BAB II TINJAUAN PUSTAKA

Pada skripsi ini diperlukan proses penurunan model dan analisis dinamik. Sebelum proses tersebut dibahas maka perlu diketahui terlebih dahulu teori-teori yang mendasarinya.

2.1 Sistem Dinamik

Sistem dinamik adalah suatu sistem yang dapat diketahui kondisinya di masa yang akan datang jika diberikan kondisi pada masa sekarang atau pada masa yang lalu (*Naggle dan Edward*, 1993).

2.1.1 Sistem Otonomus

Sistem otonomus adalah suatu sistem persamaan diferensial orde satu yang berbentuk

$$\frac{dx}{dt} = F(x, y, z)$$

$$\frac{dy}{dt} = G(x, y, z)$$

$$\frac{dz}{dt} = H(x, y, z),$$
(2.1)

dengan *F*, *G*, dan *H* adalah fungsi bernilai riil yang tidak bergantung secara eksplisit terhadap *t* (Birkhoff dan Rota, 1989).

Definisi 2.1.1 (Titik Kesetimbangan)

Pandang sistem otonomus (2.1). Titik (x^*, y^*, z^*) yang memenuhi $F(x^*, y^*, z^*) = G(x^*, y^*, z^*) = H(x^*, y^*, z^*) = 0$ disebut *titik kritis* sistem otonomus (2.1). Titik kritis (x^*, y^*, z^*) merupakan solusi sistem (2.1) yang bernilai konstan, sebab nilai $\frac{dx}{dt} = 0$, $\frac{dy}{dt} = 0$, dan $\frac{dz}{dt} = 0$. Keadaan yang menyebabkan $\frac{dx}{dt} = 0$, $\frac{dy}{dt} = 0$, dan $\frac{dz}{dt} = 0$ disebut keadaan setimbang, sehingga titik kritis disebut juga *titik kesetimbangan* (Edwards dan Penney, 2001).

Definisi 2.1.2 (Kestabilan Titik Kesetimbangan)

Titik kesetimbangan (x^*, y^*, z^*) dikatakan

- 1. **stabil** jika $\forall \varepsilon > 0$, $\exists \delta > 0$ sedemikian sehingga jika $\|(x(0), y(0), z(0)) (x^*, y^*, z^*)\| < \delta$ maka $\|(x(t), y(t), z(t)) (x^*, y^*, z^*)\| < \varepsilon, t > 0$,
- 2. tak stabil apabila titik tersebut tidak memenuhi kriteria (1),
- 3. **stabil asimtotik** jika titik tersebut stabil dan $\exists \delta_0, 0 < \delta_0 < \delta$, sedemikian sehingga setiap solusi (x(t), y(t), z(t)) yang memenuhi $\|(x(t), y(t), z(t)) (x^*, y^*, z^*)\| < \delta_0$ bersifat $\lim_{t\to\infty} (x(t), y(t), z(t)) = (x^*, y^*, z^*)$

(Robinson, 2004).

2.2.1 Sistem Otonomus Linear

Sistem otonomus linear dengan n persamaan berbentuk

$$\frac{dx_1}{dt} = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n
\frac{dx_2}{dt} = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n
\vdots
\frac{dx_n}{dt} = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n,$$
(2.2)

yang dapat dinyatakan sebagai $\frac{d\vec{x}}{dt} = A\vec{x}$, dengan

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \quad \text{dan} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

Teorema 2.1

Misalkan $\lambda_1, \lambda_2, \cdots, \lambda_n$ adalah nilai eigen matriks koefisien A sistem otonomous linear (2.2) dengan $det(A) \neq 0$. Titik kesetimbangan \vec{x}^* bersifat

- 1. **stabil asimtotik**, jika bagian riil $\lambda_1, \lambda_2, \dots, \lambda_n$ negatif,
- 2. **stabil tetapi bukan stabil asimtotik**, jika $\lambda_1, \lambda_2, \dots, \lambda_n$ memiliki bagian riil tak positif,
- 3. **tidak stabil**, jika sedikitnya satu nilai eigen memiliki bagian riil yang positif.

(Edwards dan Penney, 2001).

2.2.2 Sistem Otonomus Nonlinear

Perhatikan sistem otonomus nonlinear berikut

$$\frac{dx_i}{dt} = f_i(\vec{x}) , i = 1, \dots, n$$
 (2.3)

dengan f_i adalah fungsi nonlinear yang mempunyai turunan parsial yang kontinu di titik kesetimbangan \vec{x}^* . Deret Taylor fungsi f_i di sekitar \vec{x}^* adalah

$$f_{i}(\vec{x}) = f_{i}(\vec{x}^{*}) + \frac{\partial f_{i}(\vec{x}^{*})}{\partial x_{1}} (x_{1} - x_{1}^{*}) + \frac{\partial f_{i}(\vec{x}^{*})}{\partial x_{2}} (x_{2} - x_{2}^{*}) + \cdots + \frac{\partial f_{i}(\vec{x}^{*})}{\partial x_{n}} (x_{n} - x_{n}^{*}) + \omega_{i}(\vec{x}),$$
(2.4)

dengan $\omega_i(\vec{x})$ adalah suku sisa. Untuk hampiran orde satu terhadap f_i , suku sisa memenuhi sifat

$$\lim_{\vec{x} \to \vec{x}^*} \frac{\omega_i(\vec{x})}{\|\vec{w}\|} = 0 \tag{2.5}$$

dengan $\vec{w} = (x_1 - x_1^*, x_2 - x_2^*, ..., x_n - x_n^*)^T$.

