hysteretic loop, 

there are 4 figures, (a) hysteretic loop of bearing in short column, (b) hysteretic loop 

of bearing in long column, (c) hysteretic loop of short column, (d) hysteretic loop of 

long column. For all the figures will have 2 lines, the blue solid line is for the PRB 

response and the red dash line is for the FPS response. Table 4.7 compares the 

maximum displacement of bearing in short and long column for PRB and FPS. Table 

4.8 compares the maximum displacement of deck, short column, and long column for 

PRB and FPS. Table 4.9 compares the maximum horizontal force of bearing in each 

column for PRB and FPS. 

 Overall for the deck displacement, PRB has better isolation effect than FPS. 

For 7 kinds of ground motions, PRB just has the larger displacement at Sylmar ground 

motion. Nevertheless, even though PRB has larger displacement, FPS still has the 

residual deck displacement about 0.025 m at the end of ground motion. It means that 

PRB still have the better isolation effect than the FPS. For the bearing displacement 

and column displacement have opposite results for PRB in Northridge, TCU068, 

Imperial, and Sylmar. For example, when the bearing displacement in short column is 
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smaller, then it is getting larger in short column displacement and vice versa. 

However, for Hachinohe, JMA Kobe, and El Centro, the bearing displacement and 

column displacement have equal results. In FPS case, the bearing displacement and 

column displacement have opposite results in Northridge, Hachinohe, Sylmar, JMA 

Kobe, and El Centro. In another hand, for TCU068 and Imperial, the bearing 

displacement and column displacement have equal results. 

 Based on the numerical results above, some figures about the structure’s 

responses are not satisfactory, such as the hysteretic loop of the bearing. For example 

is the hysteretic loop of PRB in Northridge Earthquake. Theoretically, in the short 

column case, the displacement of PRB in short column should be larger than longer 

column, because short column’s stiffness is larger than longer column, so the stiffness 

of the bearing should be smaller than in longer bearing. However, the results show 

that displacement of PRB in short column is smaller than PRB in long column. It 

means that the stiffness of PRB in short column is larger than PRB in long column. 

This phenomenon is also occurred in the long column case. It may happened because 

in this research using two different analysis for the seismic isolation system and the 

bridge structure. Non-linear analysis is performed in the seismic isolation system 

while linear analysis in the bridge structure. Nevertheless, generally, the performance 

of PRB isolation system is better than FPS because it can effectively suppress the 

displacement of the bridge deck in both near and far-fault earthquakes. 
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Table 4.1 Parameter of PSO-SA Hybrid Searching Algorithm 

Parameter Value Parameter Value 

c1 0.5 wmax 1.4 

c2 1.6 wmin 0.8 

γ 1 Tstart 450 

α 0.99 Tred 0.97 

β 0.95 Tend 300 

h 3     

 

 

 

 

Table 4.2 PRB Parameter Setting in PSO-SA Hybrid Searching Method 

Parameter 
Lower 

Bound 

Upper 

Bound 

Coefficient of Sixth-

Order  Polynomial 

Function 

c1 -20 700 

c2 -40 20 

c3 0 3 

Height of Bearing (h) 0.15 0.65 

          *Friction coefficient is 0.3 (steel-brass) 

 

 

 

 

Table 4.3 FPS Parameter Setting in PSO-SA Hybrid Searching Method 

Parameter Lower Bound Upper Bound 
Radius of Curvature in Short 

Column (r1) 
0.56 2.236 

Radius of Curvature in Short 

Column (r2) 
0.56 2.236 

         *Friction coefficient is 0.1 (steel-PTFE) 
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Table 4.4 The Optimal Parameter of PRB in Short Column Based on PSO-SA 

Earthquake's 

name 

Bearing in short column 

c1 c2 c3 h (m) 

Imperial Valley 141.2325 20 0 0.1643 

TCU068 700 20 0 0.15 

Sylmar 700 20 0 0.15 

JMA Kobe -20 20 3 0.15 

Northridge 525.9088 -2.467 0.8332 0.15 

Hachinohe 700 -7.244 3 0.15 

El Centro 700 20 3 0.15 

 

 

 

Table 4.5 The Optimal Parameter of PRB in Long Column Based on PSO-SA 

Earthquake's 

name 

Bearing in long column 

c1 c2 c3 h (m) 

Imperial Valley -20 5.8497 0.7563 0.65 

TCU068 -20 20 0.7266 0.65 

Sylmar 173.0106 20 0.9873 0.4807 

JMA Kobe -20 20 0.7333 0.65 

Northridge 216.1577 32.5545 1.0704 0.4938 

Hachinohe 700 -10.5177 0.7924 0.65 

El Centro 700 2.9801 0.7737 0.65 

 

 

 

Table 4.6 The Optimal Parameter of FPS Based on PSO-SA 

Earthquake's 

name 

Radius of FPS in 

short column r1 (m) 

Radius of FPS in 

long column r2 (m) 

Imperial Valley 0.56 2.236 

TCU068 0.56 2.236 

Sylmar 2.236 2.236 

JMA Kobe 2.236 0.6796 

Northridge 2.236 2.236 

Hachinohe 0.56 2.236 

El Centro 1.5924 1.762 
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Table 4.7 Maximum Displacement of Bearing 

Earthquake's name 

Maximum displacement of 

bearing in short column (m) 

Maximum displacement of 

bearing in long column (m) 

PRB FPS PRB FPS 

Imperial Valley 0.0109 0.1583 0.0457 0.1001 

TCU068 0.0198 0.1983 0.0634 0.1477 

Sylmar 0.0392 0.0729 0.0935 0.0206 

JMA Kobe 0.0339 0.0433 0.0402 0.0008 

Northridge 0.0158 0.0688 0.0489 0.0097 

Hachinohe 0.0533 0.0725 0.0586 0.0181 

El Centro 0.0335 0.0423 0.0384 0.0008 

 

