BAB II TINJAUAN PUSTAKA

Berikut ini diberikan definisi, toerema serta contoh yang menjadi acuan untuk mempermudah pembahasan mengenai ideal c-maksimal dari ring berhingga.

2.1 Pemetaan dan Operasi Biner

Pemetaan dan operasi biner merupakan dasar untuk mempelajari struktur aljabar. Definisi dan contoh diberikan sebagai berikut.

Definisi 2.1.1 (Pemetaan)

Misalkan A dan B adalah dua himpunan. Relasi f dari A ke B disebut pemetaan dari A ke B, jika untuk setiap elemen x di A terdapat tunggal elemen y di B (disebut *image* dari x oleh f), sedemikian sehingga y = f(x). Pemetaan dari A ke B dinotasikan

$$f: A \to B$$
 atau $A \xrightarrow{f} B$.

(Bhattacharya, dkk., 1995)

Definisi 2.1.2 (Operasi Biner)

Misalkan A adalah himpunan tak kosong. Suatu operasi biner * pada himpunan A adalah pemetaan dari setiap pasangan terurut $(a, b) \in A \times A$ pada $a * b \in A$. Dalam hal ini dinotasikan

*:
$$A \times A \longrightarrow A$$

 $(a,b) \mapsto * (a,b) = a * b.$
(Fraleigh, 1994)

2.2 Grup

Grup merupakan suatu struktur aljabar dengan satu operasi biner dan memenuhi aksioma-aksioma tertentu. Definisi dan contoh yang terkait dengan grup diberikan sebagai berikut.

Definisi 2.2.1 (Semigrup)

Misalkan S adalah himpunan tak kosong dengan satu operasi biner * dinotasikan (S,*). (S,*) disebut semigrup jika memenuhi aksioma-aksioma sebagai berikut.

- (i) Tertutup, yaitu untuk setiap $x, y \in S$ sedemikian sehingga $x * y \in S$.
- (ii) Assosiatif, yaitu untuk setiap $x, y, z \in S$ sedemikian sehingga (x * y) * z = x * (y * z).

(Whitelaw, 1978)

Contoh 2.2.2

Diberikan himpunan matriks $M = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}$ dengan operasi pergandaan (·). Maka (M, \cdot) adalah semigrup.

Bukti

Ambil sebarang matriks $A, B, C \in M$, misalkan $A = \begin{bmatrix} a_1 & b_1 \\ 0 & 0 \end{bmatrix}$,

$$B = \begin{bmatrix} a_2 & b_2 \\ 0 & 0 \end{bmatrix}, \text{ dan } C = \begin{bmatrix} a_3 & b_3 \\ 0 & 0 \end{bmatrix}.$$

(i)
$$A \cdot B = \begin{bmatrix} a_1 & b_1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} a_2 & b_2 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} a_1 a_2 & a_1 b_2 \\ 0 & 0 \end{bmatrix}.$$

Bilangan bulat memenuhi sifat tertutup terhadap pergandaan,

maka
$$A \cdot B = \begin{bmatrix} a_1 a_2 & a_1 b_2 \\ 0 & 0 \end{bmatrix} \in M$$
.

(ii)
$$(A \cdot B) \cdot C = \begin{pmatrix} \begin{bmatrix} a_1 & b_1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} a_2 & b_2 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ 0 & 0 \end{bmatrix}$$

$$= \cdot \begin{bmatrix} a_1 a_2 & a_1 b_2 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 a_2 a_3 & a_1 a_2 b_3 \\ 0 & 0 \end{bmatrix},$$

$$A \cdot (B \cdot C) = \begin{bmatrix} a_1 & b_1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} \begin{bmatrix} a_2 & b_2 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 & b_1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} a_2 a_3 & a_2 b_3 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 a_2 a_3 & a_1 a_2 b_3 \\ 0 & 0 \end{bmatrix}.$$

Oleh karena $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, berlaku sifat asosiatif. Berdasarkan (i) dan (ii) terbukti (M, +) adalah semigrup.

Definisi 2.2.3 (Grup)

Misalkan G adalah himpunan tak kosong dengan satu operasi biner *. (G,*) disebut grup jika memenuhi aksioma-aksioma sebagai berikut.

- (i) Tertutup, yaitu untuk setiap $x, y \in G$ sedemikian sehingga $x * y \in G$.
- (ii) Asosiatif, yaitu untuk setiap $x, y, z \in G$ sedemikian sehingga (x * y) * z = x * (y * z).
- (iii) Terdapat elemen identitas yaitu $e \in G$ sedemikian sehingga x * e = e * x = x untuk setiap $x \in G$.
- (iv) Untuk setiap $x \in G$ maka memiliki elemen invers yaitu $x^{-1} \in G$ sedemikian sehingga $x * x^{-1} = x^{-1} * x = e$.

(Bhattacharya, dkk., 1995)

Contoh 2.2.4

Diberikan himpunan matriks $M = \{\begin{bmatrix} a & 0 \\ b & c \end{bmatrix} | a, b, c \in \mathbb{R}, a \text{ dan } c \neq 0 \}$ dengan operasi pergandaan (·). Jadi (M,·) adalah grup.

Bukti

Ambil sebarang matriks $A, B, C \in M$, misalkan $A = \begin{bmatrix} a_1 & 0 \\ b_1 & c_1 \end{bmatrix}$,

$$B = \begin{bmatrix} a_2 & 0 \\ b_2 & c_2 \end{bmatrix}$$
, dan $C = \begin{bmatrix} a_3 & 0 \\ b_3 & c_3 \end{bmatrix}$, memenuhi:

(i)
$$A \cdot B = \begin{bmatrix} a_1 & 0 \\ b_1 & c_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 & 0 \\ b_2 & c_2 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 a_2 + 0 & 0 \\ b_1 a_2 + c_1 b_2 & 0 + c_1 c_2 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 a_2 & 0 \\ b_1 a_2 + c_1 b_2 & c_1 c_2 \end{bmatrix}.$$

Bilangan real memenuhi sifat tertutup terhadap penjumlahan dan pergandaan, maka $A \cdot B \in M$.

(ii)
$$(A \cdot B) \cdot C = \begin{pmatrix} \begin{bmatrix} a_1 & 0 \\ b_1 & c_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 & 0 \\ b_2 & c_2 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} a_3 & 0 \\ b_3 & c_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 a_2 & 0 \\ b_1 a_2 + c_1 b_2 & c_1 c_2 \end{bmatrix} \cdot \begin{bmatrix} a_3 & 0 \\ b_3 & c_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 a_2 & 0 \\ b_1 a_2 a_3 + c_1 b_2 a_3 + c_1 c_2 b_3 & c_1 c_2 c_3 \end{bmatrix}$$

$$A \cdot (B \cdot C) = \begin{bmatrix} a_1 & 0 \\ b_1 & c_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 & 0 \\ b_2 & c_2 \end{bmatrix} \cdot \begin{bmatrix} a_3 & 0 \\ b_3 & c_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 & 0 \\ b_1 & c_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 a_3 & 0 \\ b_2 a_3 + c_2 b_3 & c_2 c_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 a_2 & 0 \\ b_1 a_2 a_3 + c_1 b_2 a_3 + c_1 c_2 b_3 & c_1 c_2 c_3 \end{bmatrix}.$$

Oleh karena $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, berlaku Asosiatif.