Table 4.8 Maximum Displacement of Bridge Structure 

Earthquake's 

name 

Maximum 

displacement of deck 

(m) 

Maximum 

displacement of short 

column (m) 

Maximum 

displacement of long 

column (m) 

PRB FPS PRB FPS PRB FPS 

Imperial Valley 0.0566 0.1662 0.0459 0.0103 0.0408 0.0841 

TCU068 0.0692 0.2062 0.0496 0.0115 0.0426 0.0928 

Sylmar 0.0854 0.0808 0.0503 0.0114 0.0589 0.0747 

JMA Kobe 0.0426 0.0511 0.0118 0.0121 0.0347 0.0503 

Northridge 0.0488 0.0761 0.0331 0.0108 0.0484 0.0734 

Hachinohe 0.0662 0.08 0.0134 0.0114 0.035 0.0747 

El Centro 0.0428 0.0507 0.0107 0.0121 0.0294 0.0499 

 

Table 4.9 Maximum Horizontal Force of Bearing 

Earthquake's 

name 

Maximum horizontal 

force of bearing in 

short column (kN) 

Maximum 

horizontal force of 

bearing in long 

column (kN) 

Total horizontal 

force (kN) 

PRB FPS PRB FPS PRB FPS 

Imperial Valley 5653.117 3827.083 244.822 1447.797 5897.939 5274.881 

TCU068 6121.616 4540.909 332.166 1659.706 6453.782 6200.614 

Sylmar 6125.589 1324.731 623.433 1092.248 6749.022 2416.979 

JMA Kobe 1280.018 1193.808 254.005 742.515 1534.023 1936.324 

Northridge 4079.545 1306.923 452.223 1043.515 4531.769 2350.438 

Hachinohe 1683.780 2289.156 272.186 1081.157 1955.967 3370.313 

El Centro 1278.113 1268.676 248.695 729.827 1526.808 1998.503 
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               (a) Northridge Ground Motion 

 

 

 

 

 

              (b) Sylmar Ground Motion 

 

 

 

 

 

              (c) TCU068 Ground Motion 

 

 

 

 

 

                 (d) Imperial Ground Motion 

 

 

 

 

 

                       (e) JMA Kobe Ground Motion 

Figure 4.1 Time History of Near-Fault Ground Motions, PGA = 250 gal 
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                    (a) Hachinohe Ground Motion 

 

 

 

 

 

                 (b) El Centro Ground Motion 

Figure 4.2 Time History of Far-Fault Ground Motions, PGA = 250 gal 
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           (a) Northridge Ground Motion           (e) Sylmar Ground Motion 

 

 

 

 

 

 

 

     (b) Hachinohe Ground Motion                  (f) JMA Kobe Ground Motion 

 

 

 

 

 

 

 

       (c) TCU086 Ground Motion         (g) El Centro Ground Motion 

 

 

 

 

 

 

 

       (d) Imperial Ground Motion 

Figure 4.3 PRB Convergence Characteristics by PSO-SA 
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      (a) PRB in Short Column        (b) PRB in Long Column 

Figure 4.4 PRB Curvature by PSO-SA Subjected to Northridge Ground Motion 

 

 

 

 

 

 

 

 

        (a) PRB in Short Column         (b) PRB in Long Column 

Figure 4.5 PRB Curvature by PSO-SA Subjected to Hachinohe Ground Motion 

 

 

 

 

 

 

 

 

        (a) PRB in Short Column        (b) PRB in Long Column 

Figure 4.6 PRB Curvature by PSO-SA Subjected to TCU068 Ground Motion 
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      (a) PRB in Short Column        (b) PRB in Long Column 

Figure 4.7 PRB Curvature by PSO-SA Subjected to Imperial Ground Motion 

 

 

 

 

 

 

 

 

     (a) PRB in Short Column         (b) PRB in Long Column 

Figure 4.8 PRB Curvature by PSO-SA Subjected to Sylmar Ground Motion 

 

 

 

 

 

 

 

 

     (a) PRB in Short Column                     (b) PRB in Long Column 

Figure 4.9 PRB Curvature by PSO-SA Subjected to JMA Kobe Ground Motion 
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      (a) PRB in Short Column        (b) PRB in Long Column 

Figure 4.10 PRB Curvature by PSO-SA Subjected to El Centro Ground Motion 
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   (a) Northridge Ground Motion                              (e) Sylmar Ground Motion 

 

 

 

 

 

 

              (b) Hachinohe Ground Motion         (f) JMA Kobe Ground Motion 

 

 

 

 

 

 

 

   (c) TCU068 Ground Motion                              (g) El Centro Ground Motion 

 

 

 

 

 

 

                (d) Imperial Ground Motion 

Figure 4.11 FPS Convergence Characteristics by PSO-SA 
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                          (a) Time History of Deck Displacement 

 

 

 

 

 

                            (b) Time History of Bearing Displacement in Short Column 

 

 

 

 

 

                             (c) Time History of Bearing Displacement in Long Column 

 

 

 

 

 

                            (d) Time History of Short Column Displacement 

 

 

 

 

 

                            (e) Time History of Long Column Displacement 

Figure 4.12 Bridge’s Time History Displacement Subjected to Northridge Earthquake 
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              (a) Hysteretic Loop of Bearing   (b) Hysteretic Loop of Bearing 

                          in Short Column     in Long Column 

 

 

 

 

 

       

 

 

        (c) Hysteretic Loop of Short Column        (d) Hysteretic Loop of Long Column 

 

Figure 4.13 Bridge’s Hysteretic Loop Subjected to Northridge Earthquake 
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                               (a) Time History of Deck Displacement 

 

 

 

 

 

                               (b) Time History of Bearing Displacement in Short Column 

 

 

 

 

 

                               (c) Time History of Bearing Displacement in Long Column 

 

 

 

 

 

                              (d) Time History of Short Column Displacement 

 

 

 

 

 