- (iii) Terdapat elemen satuan, yaitu $e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ sedemikian sehingga untuk setiap $A \in M$ berlaku $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot A = A \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = A$.
- (iv) Untuk setiap $A \in M$ memiliki invers, yaitu $A^{-1} = \begin{bmatrix} \frac{1}{a} & 0\\ -\frac{b}{ac} & \frac{1}{c} \end{bmatrix}$

dengan $a, c \neq 0$ sedemikian sehingga $A \cdot A^{-1} = A^{-1} \cdot A = e$.

Berdasarkan (i), (ii), (iii), dan (iv) terbukti (M, \cdot) adalah grup.

Definisi 2.2.5 (Grup Komutatif)

Suatu (G,*) adalah grup disebut komutatif jika operasi binernya memenuhi hukum komutatif, yaitu untuk setiap $a,b \in G$ berlaku a*b=b*a.

(Bhattacarya, dkk., 1995)

Contoh 2.2.6

Diberikan himpunan bilangan bulat modulo 4, yaitu \mathbb{Z}_4 dengan operasi penjumlahan (+). $(\mathbb{Z}_4, +)$ adalah grup komutatif.

Bukti

Tabel 2.1 Operasi penjumlahan pada \mathbb{Z}_4

+	0	1	<u>2</u>	3
0	Ō	1	2	3
$ \begin{array}{c c} \hline \overline{0} \\ \hline \overline{1} \\ \hline \overline{2} \\ \hline \overline{3} \\ \end{array} $	1	<u>2</u> <u>3</u>	$\frac{\bar{2}}{\bar{3}}$	$\bar{0}$
<u>2</u>	<u>2</u> <u>3</u>	3	$\bar{0}$	1
3	3	$\bar{0}$	1	2

Berdasarkan Tabel 2.1 dibuktikan (\mathbb{Z}_4 , +) adalah grup komutatif.

- (i) Tertutup, yaitu untuk setiap $x, y \in \mathbb{Z}_4$, berdasarkan Tabel 2.1 terlihat bahwa $x + y \in \mathbb{Z}_4$.
- (ii) Asosiatif, yaitu ambil sebarang $x, y, z \in \mathbb{Z}_4$. Misalkan $x = \overline{1}$, $y = \overline{2}$, dan $z = \overline{3}$ sedemikian sehingga

$$x + (y + z) = \overline{1} + (\overline{2} + \overline{3}) = \overline{2},$$

 $(x + y) + z = (\overline{1} + \overline{2}) + \overline{3} = \overline{2}.$

Dengan cara sama berlaku untuk setiap $x, y, z \in \mathbb{Z}_4$.

- (iii) Terdapat elemen identitas, yaitu $e = \overline{0}$ berlaku untuk setiap $x \in \mathbb{Z}_4$ sedemikian sehingga $x + \overline{0} = \overline{0} + x = x$.
- (iv) Untuk setiap $x \in \mathbb{Z}_4$ mempunyai invers di \mathbb{Z}_4 , yaitu invers $\overline{0}$ adalah $\overline{0}$ karena $\overline{0} + \overline{0} = \overline{0}$, invers $\overline{1}$ adalah $\overline{3}$ kerena $\overline{1} + \overline{3} = \overline{0}$, invers $\overline{2}$ adalah $\overline{2}$ kerena $\overline{2} + \overline{2} = \overline{0}$, invers $\overline{3}$ adalah $\overline{1}$ karena $\overline{3} + \overline{1} = \overline{0}$.
- (v) Komutatif, yaitu ambil sebarang $x, y \in \mathbb{Z}_4$. Misalkan $x = \overline{2}$ dan $y = \overline{3}$ sedemikian sehingga

$$x + y = \overline{2} + \overline{3} = \overline{1},$$

 $y + x = \overline{3} + \overline{2} = \overline{1}.$

Dengan cara yang sama berlaku untuk setiap $x, y \in \mathbb{Z}_4$. Berdasarkan (i), (ii), (iii), (iv), dan (v) maka $(\mathbb{Z}_4, +)$ adalah grup komutatif.

Definisi 2.2.7 (Subgrup)

Misalkan S adalah himpunan bagian tak kosong dari grup G. Maka S dikatakan subgrup dari G, jika S merupakan grup dengan operasi biner yang sama dengan G.

(Bhattacharya, dkk, 1995)

Contoh 2.2.8

Diberikan Z₄ dengan operasi penjumlahan (+), telah dibuktikan pada Contoh 2.2.6 bahwa (\mathbb{Z}_4 , +) adalah grup. Misalkan $S = \{\overline{0}, \overline{2}\}$ maka (S, +) adalah subgrup dari \mathbb{Z}_4 .

Bukti

Akan dibuktikan bahwa $S = {\bar{0}, \bar{2}}$ adalah grup dengan operasi yang sama dengan G.

Tabel 2.2 Operasi penjumlahan pada S au.

+	0	<u>2</u>
0	$\bar{0}$	$\bar{2}$
<u>2</u>	$\bar{2}$	$\bar{0}$

Berdasarkan Tabel 2.2 dibuktikan (S, +) adalah grup.

- Tertutup, yaitu untuk setiap $x, y \in S$, berdasarkan Tabel 2.2 terlihat bahwa $x + y \in S$.
- (ii) Assosiatif, yaitu ambil sebarang $x, y, z \in S$. Misalkan $x = \overline{2}$, $y = \overline{0}$, dan $z = \overline{2}$ sedemikian sehingga

$$x + (y + z) = \overline{2} + (\overline{0} + \overline{2}) = \overline{0},$$

 $(x + y) + z = (\overline{2} + \overline{0}) + \overline{2} = \overline{0}.$

Dengan cara yang sama berlaku untuk setiap $x, y, z \in S$.

- (iii) Terdapat elemen identititas, yaitu $e = \overline{0}$ berlaku untuk setiap $x \in S$ sedemikian sehingga $x + \overline{0} = \overline{0} + x = x$.
- (iv) Untuk setiap $x \in S$ mempunyai invers di S, yaitu invers $\overline{0}$ adalah $\overline{0}$ kerena $\overline{0} + \overline{0} = \overline{0}$. invers $\bar{2}$ adalah $\bar{2}$ karena $\bar{2} + \bar{2} = \bar{0}$.
- (v) Komutatif, yaitu ambil sebarang $x, y \in S$. Misalkan $x = \overline{0}$ dan $v = \overline{2}$ sedemikan sehingga

$$x + y = \overline{0} + \overline{2} = \overline{2},$$

 $y + x = \overline{2} + \overline{0} = \overline{2}.$

Dengan cara yang sama berlaku untuk setiap $x, y \in S$.