                                (e) Time History of Long Column Displacement 

Figure 4.14 Bridge’s Time History Displacement Subjected to Hachinohe Earthquake 
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              (a) Hysteretic Loop of Bearing   (b) Hysteretic Loop of Bearing 

                          in Short Column     in Long Column 

 

 

 

 

 

 

          (c) Hysteretic Loop of Short Column        (d) Hysteretic Loop of Long Column 

 

Figure 4.15 Bridge’s Hysteretic Loop Subjected to Hachinohe Earthquake 
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                             (a) Time History of Deck Displacement 

 

 

 

 

 

                               (b) Time History of Bearing Displacement in Short Column 

 

 

 

 

 

                               (c) Time History of Bearing Displacement in Long Column 

 

 

 

 

 

                              (d) Time History of Short Column Displacement 

 

 

 

 

 

                               (e) Time History of Long Column Displacement 

Figure 4.16 Bridge’s Time History Displacement Subjected to TCU068 Earthquake 
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              (a) Hysteretic Loop of Bearing   (b) Hysteretic Loop of Bearing 

                          in Short Column      in Long Column 

 

 

 

 

 

 

 

 

          (c) Hysteretic Loop of Short Column        (d) Hysteretic Loop of Long Column 

 

Figure 4.17 Bridge’s Hysteretic Loop Subjected to TCU068 Earthquake 
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                            (a) Time History of Deck Displacement 

 

 

 

 

 

                              (b) Time History of Bearing Displacement in Short Column 

 

 

 

 

 

                              (c) Time History of Bearing Displacement in Long Column 

 

 

 

 

 

                             (d) Time History of Short Column Displacement 

 

 

 

 

 

                               (e) Time History of Long Column Displacement 

Figure 4.18 Bridge’s Time History Displacement Subjected to Imperial Earthquake 
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               (a) Hysteretic Loop of Bearing    (b) Hysteretic Loop of Bearing 

                            in Short Column       in Long Column 

 

 

 

 

 

 

 

 

         (c) Hysteretic Loop of Short Column        (d) Hysteretic Loop of Long Column 

 

Figure 4.19 Bridge’s Hysteretic Loop Subjected to Imperial Earthquake 
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                            (a) Time History of Deck Displacement 

 

 

 

 

 

                              (b) Time History of Bearing Displacement in Short Column 

 

 

 

 

 

                               (c) Time History of Bearing Displacement in Long Column 

 

 

 

 

 

                              (d) Time History of Short Column Displacement 

 

 

 

 

 

                               (e) Time History of Long Column Displacement 

Figure 4.20 Bridge’s Time History Displacement Subjected to Sylmar Earthquake 
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              (a) Hysteretic Loop of Bearing    (b) Hysteretic Loop of Bearing 

                           in Short Column       in Long Column 

 

 

 

 

 

 

 

 

         (c) Hysteretic Loop of Short Column        (d) Hysteretic Loop of Long Column 

 

Figure 4.21 Bridge’s Hysteretic Loop Subjected to Sylmar Earthquake 
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                            (a) Time History of Deck Displacement 

 

 

 

 

 

                             (b) Time History of Bearing Displacement in Short Column 

 

 

 

 

 

                              (c) Time History of Bearing Displacement in Long Column 

 

 

 

 

 

                             (d) Time History of Short Column Displacement 

 

 

 

 

 

                              (e) Time History of Long Column Displacement 

Figure 4.22 Bridge’s Time History Displacement Subjected to JMA Kobe Earthquake 
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             (a) Hysteretic Loop of Bearing   (b) Hysteretic Loop of Bearing 

                          in Short Column      in Long Column 

 

 

 

 

 

 

 

 

         (c) Hysteretic Loop of Short Column        (d) Hysteretic Loop of Long Column 

  

Figure 4.23 Bridge’s Hysteretic Loop Subjected to JMA Kobe Earthquake 
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                             (a) Time History of Deck Displacement 

 

 

 

 

 

                               (b) Time History of Bearing Displacement in Short Column 

 

 

 

 

 

                               (c) Time History of Bearing Displacement in Long Column 

 

 

 

 

 

                                (d) Time History of Short Column Displacement 

 

 

 

 

 

                                (e) Time History of Long Column Displacement 

Figure 4.24 Bridge’s Time History Displacement Subjected to El Centro Earthquake 
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              (a) Hysteretic Loop of Bearing   (b) Hysteretic Loop of Bearing 

                           in Short Column      in Long Column 

 

 

 

 

 

 

 

 

         (c) Hysteretic Loop of Short Column        (d) Hysteretic Loop of Long Column 

 

Figure 4.25 Bridge’s Hysteretic Loop Subjected to El Centro Earthquake 
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CHAPTER V: CONCLUSIONS AND 

RECOMMENDATIONS 

 

5.1 Conclusions 

According to the previous studies, the conventional sliding bearing such as 

FPS has good isolation effect under far-fault earthquakes. However, under near fault 

earthquakes, the isolation period is highly probable to resonate so as to result 

excessive displacements. To overcome such a problem, the PRB which has variable 

isolation stiffness is used to improve the performance of irregular bridges. By 

properly selecting the geometry function of the rocking surface, the isolation stiffness 

of the PRB changes with the bearing displacement. Hence, the isolation stiffness 

becomes variable. This study employs a sixth-order polynomial function to define the 

rocking surface of the PRB. 

 Totally 7 ground motions are selected to simulate the dynamic behavior of 

irregular bridges with the PRBs. Five near-fault ground motions recorded at the 1979 

Imperial Valley Earthquake in California, the 1999 Chi-Chi Earthquake in Taiwan 

(TCU068), the 1994 Sylmar Earthquake in California, the 1994 Northridge 

Earthquake in California, and the 1995 JMA Kobe Earthquake in Japan. The other 

two are far-fault ground motions recorded at the 1968 Tokachi Earthquake in Japan 

(Hachinohe) and the 1940 El Centro Earthquake in California.  