Berdasarkan (i), (ii), (iii), (iv), dan (v) maka (S, +) adalah grup. Jadi S adalah semigrup dari \mathbb{Z}_4 .

Lemma 2.2.9

Misalkan (G,*) adalah grup dan H adalah himpunan tak kosong dari G. H adalah subgrup dari G jika hanya jika untuk berlaku sebagai berikut.

- (i) Untuk setiap $x, y \in H$ sedemikian sehingga $x * y \in H$.
- (ii) Untuk setiap $x \in H$ memiliki invers, yaitu $x^{-1} \in H$.

(Bhattacharya, dkk, 1995)

Bukti

- (⇒) Diketahui H adalah subgrup dari G. Berdasarkan Definisi 2. 2. 7 H adalah grup sehingga untuk setiap $x, y \in H$ sedemikian sehingga $x * y \in H$ terpenuhi dan untuk setiap $x \in H$ memiliki invers, yaitu $x^{-1} \in H$ terpenuhi.
- (⇐) Diketahui H tertutup, yaitu untuk setiap $x, y \in H$ sedemikian sehingga $x * y \in H$ dan untuk setiap $x \in H$ memiliki invers, yaitu $x^{-1} \in H$. Akan dibuktikan bahwa H adalah subgrup. Oleh karena H tidak kosong dari G maka memenuhi sifat asosiatif dan H memiliki elemen idetitas karena $x, x^{-1} \in H$ maka $x * x^{-1} = x^{-1} * x = e \in H$. Jadi H memenuhi sifat tertutup, asosiatif, mempunyai elemen identitas dan setiap elemen mempunyai invers. Jadi H adalah subgrup dari G.

Lemma 2.2.10

Misalkan (G,*) adalah grup. H adalah himpunan bagian tak kosong dari G. H adalah subgrup dari G jika hanya jika untuk setiap $x, y \in H$ berlaku $x * y^{-1} \in H$.

Bukti

- (⇒) Diketahui H adalah subgrup dari G. Akan ditunjukkan untuk setiap $x, y \in H$ berlaku $x * y^{-1} \in H$. Untuk setiap $y \in H$, berdasarkan Lemma 2.2.9 $y^{-1} \in H$ dan untuk setiap $x, y^{-1} \in H$, berdasarkan Lemma 2.2.9 berlaku $x * y^{-1} \in H$.
- (⇐) Diketahui untuk setiap $x, y \in H$ berlaku $x * y^{-1} \in H$. Akan ditunjukkan H adalah subgrup dari G. Untuk $x \in H$ maka $x * x^{-1} = e \in H$ sehingga untuk $e, a \in H$ berlaku $e * x^{-1} = x^{-1} \in H$ $e, y \in H$ dan untuk berlaku $e * y^{-1} = y^{-1} \in H$. $x * y^{-1} \in H$ Oleh karena $x * (y^{-1})^{-1} = x * y \in H$. Berdasarkan Lemma 2.2.9 karena terpenuhi (i) dan (ii), jadi H adalah subgrup dari G.

2.3 Ring

Ring merupakan suatu struktur aljabar dengan dua operasi biner yaitu penjumlahan dan pergandaan dan memenuhi aksioma-aksioma tertentu. Definisi, contoh dan teorema diberikan sebagai berikut.

Definisi 2.3.1 (Ring)

Misalkan R adalah himpunan tak kosong dengan dua operasi biner yaitu penjumlahan (+) dan pergandaan (·), dinotasikan $(R, +, \cdot)$. Maka $(R, +, \cdot)$ disebut ring jika memenuhi aksioma-aksioma sebagai berikut.

- 1. (R, +) adalah grup komutatif.
- 2. (R,\cdot) adalah semigrup.
- 3. $(R, +, \cdot)$ memenuhi sifat distributif yaitu untuk setiap $x, y, z \in R$.
 - i. Hukum distributif kanan, yaitu $(x + y) \cdot z = x \cdot z + y \cdot z$.
 - ii. Hukum distributitf kiri, yaitu $x \cdot (y + z) = x \cdot y + x \cdot z$. (Dummit dan Foote, 1999)

Contoh 2.3.2

Diberikan himpunan matriks $M = \left\{ \begin{bmatrix} a & b \\ d & c \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$ dengan operasi penjumlahan (+) dan pergandaan (·). Jadi $(M, +, \cdot)$ adalah ring.

Bukti

1. (M, +) adalah grup komutatif.

Akan ditunjukkan (M, +) adalah grup komutatif. Ambil sebarang matriks $A, B, C \in M$, misalkan $A = \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix}$,

$$B = \begin{bmatrix} a_2 & b_2 \\ d_2 & c_2 \end{bmatrix}$$
, dan $C = \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix}$ memenuhi:

(i)
$$A + B = \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ d_2 & c_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ d_1 + d_2 & c_1 + c_2 \end{bmatrix}$$

kerena bilangan real memenuhi sifat tertutup terhadap penjumlahan maka $A + B \in M$,

(ii)
$$(A+B) + C = \begin{pmatrix} \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ d_2 & c_2 \end{bmatrix} \end{pmatrix} + \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ d_1 + d_2 & c_1 + c_2 \end{bmatrix} + \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 + a_2 + a_3 & b_1 + b_2 + b_3 \\ d_1 + d_2 + d_3 & c_1 + c_2 + c_3 \end{bmatrix},$$

$$A + (B+C) = \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} + \begin{pmatrix} \begin{bmatrix} a_2 & b_2 \\ d_2 & c_2 \end{bmatrix} + \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} + \begin{bmatrix} a_2 + a_3 & b_2 + b_3 \\ d_2 + d_3 & c_2 + c_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 + a_2 + a_3 & b_1 + b_2 + b_3 \\ d_1 + d_2 + d_3 & c_1 + c_2 + c_3 \end{bmatrix},$$

oleh karena (A + B) + C = A + (B + C), berlaku sifat asosiatif.

- (iii) terdapat elemen satuan, yaitu $e = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ sedemikian sehingga untuk setiap $A \in M$ berlaku A + e = e + A = A,
- (iv) untuk setiap $A \in M$ memiliki invers, yaitu $A^{-1} = \begin{bmatrix} -a & -b \\ -d & -c \end{bmatrix}$ sedemikian sehingga untuk $A, A^{-1} \in M$ berlaku A + A' = A' + A = A.

2. (M,\cdot) adalah semigrup.