The PSO-SA hybrid searching method is used to find out the optimal design 

parameters of the PRB and FPS. Observed from the analytical results, the PSO-SA 

can obtain effective isolation effect of the PRB and FPS bearing parameters. 

However, some structural responses are not satisfactory because in this research two 

different analysis for the seismic isolation system and for the bridge structure are 

used. Non-linear analysis is performed in the seismic isolation system while linear 

analysis in the bridge structure. Nevertheless, compared with the FPS, generally PRB 

can effectively suppress the displacement of the bridge deck under both near and far-

fault earthquakes. 

 

5.2 Recommendations 

For the future research, it is suggested to consider the non-linear behavior of 

bridges, namely, non-linear analysis to achieve more realistic results for the structure 
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response. In the PSO-SA results, the limit of the PRB bearing height is up to 0.65 m. 

This value may have stability problem on the real structure. Actually this numerical 

study just wants to know the optimal parameters of the PRBs to achieve the isolation 

effect. So, in the real application, the PRB’s height should be carefully selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

REFERENCES 

 

Asher, J. W., Hoskere, S. N., Ewing, R. D., Van Volkinburg, D. R., Mayes, R. L., and 

Button, M. (1995). Seismic performance of the base isolated USC University Hospital 

in the 1994 Northridge earthquake. ASME-PUBLICATIONS-PVP, 319, 147-154. 

 

ATC. (1993). Proceedings of seminar on seismic isolation, passive energy 

dissipation, and active control (Report No.ATC-17-1). San Francisco, CA: Applied 

Technology Council. 

 

ATC. (1994). Guidelines and commentary for the seismic rehabilitation of buildings 

(Report No. 33-02). Redwood City, CA: Applied Technology Council. 

 

Basoz, N., and Kiremidjian, A. S. (1998). Evaluation of bridge damage data from the 

Loma Prieta and Northridge, California earthquakes (No. MCEER-98-0004). 

 

Basoz, N. I., Kiremidjian, A. S., King, S. A., and Law, K. H. (1999). Statistical 

analysis of bridge damage data from the 1994 Northridge, CA, earthquake. 

Earthquake Spectra, 15(1), 25-54. 

 

Bozorgnia, Y., Mahin, S. A., and Brady, A. G. (1998). Vertical response of twelve 

structures recorded during the Northridge earthquake. Earthquake Spectra, 14(3), 

411-432. 

 

Bruneau, M., Wilson, J. C., and Tremblay, R. (1996). Performance of steel bridges 

during the 1995 Hyogo-ken Nanbu (Kobe, Japan) earthquake. Canadian Journal of 

Civil Engineering, 23(3), 678-713. 

 

Buckle, I. G., and Mayes, R. L. (1990). Seismic isolation: history, application, and 

performance-a world view. Earthquake spectra, 6(2), 161-201. 

 

Calvi, G. M., and Pavese, A. (1997). Conceptual design of isolation systems for 

bridge structures. Journal of Earthquake Engineering, 1(01), 193-218. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 
 

Çelebi, M. (1996). Successful performance of a base‐isolated hospital building during 

the 17 January 1994 Northridge earthquake. The Structural Design of Tall and Special 

Buildings, 5(2), 95-109. 

 

Chen, W. F., and Duan, L. (Eds.). (2014). Bridge engineering handbook: construction 

and maintenance. CRC press. 

 

Chen, L., Sun, L., and Nagarajaiah, S. (2015). Cable with discrete negative stiffness 

device and viscous damper: passive realization and general characteristics. 

Smart Struct. Syst, 15(3), 627-643. 

 

Cheng, C. T., and Chao, C. H. (2017). Seismic behavior of rocking base-isolated 

structures. Engineering Structures, 139, 46-58. 

 

Coburn, A., and Spence, R. (2003). Earthquake protection. John Wiley & Sons. 

 

Constantinou, M. C., Soong, T. T., and Dargush, G. F. (1998). Passive energy 

dissipation systems for structural design and retrofit. 

 

Corana, A., Marchesi, M., Martini, C., and Ridella, S. (1987). Minimizing multimodal 

functions of continuous variables with the simulated annealing algorithm. ACM 

Transactions on Mathematical Software (TOMS), 13(3), 262-280. 

 

Eberhart, R., and Kennedy, J. (1995). A new optimizer using particle swarm theory. 

Proceedings of the Sixth International Symposium on (pp. 39-43). IEEE. 

 

Eberhart, R. C., and Shi, Y. (1998).Comparison between genetic algorithms and 

particle swarm optimization. International conference on evolutionary programming 

(pp. 611-616). Springer, Berlin, Heidelberg. 

 

Fenz, D. M., and Constantinou, M. C. (2008). Spherical sliding isolation bearings 

with adaptive behavior: Theory. Earthquake engineering & structural dynamics, 

37(2), 163-183. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

Fourie, P. C., and Groenwold, A. A. (2002). The particle swarm optimization 

algorithm in size and shape optimization. Structural and Multidisciplinary 

Optimization, 23(4), 259-267. 

 

Fujita, T. (1998). Seismic isolation of civil buildings in Japan. Progress in Structural 

Engineering and Materials, 1(3), 295-300. 

 

Ghobarah, A., and Ali, H. M. (1988). Seismic performance of highway bridges. 

Engineering Structures, 10(3), 157-166. 

 

Heydari, M., and Mousavi, M. (2015). The comparison of seismic effects of near-field 

and far-field earthquakes on relative displacement of seven-storey concrete building 

with shear wall. Current World Environment, 10(1), 0-46. 

 

Jangid, R. S., and Kelly, J. M. (2001). Base isolation for near‐fault motions. 

Earthquake engineering & structural dynamics, 30(5), 691-707. 

 

Japan Road Association. (1996). Design Specifications of Highway Bridges, Part V 

Seismic Design, Maruze, Tokyo. 