Akan dtunjukkan (M, \cdot) adalah semigrup. Ambil sebarang matriks $A, B, C \in M$, misalkan $A = \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix}$, $B = \begin{bmatrix} a_2 & b_2 \\ d_2 & c_2 \end{bmatrix}$,

dan $C = \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix}$ memenuhi:

(i)
$$A \cdot B = \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 & b_2 \\ d_2 & c_2 \end{bmatrix}$$
$$= \begin{bmatrix} a_1 a_2 + b_1 d_2 & a_1 b_2 + b_1 c_2 \\ d_1 a_2 + c_1 d_2 & d_1 b_2 + c_1 c_2 \end{bmatrix}$$

oleh karena bilangan real memenuhi sifat tertutup terhadap pergandaan dan penjumlahan maka $A \cdot B \in M$,

(ii)
$$(A \cdot B) \cdot C = \begin{pmatrix} \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 & b_2 \\ d_2 & c_2 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 a_2 + b_1 d_2 & a_1 b_2 + b_1 c_2 \\ d_1 a_2 + c_1 d_2 & d_1 b_2 + c_1 c_2 \end{bmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix}$$

$$A \cdot (B \cdot C) = \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} \cdot \begin{pmatrix} \begin{bmatrix} a_2 & b_2 \\ d_2 & c_2 \end{bmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 a_3 + b_2 d_3 & a_2 b_3 + b_2 c_3 \\ d_2 a_3 + c_2 d_3 & d_2 b_3 + c_2 c_3 \end{bmatrix},$$

maka $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ berlaku asosiatif.

3. $(M, +, \cdot)$ memenuhi sifat distributif.

(i)
$$(A + B) \cdot C = \begin{pmatrix} \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ d_2 & c_2 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ d_1 + d_2 & c_1 + c_2 \end{bmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix}$$

$$= \begin{pmatrix} \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix} \end{pmatrix} + \begin{pmatrix} \begin{bmatrix} a_2 & b_2 \\ d_2 & c_2 \end{bmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix} \end{pmatrix}$$

$$= AC + BC$$

(ii)
$$A \cdot (B + C) = \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} \cdot \begin{pmatrix} \begin{bmatrix} a_2 & b_2 \\ d_2 & c_2 \end{bmatrix} + \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix} \end{pmatrix}$$
$$= \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 + a_3 & b_2 + b_3 \\ d_2 + d_3 & c_2 + c_3 \end{bmatrix}$$

$$= \begin{pmatrix} \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} \cdot \begin{bmatrix} a_2 & b_2 \\ d_2 & c_2 \end{bmatrix} \end{pmatrix} + \begin{pmatrix} \begin{bmatrix} a_1 & b_1 \\ d_1 & c_1 \end{bmatrix} \cdot \begin{bmatrix} a_3 & b_3 \\ d_3 & c_3 \end{bmatrix})$$

$$= AB + AC.$$

Berdasarkan 1, 2, dan 3 terbukti bahwa $(M, +, \cdot)$ adalah ring.

Definisi 2.3.3 (Ring Berhingga)

Misalkan R adalah ring. Jika banyaknya elemen dari ring tersebut berhingga maka disebut ring berhingga.

(Bhattacarya, dkk., 1995)

Contoh 2.3.4

Diberikan himpunan bilangan bulat modulo 6, yaitu \mathbb{Z}_6 dengan operasi biner penjumlahan (+) dan pergandaan (·). Jadi (\mathbb{Z}_6 , +,·) adalah ring.

Bukti

1. $(\mathbb{Z}_6, +)$ adalah grup komutatif.

Tabel 2.3 Operasi penjumlahan pada \mathbb{Z}_6

1+4	0	1	2	3	4	5
$\overline{0}$	$\bar{0}$	_1	2	3	4	5
1	1	$\bar{2}$	3	$\bar{4}$	5	$\bar{0}$
<u>2</u>	2	3	4	5	$\bar{0}$	$\bar{1}$
$ \begin{array}{c c} \hline \overline{0} \\ \hline \overline{1} \\ \hline \overline{2} \\ \hline \overline{3} \\ \hline \overline{4} \end{array} $	3	4	5	$\bar{0}$	1	<u>2</u> <u>3</u>
4	4	5	$\bar{0}$	4	$\bar{2}$	3
5	5	$\bar{0}$	11	$\bar{2}$	3	$\bar{4}$

Berdasarkan Tabel 2.3 akan dibuktikan (\mathbb{Z}_6 ,+) adalah grup komutatif.

- (i) Tertutup, yaitu untuk setiap $x, y \in \mathbb{Z}_6$, berdasarkan Tabel 2.3 terlihat bahwa $x + y \in \mathbb{Z}_6$.
- (ii) Asosiatif, yaitu ambil sebarang $x, y, z \in \mathbb{Z}_6$. Misalkan $x = \overline{1}, y = \overline{2}$, dan $z = \overline{3}$ sedemikian sehingga

$$(x + y) + z = (\overline{1} + \overline{2}) + \overline{3} = \overline{0},$$

 $x + (y + z) = \overline{1} + (\overline{3} + \overline{3}) = \overline{0}.$

Dengan cara sama berlaku untuk setiap $x, y, z \in \mathbb{Z}_6$.

- (iii) Terdapat elemen identitas yaitu $\overline{0}$ sedemikian sehingga $x + \overline{0} = \overline{0} + x = x$ untuk setiap $x \in \mathbb{Z}_6$.
- (iv) Untuk setiap $x \in \mathbb{Z}_6$ mempunyai invers di \mathbb{Z}_6 , yaitu:

invers $\overline{0}$ adalah $\overline{0}$ kerena $\overline{0} + \overline{0} = \overline{0}$,

invers $\overline{1}$ adalah $\overline{5}$ karena $\overline{1} + \overline{5} = \overline{0}$,

invers $\overline{2}$ adalah $\overline{4}$ kerena $\overline{2} + \overline{4} = \overline{0}$,

invers $\bar{3}$ adalah $\bar{3}$ karena $\bar{3} + \bar{3} = \bar{0}$,

invers $\bar{4}$ adalah $\bar{2}$ kerena $\bar{4} + \bar{2} = \bar{0}$.

invers $\overline{5}$ adalah $\overline{1}$ kerena $\overline{5} + \overline{1} = \overline{0}$.

(v) Komutatif, yaitu untuk setiap $x, y \in \mathbb{Z}_6$, berdasarkan Tabel 2.2 memenuhi x + y = y + x.

Jadi terbukti (\mathbb{Z}_6 , +) adalah grup komutatif.

2. (\mathbb{Z}_6,\cdot) adalah semigrup.

Tabel 2.4 Operasi pergandaan pada Z₆

	r F S F S					
	0	<u>1</u>	2	3	4	5 5 3 2
0	ō	Ō	Ō	$\bar{0}$	ō	$\bar{0}$
$ \begin{array}{c c} \overline{0} \\ \overline{1} \\ \overline{2} \\ \overline{3} \end{array} $	ō	$\sqrt{1}$	2	<u>0</u> <u>3</u>	4	5
<u>2</u>	ō	$\bar{2}$	4	<u>0</u>	2	4
3	$\bar{0}$	3	$\bar{0}$	3	$\bar{0}$	3
4	$\bar{0}$	4	$\bar{2}$	$\bar{0}$	4	$\bar{2}$
5	$\bar{0}$	5	4	3	$\bar{2}$	$\bar{1}$

Berdasakan Tabel 2.4 akan ditunjukkan (\mathbb{Z}_6 ,) adalah semigrup.