 

Juang, D. S. and Chuang, W.S. (2007). “A PSO-SA hybrid searching algorithm for 

least weight design of structures (in Chinese).” 31th National Conference on 

Theoretical and Applied Mechanics, ISU, Kaohsiung, Taiwan. 

 

Kawashima, K., and Unjoh, S. (1989). Development of hybrid control technology. 

Civil Engineering Journal, 32(6), 2-5. 

 

Kawashima, K., Hasegawa, K., Unjoh, S., and Nagashima, H. (1991). Current 

research efforts in Japan for passive and active control of highway bridges against 

earthquake. In PROCEEDINGS OF THE 23RD JOINT MEETING OF 

THE US-JAPAN COOPERATIVE PROGRAM IN NATURAL RESOURCES 

PANEL ON WIND AND SEISMIC EFFECTS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

Kawashima, K., Unjoh, S. and Shimizu, H. (1992a). “Experiments on Dynamic 

Characteristics of Variable Damper.” Proc. Japan National Symposium on 

Structural Response Control, Japan, 121-128. 

 

Kawashima, K., Unjoh, S. and Shimizu, H. (1992b). “Experiments on Dynamic 

Characteristics of Variable Damper. ”Proc. Japan National Symposium on 

Structural Response Control, Japan, 311-317. 

 

Kawashima, K. (2002). Damage of bridges resulting from fault rupture in the 1999 

Kocaeli and Duzce, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake. 

Structural Engineering/Earthquake Engineering, 19(2), 179s-197s. 

 

Kelly, J. M. (1986). Aseismic base isolation: review and bibliography. Soil Dynamics 

and Earthquake Engineering, 5(4), 202-216. 

 

Kelly, J. M. (1998). Seismic isolation of civil buildings in the USA. Progress in 

Structural Engineering and Materials, 1(3), 279-285. 

 

Kennedy, J. and Eberhart, R.C. (1995). “Particle swarm optimization”. Proceedings of 

IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, 1942-

1948. 

 

Kennedy, J., and Eberhart, R. C. (2001). Swarm Intelligence, Morgan Kaufmann. 

 

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983).Optimization by simulated 

annealing. Science, 220(4598), 671-680. 

 

Koh, C. G., and Kelly, J. M. (1988). A simple mechanical model for elastomeric 

bearings used in base isolation. International journal of mechanical sciences, 30(12), 

933-943. 

 

Kosa, K., Tazaki, K., and Yamaguchi, E. (2002). Mechanism of damage to Shiwei 

Bridge caused by 1999 Chi-Chi earthquake. Structural Engineering/Earthquake 

Engineering, 19(2), 221s-226s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 
 

Lee, G. C., and Loh, C. H. (1999). Preliminary report from MCEER-NCREE 

workshop on the 921 Taiwan earthquake. Multidisciplinary Center for Earthquake 

Engineering Research. 

 

Liao, W. I., Loh, C. H., and Wan, S. (2000). Responses of isolated bridges subjected 

to near-fault ground motions recorded in Chi-Chi earthquake. International Workshop 

on Annual Commemoration of Chi-Chi Earthquake, Sep (pp. 18-20). 

 

Lu, L. Y., Shih, M. H., Tzeng, S. W., and Chang Chien, C. S. (2003). Experiment of a 

sliding isolated structure subjected to near-fault ground motion. In Proceedings of the 

7th pacific conference on earthquake engineering (pp. 13-15). 

 

Lu, L. Y., Shih, M. H., and Wu, C. Y. (2004).Near-fault seismic isolation using 

sliding bearings with variable curvatures. Proceedings of the 13th World Conference 

on Earthquake Engineering (No. 3264). 

 

Lu, L. Y., Chung, L. L., Wu, L. Y., and Lin, G. L. (2006). Dynamic analysis of 

structures with friction devices using discrete-time state-space formulation. 

Computers & structures, 84(15), 1049-1071. 

 

Lu, L. Y., Wang, J., and Yeh, S. W. (2007). Experimental verification of polynomial 

friction pendulum isolator for near-fault seismic isolation. Proceedings of the 4th 

International Structural Engineering and Construction Conference (ISEC-4). 

 

Lu, L. Y., Lin, G. L., and Kuo, T. C. (2008). Stiffness controllable isolation system 

for near-fault seismic isolation. Engineering Structures, 30(3), 747-765. 

 

Lu, L. Y., Lee, T. Y., Yeh, I. L., and Chang, H. (2010). Rocking bearings with 

variable frequency for near-fault seismic isolation. Journal of the Chinese Institute of 

Civil and Hydraulic Engineering, 22(3), 283-298. 

 

Lu, L. Y., Lee, T. Y., and Yeh, S. W. (2011). Theory and experimental study for 

sliding isolators with variable curvature. Earthquake Engineering & Structural 

Dynamics, 40(14), 1609-1627. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

Lu, L. Y., and Hsu, C. C. (2013). Experimental study of variable-frequency rocking 

bearings for near-fault seismic isolation. Engineering structures, 46, 116-129. 

 

Lu, L. Y., Lee, T. Y., Juang, S. Y., and Yeh, S. W. (2013). Polynomial friction 

pendulum isolators (PFPIs) for building floor isolation: An experimental and 

theoretical study. Engineering Structures, 56, 970-982. 

 

Martelli, A., and Forni, M. (1998).Seismic isolation of civil buildings in Europe. 

Progress in structural engineering and materials, 1(3), 286-294. 

 

Matsagar, V. A., and Jangid, R. S. (2006).Seismic response of simply supported base-

isolated bridge with different isolators. International Journal of Applied Science and 

Engineering, 4(1), 53-69. 

 

MATLAB (2000). The Math Works, Inc., Massachusetts, USA. 

 

Otsuka, H. (1997). Report on the Disaster Caused by the 1995 Hyogoken Nanbu 

Earthquake, Chapter 5, Damage to Highway Bridges. Journal of Research. 