- (i) Tertutup, yaitu untuk setiap $x, y \in \mathbb{Z}_6$, berdasarkan Tabel 2.3 terlihat bahwa $x \cdot y \in \mathbb{Z}_6$.
- (ii) Asosiatif, yaitu ambil sebarang $x, y, z \in \mathbb{Z}_6$. Misalkan $x = \overline{1}, y = \overline{2}$, dan $z = \overline{3}$ sedemikian sehingga

$$(x \cdot y) \cdot z = (\overline{1} \cdot \overline{2}) \cdot \overline{3} = \overline{0},$$

$$x \cdot (y \cdot z) = \overline{1} \cdot (\overline{2} \cdot \overline{3}) = \overline{0}.$$

Dengan cara sama berlaku untuk setiap $x, y, z \in \mathbb{Z}_6$. Jadi terbukti (\mathbb{Z}_6 ,) adalah semigrup.

- 3. $(\mathbb{Z}_6, +, \cdot)$ memenuhi sifat distributif. Ambil sebarang $x, y, z \in \mathbb{Z}_6$ misalkan $x = \overline{1}, y = \overline{4}$, dan $z = \overline{2}$, berlaku:
 - (i) $(\overline{1} + \overline{4}) \cdot \overline{2} = \overline{1} \cdot \overline{2} + \overline{4} \cdot \overline{2} = \overline{4} \operatorname{dan}$
 - (ii) $\overline{1} \cdot (\overline{4} + \overline{2}) = \overline{1} \cdot \overline{4} + \overline{1} \cdot \overline{2} = \overline{0}$.

Dengan cara sama berlaku untuk setiap $x, y, z \in \mathbb{Z}_6$.

Jadi terbukti (\mathbb{Z}_6 , +,·) memenuhi sifat distribusi.

Berdasarkan 1,2, dan 3 terbukti bahwa (\mathbb{Z}_6 , +,·) adalah ring.

Definisi 2.3.5 (Subring)

Misalkan S adalah himpunan bagian tak kosong dari ring R dengan dua operasi biner yaitu penjumlahan (+) dan pergandaan (\cdot) . S disebut subring dari ring R dinotasikan $S \leq R$ jika $(S, +, \cdot)$ merupakan ring.

(Bhattacharya, dkk., 1995)

Teorema 2.3.6

Misalkan R adalah ring dan S adalah himpunan bagian tak kosong dari R. S adalah subring dari R jika hanya jika memenuhi:

- (i) untuk setiap $x, y \in S$ berlaku $x y \in S$,
- (ii) untuk setiap $x, y \in S$ berlaku $xy \in S$.

(Judson, 2009)

Bukti

- (⇒) Diketahui bahwa S adalah subring. Akan dibuktikan S adalah himpuan tak kosong dan untuk setiap $x,y \in S$ berlaku $x-y \in S$ dan $xy \in S$. Berdasarkan Definisi 2.3.3 terbukti bahwa setiap subring adalah ring maka memenuhi untuk setiap $x,y \in S$ berlaku $x-y \in S$ karena S adalah subgrup dari grup R terhadap operasi penjumlahan berdasarkan Lemma 2.2.9 dan memenuhi untuk setiap $x,y \in S$ berlaku $xy \in S$ karena S bersifat tertutup terhadap pergandaan.
- (⇐) Diketahui bahwa untuk setiap $x, y \in S$ berlaku $x y \in S$ dan $xy \in S$. Akan dibuktikan S adalah subring. Oleh karena untuk setiap $x, y \in S$ berlaku $x y \in S$ sehingga S adalah subgrup dari R terhadap operasi penjumlahan berdasarkan Lemma 2.2.9. Serta karena untuk setiap $x, y \in S$ berlaku $xy \in S$ sehingga S tertutup terhadap pergandaan serta S berlaku hukum distributif. Oleh karena itu, S adalah subring.

Contoh 2.3.7

Misalkan ring $M = \left\{ \begin{bmatrix} a & b \\ d & c \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$ dengan himpunan bagian $T = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \middle| a, b, c \in \mathbb{R} \right\}$. Jadi T adalah subring.

Bukti

Ambil sebarang matriks $A, B \in T$, misalkan $A = \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix}$ dan

$$B = \begin{bmatrix} a_2 & b_2 \\ 0 & c_2 \end{bmatrix}, \text{ memenuhi:}$$

(i) Untuk setiap $A, B \in T$, berlaku

$$A - B = \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix} - \begin{bmatrix} a_2 & b_2 \\ 0 & c_2 \end{bmatrix} = \begin{bmatrix} a_1 - a_2 & b_1 - b_2 \\ 0 & c_1 - c_2 \end{bmatrix}.$$

Oleh karena bilangan real berlaku sifat tertutup terhadap penjumlahan maka $A-B=\begin{bmatrix} a_1-a_2 & b_1-b_2 \\ 0 & c_1-c_2 \end{bmatrix}\in T.$

(ii) Untuk setiap $A, B \in T$, berlaku

$$AB = \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ 0 & c_2 \end{bmatrix} = \begin{bmatrix} a_1a_2 & a_1b_2 + b_1c_2 \\ 0 & c_1c_2 \end{bmatrix}.$$

Oleh karena bilangan real berlaku sifat tertutup terhadap pergandaan dan penjumlahan maka

$$AB = \begin{bmatrix} a_1a_2 & a_1b_2 + b_1c_2 \\ 0 & c_1c_2 \end{bmatrix} \in T.$$

Berdasarkan (i) dan (ii) terbukti T adalah subring.

Definisi 2.3.8 (Ideal)

Misalkan I adalah himpunan bagian tak kosong dari ring R. I disebut ideal kiri (kanan) dari R jika memenuhi:

- (i) untuk setiap $x, y \in I$ berlaku $x y \in I$,
- (ii) untuk setiap $x \in I$ dan $r \in R$ berlaku $rx \in I$ $(xr \in I)$ disebut ideal kiri (kanan).

I disebut ideal dua sisi jika memenuhi rx = xr. Setiap ideal dari R adalah subring dari R.

(Rotman, 2002)

Contoh 2.3.9

Diberikan ring $M = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{Z} \right\}$ dengan himpunan bagian $K = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \middle| a, b \in \mathbb{Z} \right\}$ dan $L = \left\{ \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix} \middle| a, b \in \mathbb{Z} \right\}$. Jadi K adalah ideal kanan dan L adalah ideal kiri.