 

Naeim, F., and Kelly, J. M. (1999). Design of seismic isolated structures: from theory 

to practice. John Wiley & Sons. 

 

Poli, Riccardo, James Kennedy, and Tim Blackwell. "Particle swarm optimization." 

Swarm intelligence 1.1 (2007): 33-57. 

 

Pranesh, M., and Sinha, R. (2000). VFPI: an isolation device for aseismic 

design. Earthquake engineering & structural dynamics, 29(5), 603-627. 

 

Priestley, M. N., Seible, F., and Calvi, G. M. (1996). Seismic design and retrofit of 

bridges.John Wiley & Sons. 

 

Rådeström, S., Ü lker-Kaustell, M., Andersson, A., Tell, V., and Karoumi, R. (2017). 

Application of fluid viscous dampers to mitigate vibrations of high-speed railway 

bridges. International Journal of Rail Transportation, 5(1), 47-62. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 
 

Roberts, J. E. (2005). Caltrans structural control for bridges in high‐seismic zones. 

Earthquake engineering & structural dynamics, 34(4‐ 5), 449-470. 

 

Robinson, W., and Greenbank, L. (1976). An extrusion energy absorber suitable for 

the protection of structures during an earthquake. Earthquake Engineering & 

Structural Dynamics, 4(3), 251-259. 

 

Shi, Y., and Eberhart, R. C. (1998a). Parameter selection in particle swarm 

optimization. In International conference on evolutionary programming (pp. 591-

600).Springer, Berlin, Heidelberg. 

 

Shi, Y., and Eberhart, R. (1998b). A modified particle swarm optimizer. In 

Evolutionary Computation Proceedings, 1998. IEEE World Congress on 

Computational Intelligence. The 1998 IEEE International Conference on (pp. 69-73). 

IEEE. 

 

Shi, X., Zhu, S., Li, J. Y., and Spencer Jr, B. F. (2016). Dynamic behavior of stay 

cables with passive negative stiffness dampers. Smart Materials and 

Structures, 25(7), 075044. 

 

Soong, T. T. and Constantinou, M. C. (1994). Passive and Active Structural Control 

in Civil Engineering, Springer: Vienna, New York 

 

Symans, M. D., and Constantinou, M. C. (1999). Semi-active control systems for 

seismic protection of structures: a state-of-the-art review. Engineering structures, 

21(6), 469-487. 

 

Taflanidis, A. A. (2011). Optimal probabilistic design of seismic dampers for the 

protection of isolated bridges against near-fault seismic excitations. 

Engineering structures, 33(12), 3496-3508. 

 

Vaurigaud, B., Manevitch, L. I., and Lamarque, C. H. (2011). Passive control of 

aeroelastic instability in a long span bridge model prone to coupled flutter using 

targeted energy transfer. Journal of Sound and Vibration, 330(11), 2580-2595. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 
 

Wang, Y. P., Chung, L. L., and Liao, W. H. (1998). Seismic response analysis of 

bridges isolated with friction pendulum bearings. Earthquake Engineering & 

Structural Dynamics, 27(10), 1069-1093. 

 

Zhang, S., and Wang, G. (2013). Effects of near-fault and far-fault ground motions on 

nonlinear dynamic response and seismic damage of concrete gravity dams. Soil 

Dynamics and Earthquake Engineering, 53, 217-229. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

APPENDIX A 

 

This appendix derives the relationship between two coordinates (fixed coordinate and 

moving coordinate) of the PRB in second chapter. As shown in figure 2.3, it has two 

different coordinates, fixed coordinate and moving coordinate. x-y is the fixed 

coordinate with the x-axis attached to the ground, while X-Y is the moving coordinate 

that is attached to the bearing, with the Y-axis being the symmetric axis of the 

bearing. The X-Y coordinate will rock along with the bearing. When the bearing is in 

its neutral position, the origins of the two coordinate systems will coincide with each 

other. Because it has two different coordinates, so it needs the transformation equation 

to make this two coordinates connect each other. Thus, as shown in Figure A.1, ( ⃑  ⃑) 

is the unit vector of the fixed coordinate x-y; ( ⃑   ⃑ ) is the unit vector for the moving 

coordinate X-Y. The relationship between this two unit vectors are: 

{
 ⃑        ⃑        ⃑ 

   ⃑         ⃑        ⃑ 
                (A.1) 

{
   ⃑        ⃑        ⃑

  ⃑        ⃑        ⃑
                (A.2) 

 

As shown in Figure A.1, o and C are the origin points of the fixed coordinate and 

moving coordinate, respectively. P is any point on the hypothetical plane. The relative 

vector between o and C is as follows: 

 ⃑      ⃑     ⃑                            (A.3) 

 

Equation (A.3) also can be expressed as: 

 ⃑      ⃑     ⃑    ⃑                  (A.4) 

 

Assuming P is any point on the plane, P is described by moving coordinate system X-

Y can be written as: 

 ⃑      ⃑     ⃑                  (A.5) 

 

If the equation (A.5) is described by fixed coordinate x-y, so it can be written as: 

 ⃑      ⃑     ⃑                 (A.6) 
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So, it can be directly as: 

 ⃑    ⃑    ⃑                   (A.7) 

 

Or in another form: 

 ⃑    ⃑    ⃑    ⃑    ⃑                  (A.8) 

 

Substituting equations (A.4), (A.5) and (A.6) into equation (A.8): 

   ⃑     ⃑  (   ⃑     ⃑)  (   ⃑     ⃑ )              (A.9) 

 

Substituting equation (A.2) into equation (A.9): 

   ⃑     ⃑  (  (      ⃑
        ⃑

 )    (       ⃑
        ⃑

 ))  (   ⃑     ⃑ )     (A.10) 

 

Separate the vectors: 

{
                      

                     
             (A.11) 

 

As shown in Figure 2.3, PRB has two kinds of coordinates, the fixed coordinate and 

moving coordinate for the contact surface A, respectively. 