Bukti

(i) Untuk setiap $A, B \in K$, misalkan $A = \begin{bmatrix} a_1 & b_1 \\ 0 & 0 \end{bmatrix}$ dan $B = \begin{bmatrix} a_2 & b_2 \\ 0 & 0 \end{bmatrix}$ berlaku:

$$A - B = \begin{bmatrix} a_1 & b_1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} a_2 & b_2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a_1 - a_2 & b_1 - b_2 \\ 0 & 0 \end{bmatrix}.$$

Bilangan bulat memenuhi sifat tertutup terhadap penjumlahan maka $A-B=\begin{bmatrix} a_1-a_2 & b_1-b_2 \\ 0 & 0 \end{bmatrix}\in K$. Serta untuk setiap matriks $C,D\in L$, misalkan $C=\begin{bmatrix} a_1 & 0 \\ b_1 & 0 \end{bmatrix}$ dan $D=\begin{bmatrix} a_2 & 0 \\ b_2 & 0 \end{bmatrix}$ berlaku:

$$C - D = \begin{bmatrix} a_1 & 0 \\ b_1 & 0 \end{bmatrix} - \begin{bmatrix} a_2 & 0 \\ b_2 & 0 \end{bmatrix} = \begin{bmatrix} a_1 - a_2 & 0 \\ b_1 - b_2 & 0 \end{bmatrix}.$$

Bilangan bulat memenuhi sifat tertutup terhadap penjumlahan maka $C-D=\begin{bmatrix} a_1-a_2 & 0 \\ b_1-b_2 & 0 \end{bmatrix}\in L.$

(ii) Untuk setiap matriks $A \in K$ dan $T \in M$, misalkan $A = \begin{bmatrix} a_1 & b_1 \\ 0 & 0 \end{bmatrix} \operatorname{dan} T = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \text{ berlaku:}$

$$A \cdot T = \begin{bmatrix} a_1 & b_1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} a_1p + b_1r & a_1q + b_1s \\ 0 & 0 \end{bmatrix}, \quad \text{oleh}$$

karena bilangan bulat memenuhi sifat tertutup terhadap pergandaan dan penjumlahan maka $A \cdot T \in K$.

$$T \cdot C = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \cdot \begin{bmatrix} a_1 & 0 \\ b_1 & 0 \end{bmatrix} = \begin{bmatrix} pa_1 + qb_1 & 0 \\ ra_1 + sb_1 & 0 \end{bmatrix}$$
, oleh karena

bilangan bulat memenuhi sifat tertutup terhadap pergandaan dan penjumlahan maka $T\cdot C\in L$.

Berdasarkan (i) dan (ii) terbukti *K* adalah ideal kanan dan *L* adalah ideal kiri.

Definisi 2.3.10 (Ideal Maksimal)

Misalkan R adalah ring. M adalah ideal dari R disebut maksimal jika ideal $M \neq R$ dan tidak terdapat ideal I dari R sedemikian sehingga $M \subsetneq I \subsetneq R$.

(Grillet, 2007)

Contoh 2.3.11

Diberikan himpunan bilangan bulat modulo 12, yaitu \mathbb{Z}_{12} dengan ideal-idealnya yaitu $I_1 = \{\overline{0}\}, \quad I_2 = \{\overline{0}, \overline{6}\}, \quad I_3 = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}\},$ $I_4 = \{\overline{0}, \overline{4}, \overline{8}\}, I_5 = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ dan $I_6 = \mathbb{Z}_{12}$. Maka I_3 dan I_5 adalah ideal maksimal dari \mathbb{Z}_{12} .

Bukti

Ditunjukkan bahwa I_3 dan I_5 adalah ideal maksimal. Oleh karena $I_3 \neq \mathbb{Z}_{12}$ dan $I_5 \neq \mathbb{Z}_{12}$ serta tidak ada ideal M dari R sedemikian sehingga $I_3 \subsetneq M \subsetneq \mathbb{Z}_{12}$ dan $I_5 \subsetneq M \subsetneq \mathbb{Z}_{12}$. Maka I_3 dan I_5 adalah ideal maksimal dari \mathbb{Z}_{12} .

Definisi 2.3.12 (H_R)

Misalkan R adalah ring. Dan H adalah ideal dari R. Maka H_R adalah ideal maksimal dari R yang termuat di H. H_R dinotasikan juga sebagai $Core_R(H)$.

(Tashtoush dan Jawarneh, 2011)

Contoh 2.3.13

Diberikan himpunan bilangan bulat modulo sepuluh, yaitu \mathbb{Z}_{10} adalah ring. dengan $H = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ adalah ideal dari \mathbb{Z}_{10} . Maka $H_R = Core_R(H) = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ adalah ideal maksimal yang termuat di H.

Definisi 2.3.14 (Ring Faktor)

Misalkan R adalah ring dengan I adalah ideal dari R. R/I adalah $\{\overline{a}, \overline{b}, \overline{c}, ...\}$, dengan $\overline{a} = a + I, \overline{b} = b + I, \overline{c} = c + I$, dan seterusnya dengan $a, b, c \in R$ dengan operasi sebagai berikut.

$$(a + I) + (b + I) = (a + b) + I$$

 $(a + I)(b + I) = ab + I.$

Maka R/I dengan operasi di atas merpakan ring dan disebut ring faktor.

(Bhattacarya, dkk., 1995)

Contoh 2.3.15

Misalkan himpunan bilangan bulat modulo 8, yaitu Z_8 adalah ring dan $I = \{\overline{0}, \overline{4}\}$ adalah ideal dari \mathbb{Z}_8 , maka elemen-elemen $\mathbb{Z}_8/I = \{I, \overline{1} + I, \overline{2} + I, \overline{3} + I\}$.

Bukti

Ditunjukkan bahwa $\mathbb{Z}_8/I = \{I, \overline{1} + I, \overline{2} + I, \overline{3} + I\}.$

$$\overline{0} + I = {\overline{0}, \overline{4}} = I,$$

$$\bar{1} + I = \{\bar{1}, \bar{5}\},\$$

$$\bar{2} + I = \{\bar{2}, \bar{6}\},\$$

$$\bar{3} + I = {\bar{3}, \bar{7}}.$$

$$\bar{4} + I = \{\bar{4}, \bar{0}\} = I$$

$$\bar{5} + I = \{\bar{5}, \bar{1}\} = I + \bar{1},$$

$$\overline{6} + I = {\overline{6}, \overline{2}} = I + \overline{2},$$

$$\bar{7} + I = {\bar{7}, \bar{3}} = I + \bar{3}.$$

Jadi elemen-elemen $\mathbb{Z}_8/I = \{I, \overline{1} + I, \overline{2} + I, \overline{3} + I\}.$

Teorema 2.3.16 (Identitas Dedekind untuk Ring)

Misalkan R adalah ring dengan subring A, B, dan C. Jika $B \le A$, maka $A \cap BC = B(A \cap C)$.

(Tashtoush dan Jawarneh, 2011)

Bukti

Diketahui $B \le A$. Akan dibuktikan $(A \cap BC) = B(A \cap C)$ artinya ditunjukkan bahwa

$$B(A \cap C) \subseteq (A \cap BC)$$
 dan $(A \cap BC) \subseteq B(A \cap C)$.