{
                       (     )
                   (     )

                      (     )

                   (     )

             (A.12) 

 

Using the equation (A.11) to describe the coordinate in (A.12): 

{
                     
                     
                     
                     

              (A.13) 

 

These following known conditions are given according to the geometric conditions in 

Figure 2.3: 

                     (A.14) 

    (  )                (A.15) 

                     (A.16) 

                                (A.17) 
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 (  )  is the geometric function of rocking surface, h is the bearing height. 

Substituting the above equations (A.14), (A.15), (A.16) and (A.17) into equation 

(A.13): 

                            (A.18) 

 (  )                          (A.19) 

                                 (A.20) 

                                                        (A.21) 

 

Substituting equation (A.18) to (A.20), and equation (A.19) to (A.21), so it will be as 

follows: 

                                       (A.22) 

   (  )                                    (A.23) 

 

Moving    and    into the left side: 

   ,   (  )-                            (A.24) 

   ,   (  )-                          (A.25) 

 

From Figure 2.3, since it assumed that the rocking surface and the ground have point 

contact, the x-axis is actually tangent to the rocking surface at the contact point A. 

  (  )                      (A.26) 

 

Equation (A.26) can be change based on the trigonometric relationship, and further 

rewritten as a function as follows: 

{

      
     

√        
 

 (  )

,  ( (  ))
 
-
 
 

      
 

√        
 

 

,  ( (  ))
 
-
 
 

             (A.27) 

     

Since it assumed that slippage will not occur at the contact point,    should be equal 

to the arc length between points A and C, which can be computed by: 

  (  )  ∫ ,  ( (  ))
 
-
 

 
  

 
                (A.28) 
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Furthermore by using coordinate transformation relation between fixed and moving 

coordinates systems,    and    can be written as:  

   
  (  )(   (  ))   

,  ( (  ))
 
-
 
 

 ∫ ,  ( (  ))
 
-
 

 
  

 
              (A.29) 

   
   (  )    

 (  )

,  ( (  ))
 
-
 
 

               (A.30) 
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Figure A. 1 Transformation Coordinates Diagram 
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APPENDIX B 

 

This appendix derives the state space equation of continuous time system into the 

equation of discrete time system to analyze the behavior of PRB in irregular bridges. 

The continuous time system is as follows: 

 ̇( )    ( )    ̈ ( )    ( )                            (B.1) 

  ̈ ( ) is the seismic force,   ( ) is the bearing horizontal force. Both are external 

forces. 

Let the continuous time system  ( ) is equal to free vibration transient solution   ( ) 

and steady state solution of forced vibration with external force   ( ) as shown is 

following equation: 

 ( )    ( )    ( )               (B.2) 

 

Solving the free vibration transient solution   ( ), assume that the external forces 

  ̈ ( )    ( )   , so equation (B.1) becomes: 

 ̇( )    ( )  
  ( )

  
                (B.3) 

 

Doing integration for equation (B.3): 

∫    ∫
  ( )

  
          ( )              (B.4) 

 

Change the equation (B.4): 

 ( )      ( )        
       

=    =    ( )            (B.5) 

 

If  ( ) is the initial condition of the structure,     in equation (B.5) can be expressed 

as: 

         
  

  
   

  

  
     

  

  
   ∑

  

  
   

              (B.6) 

 

If      ( ), from equations (B.5) and (B.6),  ( ) also can be obtained as: 

  ( )   ( )     ( )∑
  

  
   

     ( ) ( )            (B.7) 
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Solving   ( ), set the external force is equal to zero, using undetermined coefficient 

method: 

  ( )   ( ) ̅( )                  (B.8) 

 

Doing the first differential for   ( ): 

 ̇ ( )   ̇( ) ̅( )   ( ) ̇̅( )                (B.9) 

 

Substituting equations (B.8) and (B.9) into equation (B.1): 

 ̇( ) ̅( )   ( ) ̇̅( )    ( ) ̅( )    ̈ ( )    ( )           (B.10) 

 

Since: 

 ̇( )         ( )               (B.11) 

 

Substituting equation (B.11) to equation (B.10): 

 ( ) ̇̅( )    ̈ ( )    ( )               (B.12) 

 

The equation (B.12) above can be changed into: 

 ̇̅( )  
 

 ( )
,  ̈ ( )    ( )-             (B.13) 

 

Doing the integration for equation (B.13): 

 ̅( )  ∫
 

 ( )
,

 
  ̈ ( )    ( )-              (B.14) 

 

If 
 

 ( )
       (  ), equation (B.14) can be further rewritten as: 

 ̅( )  ∫  (  ),
 

  ̈ ( )    ( )-               (B.15) 

 

Substituting equation (B.15) into equation (B.8): 

  ( )   ( ) ∫  (  ),
 

  ̈ ( )    ( )-   ∫  (   ),
 

  ̈ ( )    ( )-        (B.16) 

 

Substituting equations (B.7) and (B.16) into equation (B.2): 

 ( )    ( )    ( )   ( ) ( )  ∫  (   ),
 

 
  ̈ ( )    ( )-                (B.17) 
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Assume the time step is   , then the time of step k can be expressed as    , the 

equation at step k is: 

  (   )   ( ) (   )  ∫  (     ),
   

 
  ̈ ( )    ( )-            (B.18) 

 

The time of step k + 1 can be expressed as (      ), the equation for k + 1 is: 

    (      )   ( ) (      )  ∫  (        ),
      

 

  ̈ ( )    ( )-   

  ( ) (      )  ∫  (        ),
   

 

  ̈ ( )    ( )-  

 ∫  (        ),
      

   

  ̈ ( )    ( )-  

  ( ) (   ) (  )   (  )∫  (     ),
   

 

  ̈ ( )    ( )-  

 ∫  (        ),
      

   

  ̈ ( )    ( )-   

(B.19) 