- (i) $B(A \cap C) \subseteq (A \cap BC)$ $B(A \cap C) = BA \cap BC$, misalkan $ba \in BA \cap BC$ artinya $ba \in BA$ dan $ba \in BC$. Pandang $ba \in BA$, karena $B \leq A$ maka $B \subseteq A$. Karena $BA = \{ba | b \in A \ dan \ a \in A\}$ dan A adalah subring, berlaku tertutup terhadap pergandaan sehingga $b \in A$ dan $a \in A$ maka $ba \in A$. Oleh karena itu $ba \in A \cap BC$. Jadi terbukti bahwa $B(A \cap C) \subseteq A \cap BC$.
- (ii) $(A \cap BC) \subseteq B(A \cap C)$ Misalkan $a \in A \cap BC$ artinya $a \in A$ dan $a \in BC$. Karena $a \in BC$, maka a = bc dengan $b \in B$ dan $c \in C$. Akan ditunjukkan $a = bc \in BA$. Karena $B \subseteq A$ maka $B \subseteq A$ artinya $b \in A$, sehingga a = bc dengan $b \in A$ dan $c \in C$ maka $a \in AC$. Karena $a \in A$ dan $a \in AC$. Oleh karena itu, a = bc dengan $b \in B$ dan $c \in A$ maka $a \in BA$ sehingga $BA \cap BC = B(A \cap C)$. Jadi terbukti $(A \cap BC) \subseteq B(A \cap C)$.

Berdasarkan (i) dan (ii) jadi terbukti $(A \cap BC) = B(A \cap C)$.

Contoh 2.3.17

Misalkan himpunan bilangan bulat modulo 24, yaitu \mathbb{Z}_{24} adalah ring dengan masing-masing subringnya adalah $C = \{\overline{0}, \overline{8}, \overline{16}\}$ $B = \{\overline{0}, \overline{4}, \overline{8}, \overline{12}, \overline{16}, \overline{20}\}, A = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}, \overline{12}, \overline{14}, \overline{16}, \overline{18}, \overline{20}, \overline{22}\}.$ Maka $(A \cap BC) = B(A \cap C)$.

Bukti

Berdasarkan A, B, C seperti pada Contoh 2.3.17, maka diperoleh $BC = {\overline{0}, \overline{8}, \overline{16}}, \quad (A \cap BC) = {\overline{0}, \overline{8}, \overline{16}}, \quad A \cap C = {\overline{0}, \overline{8}, \overline{16}} \quad dan$ $B(A \cap C) = {\overline{0}, \overline{8}, \overline{16}}.$ Jadi $(A \cap BC) = B(A \cap C).$

Teorema 2.3.18

Misalkan R adalah ring. Jika A dan B adalah ideal dari R maka A + B adalah ideal dari R.

(Tashtoush dan Jawarneh, 2011)

Bukti

(i) Misalkan $x, y \in A + B$ maka $x = a_1 + b_1 \in A + B$ dengan $a_1 \in A$ dan $b_1 \in B$ dan $y = a_2 + b_2 \in A + B$ dengan $a_2 \in A$ dan $b_2 \in B$, sehingga

$$x - y = (a_1 + b_1) - (a_2 + b_2)$$

$$= (a_1 - a_2) + (b_1 - b_2) \in A + B$$
dengan $(a_1 - a_2) \in A$ dan $(b_1 - b_2) \in B$. Jadi $x - y \in A + B$.

(ii) Misalkan $x \in A + B$ maka $x = a_1 + b_1 \in A + B$ dan $r \in R$ sehingga untuk $rx = r(a_1 + b_1) = ra_1 + rb_1 \in A + B$ dan $xr = (a_1 + b_1)r = a_1r + b_1r \in A + B$ dengan $a_1r, ra_1 \in A$ karena A adalah ideal dan $b_1r, rb_1 \in B$ karena B adalah ideal. Oleh karena itu xr dan $rx \in A + B$.

Berdasarkan (i) dan (ii) maka A + B adalah ideal dari R.

Contoh 2.3.19

Misalkan himpunan bilangan bulat modulo 12, yaitu \mathbb{Z}_{12} adalah ring. A_i dengan i=1,...,5 adalah setiap ideal dari \mathbb{Z}_{12} , yaitu $A_1=\{\overline{0}\}$, $A_2=\{\overline{0},\overline{6}\}$, $A_3=\{\overline{0},\overline{4},\overline{8}\}$, $A_4=\{\overline{0},\overline{3},\overline{6},\overline{9}\}$, $A_5=\{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8},\overline{10}\}$. Jadiaka A_i+A_i adalah ideal dari \mathbb{Z}_{12} .

Bukti

Tabel 2.5 Penjumlahan antara Ideal-ideal dari \mathbb{Z}_{12}

+	A_1	A_2	A_3	A_4	A_5
A_1	A_1	A_2	A_3	A_4	A_5
A_2	A_2	A_2	A_5	A_4	A_5
A_3	A_3	A_5	A_3	\mathbb{Z}_{12}	A_5
A_4	A_4	A_4	\mathbb{Z}_{12}	A_4	\mathbb{Z}_{12}
A_5	A_5	A_5	A_5	\mathbb{Z}_{12}	A_5

Pada Tabel 2.5 terlihat bahwa hasil penjumlahan antara ideal dari \mathbb{Z}_{12} adalah ideal dari \mathbb{Z}_{12} .

- (i) Ambil sebarang $x, y \in A_i + A_i$. Misalkan $x = \overline{4}$ dan $y = \overline{0}$ pada A_5A_3 berlaku $x y = \overline{4} + \overline{0} = \overline{4} \in A_5 + B_3$. Dengan cara yang sama berlaku untuk setiap $x, y \in A_i + A_i$.
- (ii) Ambil sebarang $x \in A_i + A_i$ dan $r \in \mathbb{Z}_{12}$. Misalkan $x = \overline{3}$ pada $A_4 + A_4$ dan $r = \overline{4}$ berlaku $xr = \overline{3} \cdot \overline{4} = \overline{0} \in A_4 + A_4$ dan $rx = \overline{4} \cdot \overline{3} = \overline{0} \in A_4 + A_4$. Dengan cara yang sama berlaku untuk setiap $x \in A_i + A_i$ dan $r \in \mathbb{Z}_{12}$.

Berdasarkan (i) dan (ii) terbukti $A_i + A_i$ adalah ideal dari \mathbb{Z}_{12} .

Teorema 2.3.20

Misalkan R adalah ring dengan subring A. Jika B adalah ideal dari R maka $A \cap B$ adalah ideal dari A.

(Tashtoush dan Jawarneh, 2011)

Bukti

(i) Misalkan $x, y \in A \cap B$ artinya $x, y \in A$ dan $x, y \in B$ berlaku $x - y \in A$ dan $x - y \in B$, sehingga $x - y \in A \cap B$.

(ii) Misalkan $x \in A \cap B$ artinya $x \in A$ dan $x \in B$ dan untuk $a \in A$, berlaku $ax \in A$ dan $ax \in B$ sehingga $ax \in A \cap B$.