  

Substituting equations (B.18) into (B.19): 

    (      )   (  )* ( ) (   )  ∫  (     ),
   

 

  ̈ ( )    ( )-  +  

 ∫  (        ),
      

   

  ̈ ( )    ( )-    (  )  (   )

 ∫  (        ),
      

   

  ̈ ( )    ( )-   

(B.20) 

            

By  (  )       and        , equation (B.20) can be expressed as: 

 (   )     , -  ∫  (        ),
      

   
  ̈ ( )    ( )-            (B.21) 

 

Assuming that the external force is linearly changed at each step, so the external force 

between k and k + 1 steps can be obtained by interpolation: 

 ̈ ( )   ̈ , -  0
 ̈ ,   -  ̈ , -

  
1 (     )              (B.22) 

 

 ( )   , -  0
 ,   -  , -

  
1 (     )              (B.23) 
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By            , the integral equation (B.21) is obtained: 

 (   )     , -  ∫  (  ),
  

 
  ̈ (  )    (  )-               (B.24) 

 

 ̈ (  ) and  (  ) can be expressed as: 

 ̈ ( 
 )   ̈ , -  *

 ̈ ,   -   ̈ , -

  
+ (     )   ̈ ,   -  

 ̈ ,   -    ̈ , - 
 

  

  ̈ , - (
  

  
)   ̈ ,   - (

     

  
) 

       (B.25) 

 (  )   , -  *
 ,   -   , -

  
+ (     )   ,   -  

 ,   -    , -  

  

  , - (
  

  
)   ,   - (

     

  
) 

 (B.26) 

 

Rearrange the equation (B.24): 

 (   )     , -  ∫  (  )
  

 

, * ̈ , - (
  

  
)   ̈ ,   - (

     

  
)+

  * , - (
  

  
)   ,   - (

     

  
)+-    

    , -  ∫  (  )
  

 

*  ̈ , - (
  

  
)    , - (

  

  
)+    

 ∫  (  )
  

 

*  ̈ ,   - (
     

  
)    ,   - (

     

  
)+    

    , -  ∫  (  ) (
  

  
)

  

 

0  ̈ , -    , -1    

 ∫  (  )
  

 

(
     

  
) 0  ̈ ,   -    ,   -1                                 

    , -      

(B.27) 
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Based on equation (B.27), it has 2 variables need to be obtained (a and b). a can be 

derived as: 

  ∫  (  )
  

 

*  ̈ , - (
  

  
)    , - (

  

  
)+     ∫     (

  

  
)

  

 

0  ̈ , -    , -1    

 ∫ ∑
   

  
  

 

   

(
  

  
)

  

 

0  ̈ , -    , -1    

 ∫ ∑
  (   )

  
  

 

   

(
 

  
)

  

 

0  ̈ , -    , -1    

  (
 

  
)∑

  (   )

(   ) 
  

 

   

0  ̈ , -    , -1|

 

  

             

 ∑
  (   )

(   ) 
  

 

   

0  ̈ , -    , -1 

(B.28) 

Based on equation (B.27), b can be derived as: 

  ∫  (  )
  

 

(
     

  
) 0  ̈ ,   -    ,   -1    

 ∫     
  

 

(
     

  
) 0  ̈ ,   -    ,   -1    

 ∫ ∑
   

  
  

 

   

(  
  

  
) 0  ̈ ,   -    ,   -1    

  

 

 ∫ [∑
   

  
  

 

   

 (
 

  
)∑

  (   )

  
  

 

   

] 0  ̈ ,   -    ,   -1    
  

 

 [∑
  (   )

(   ) 
  

 

   

 (
 

  
)∑

  (   )

(   ) 
  

 

   

] 0  ̈ ,   -    ,   -1|

 

  

 [∑  

 

   

(
  (   )

(   ) 
 

  (   )

(   ) 
)] 0  ̈ ,   -    ,   -1 

(B.29) 

 

Since ∑
  (   )

(   ) 
     

  
   , equation (B.28) can be written as: 

  ∑
  (   )

(   ) 
   

   0  ̈ , -    , -1     
 0  ̈ , -    , -1                                 (B.30) 

 

Since ∑
  (   )

(   ) 
    ̂ 

 
   , equation (B.29) can be written as: 

  0∑    
   .

  (   )

(   ) 
 

  (   )

(   ) 
/1 0  ̈ ,   -    ,   -1  ( ̂    

 ) 0  ̈ ,   -    ,   -1

                   (B.31) 
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Substituting equation (B.30) and (B.31) to equation (B.27) can get the equation as 

follows: 

 ,   -     , -    
 (   ̈ , -     ̈ ,   -)  ( ̂    

 )(   , -     ,   -)       (B.32) 

 

  
      

  
                       (B.33) 

( ̂    
 )      

( ̂    
 )      

 

From equation (B.32) and (B.33), the discrete time state space equation can be 

expressed as: 

 ,   -     , -     ̈ , -     ̈ ,   -     , -     ,   -         (B.34) 
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APPENDIX C 

 

This appendix shows the unclear figure of hysteretic loop in fourth chapter. Not all of 

the hysteretic loop figures will show here, just some unclear figures at some ground 

motions sample. 

 

 

 

 

 

 

 

                (a) Hysteretic Loop of PRB      (b) Hysteretic Loop of FPS  

Figure C. 1 Bridge’s Hysteretic Loop Subjected to Imperial Earthquake in Short 

Column 

 

 

 

 

 

 

 

                (a) Hysteretic Loop of PRB      (b) Hysteretic Loop of FPS  

Figure C. 2 Bridge’s Hysteretic Loop Subjected to JMA Kobe Earthquake in Long 

Column 
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                (a) Hysteretic Loop of PRB      (b) Hysteretic Loop of FPS  

Figure C. 3 Bridge’s Hysteretic Loop Subjected to El Centro Earthquake in Long 

Column 
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