Berdasarkan (i) dan (ii) terbukti $A \cap B$ adalah ideal dari A.

Contoh 2.3.21

Misalkan himpunan bilangan bulat bodulo 12, yaitu \mathbb{Z}_{12} adalah ring dengan A_i dan B_i dengan $i=1,\ldots,5$ adalah setiap ideal dari \mathbb{Z}_{12} , yaitu $A_1=\{\bar{0}\},\ A_2=\{\bar{0},\bar{6}\},\ A_3=\{\bar{0},\bar{4},\bar{8}\},\ A_4=\{\bar{0},\bar{3},\bar{6},\bar{9}\},\ A_5=\{\bar{0},\bar{2},\bar{4},\bar{6},\bar{8},\bar{10}\}$ dan $B_1=\{\bar{0}\},\ B_2=\{\bar{0},\bar{6}\},\ B_3=\{\bar{0},\bar{4},\bar{8}\},\ B_4=\{\bar{0},\bar{3},\bar{6},\bar{9}\},\ B_5=\{\bar{0},\bar{2},\bar{4},\bar{6},\bar{8},\bar{10}\}.$ Jadi $A_i\cap B_i$ adalah ideal dari A_i .

Bukti

Tabel 2.6 Irisan antara ideal-ideal dari \mathbb{Z}_{12}

0	B_1	B_2	R_3	B_4	B_5
A_1	$\{\bar{0}\}$	$\{\bar{0}\}$	$\{ar{0}\}$	$\{\bar{0}\}$	$\{\bar{0}\}$
A_2	$\{\bar{0}\}$	$\{\bar{0}, \bar{6}\}$	$\{\bar{0}\}$	$\{\overline{0},\overline{6}\}$	${\overline{0}},\overline{6}$
A_3	$\{\overline{0}\}$	$\{\bar{0}\}$	$\{\bar{0}, \bar{4}, \bar{8}\}$	$\{\overline{0}\}$	$\{\bar{0}, \bar{4}, \bar{8}\}$
A_4	$\{\overline{0}\}$	$\{\overline{0},\overline{6}\}$	$\{\overline{0}\}$	$\{\overline{0},\overline{3},\overline{6},\overline{9}\}$	$\{\bar{0}, \bar{6}\}$
A_5	$\{\bar{0}\}$	$\{\overline{0},\overline{6}\}$	$\{\overline{0},\overline{4},\overline{8}\}$	$\{\bar{0},\bar{6}\}$	$\{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8},\overline{10}\}$

Pada Tabel 2.6 terlihat bahwa irisan antara ideal-ideal dari \mathbb{Z}_{12} adalah ideal dari \mathbb{Z}_{12}

- (i) Ambil sebarang $x, y \in A_i \cap B_i$. Misalkan $x = \overline{8}$ dan $y = \overline{4}$ pada $A_3 \cap B_3$, berlaku $x y = \overline{8} \overline{4} = \overline{4}$. Jadi $x y \in A_3 \cap B_3$. Dengan cara yang sama berlaku untuk setiap $x, y \in A_i \cap B_i$
- (ii) Ambil sebarang $x \in A_i \cap B_i$. Misalkan $x = \overline{4}$ pada $A_3 \cap B_3$ dan ambil sebarang $a \in A_5$, misalkan $a = \overline{8}$ berlaku $x \cdot a = \overline{8}$ dan $a \cdot x = \overline{8}$. Jadi $x \cdot a = a \cdot x \in A_3 \cap B_3$. Dengan cara yang sama berlaku untuk setiap $x \in A_i \cap B_i$ dan $a \in A_i$.

Berdasarkan (i) dan (ii) terbukti $A_i \cap B_i$ adalah ideal dari A_i .

Teorema 2.3.22

Misalkan R adalah ring dengan subring H dan N serta ideal K sedemikian sehingga $K \le H \le R$ dan $K \le N \le R$. R = H + N jika dan hanya jika R/K = (H/K) + (N/K).

(Tashtoush dan Jawarneh, 2011)

Bukti

- (⇒) Diketahui R = H + N sehingga r = h + n dengan $r \in R$, $h \in H$, dan $n \in N$. Akan dibuktikan bahwa R/K = (H/K) + (N/K) artinya akan ditunjukkan bahwa $R/K \subseteq (H/K) + (N/K)$ dan $(H/K) + (N/K) \subseteq R/K$. Ambil $r + K \in R/K$ untuk setiap $r \in R$,
 - $r + K = (h + n) + K = (h + K) + (n + K) \in (H/K) + (N/K)$ untuk setiap $h \in H$ dan $n \in N$. Disisi lain, jika $(h + K) + (n + K) \in (H/K) + (N/K)$ maka $(h + K) + (n + K) = (h + n) + K = r + K \in R/K$

Jadi terbukti bahwa R/K = (H/K) + (N/K).

(€) Diketahui R/K = (H/K) + (N/K). Akan ditunjukkan bahwa R = H + N. Untuk setiap $r + K \in (H/K) + (N/K)$ terdapat $h \in H, n \in N$ dan $k \in K$ sedemikian sehingga r = h + n + k. Karena $K \le (H \cap N)$ maka $r = h + n + n' = h + n_2$ dengan $n_2 \in N$ dan $h \in H$. Serta untuk setiap $h \in H$ maka $h \in R$ kerena $H \le R$ dan untuk setiap $n \in N$ maka $n \in R$ karena $N \le R$. Maka $h + n \in R$ sehingga r = h + n dengan $r \in R$. Oleh karena itu, R = H + N. ■

Contoh 2.3.23

Misalkan himpunan bilangan bulat modulo 12, yaitu $R = \mathbb{Z}_{12}$ adalah ring, dengan subring-subringnya yaitu $H = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$ dan $N = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$, serta ideal $K = \{\overline{0}, \overline{6}\}$. Jadi R = H + N jika dan hanya jika R/K = (H/K) + (N/K).

Bukti

Diketahui ring R, subring H dan N serta ideal K, maka

$$(\Rightarrow) R/K = \{\overline{0} + K, \overline{1} + K, \overline{2} + K, \overline{3} + K, \overline{4} + K, \overline{5} + K\} (H/K) + (N/K) = \{\overline{0} + K, \overline{3} + K\} + \{\overline{0} + K, \overline{2} + K, \overline{4} + K\} = \{\overline{0} + K, \overline{1} + K, \overline{2} + K, \overline{3} + K, \overline{4} + K, \overline{5} + K\} = R/K$$

Jadi terbukti R/K = (H/K) + (N/K).

$$(\Leftarrow) \ R = \mathbb{Z}_{12} \\ H + N = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}\} + \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\} \\ = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11}\} \\ = R$$

Jadi terbukti bahwa untuk $R = \mathbb{Z}_{12}$, dengan subring H dan N, serta ideal K berlaku R = H + N jika dan hanya jika R/K = (H/K) + (N/K).