Dengan menggunakan persamaan (2.4) serta mengingat

$$\frac{dx_i}{dt} = \frac{d(x_i - x_i^*)}{dt}, i = 1, 2, \dots, n$$

persamaan (2.3) dapat ditulis dalam bentuk matriks

$$\frac{d}{dt} \begin{bmatrix} x_1 - x_1^* \\ x_2 - x_2^* \\ \vdots \\ x_n - x_n^* \end{bmatrix} = \begin{bmatrix} f_1(\vec{x}^*) \\ f_2(\vec{x}^*) \\ \vdots \\ f_n(\vec{x}^*) \end{bmatrix}$$

$$+\begin{bmatrix} \frac{\partial f_{1}(\vec{x}^{*})}{\partial x_{1}} & \frac{\partial f_{1}(\vec{x}^{*})}{\partial x_{2}} & \dots & \frac{\partial f_{1}(\vec{x}^{*})}{\partial x_{n}} \\ + \begin{bmatrix} \frac{\partial f_{2}(\vec{x}^{*})}{\partial x_{1}} & \frac{\partial f_{2}(\vec{x}^{*})}{\partial x_{2}} & \dots & \frac{\partial f_{2}(\vec{x}^{*})}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{n}(\vec{x}^{*})}{\partial x_{1}} & \frac{\partial f_{n}(\vec{x}^{*})}{\partial x_{1}} & \dots & \frac{\partial f_{n}(\vec{x}^{*})}{\partial x_{n}} \end{bmatrix} \begin{bmatrix} x_{1} - x_{1}^{*} \\ x_{2} - x_{2}^{*} \\ \vdots \\ x_{n} - x_{n}^{*} \end{bmatrix} \\ + \begin{bmatrix} \omega_{1}(\vec{x}) \\ \omega_{2}(\vec{x}) \\ \vdots \\ \omega_{n}(\vec{x}) \end{bmatrix}.$$

$$Matriks$$

$$\begin{bmatrix} \frac{\partial f_{1}(\vec{x}^{*})}{\partial x_{1}} & \frac{\partial f_{1}(\vec{x}^{*})}{\partial x_{2}} & \dots & \frac{\partial f_{1}(\vec{x}^{*})}{\partial x_{n}} \end{bmatrix}$$

$$(2.6)$$

$$L = \begin{bmatrix} \frac{\partial f_1(\vec{x}^*)}{\partial x_1} & \frac{\partial f_1(\vec{x}^*)}{\partial x_2} & \cdots & \frac{\partial f_1(\vec{x}^*)}{\partial x_n} \\ \frac{\partial f_2(\vec{x}^*)}{\partial x_1} & \frac{\partial f_2(\vec{x}^*)}{\partial x_2} & \cdots & \frac{\partial f_2(\vec{x}^*)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n(\vec{x}^*)}{\partial x_1} & \frac{\partial f_n(\vec{x}^*)}{\partial x_1} & \cdots & \frac{\partial f_n(\vec{x}^*)}{\partial x_n} \end{bmatrix}$$

disebut matriks Jacobi atau partial derivative matrix (derivative matrix), dan dinotasikan sebagai L.

dimisalkan $u_1 = (x_1 - x_1^*), u_2 = (x_2 - x_2^*), ..., u_n =$ $(x_n - x_n^*)$, sehingga $\vec{w} = (u_1, u_2, ..., u_n)^T$ dan dengan mengingat bahwa $f_1(\vec{x}^*) = f_2(\vec{x}^*) = \dots = f_n(\vec{x}^*) = 0$, maka persamaan (2.6) dapat ditulis sebagai

$$\begin{bmatrix} \frac{du_1}{dt} \\ \frac{du_2}{dt} \\ \vdots \\ \frac{du_n}{dt} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1(\vec{x}^*)}{\partial x_1} & \frac{\partial f_1(\vec{x}^*)}{\partial x_2} & \cdots & \frac{\partial f_1(\vec{x}^*)}{\partial x_n} \\ \frac{\partial f_2(\vec{x}^*)}{\partial x_1} & \frac{\partial f_2(\vec{x}^*)}{\partial x_2} & \cdots & \frac{\partial f_2(\vec{x}^*)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n(\vec{x}^*)}{\partial x_1} & \frac{\partial f_n(\vec{x}^*)}{\partial x_1} & \cdots & \frac{\partial f_n(\vec{x}^*)}{\partial x_n} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} \omega_1(\vec{x}) \\ \omega_2(\vec{x}) \\ \vdots \\ \omega_n(\vec{x}) \end{bmatrix}$$

$$\frac{d\vec{w}}{dt} = L\vec{w} + \vec{\omega}. \tag{2.7}$$

Berdasarkan persamaan (2.5) bila $\vec{w} \to 0$ maka $\vec{\omega} \to 0$, sehingga $\vec{\omega}$ dapat diabaikan dan di sekitar \vec{x}^* sistem nonlinear (2.3) dapat dihampiri oleh sistem linear

$$\frac{d\vec{w}}{dt} = L\vec{w}.$$
 (2.8)

Jika $x_1 = x_1^*, x_2 = x_2^*, ..., x_n = x_n^*$ maka $\vec{x}^* = \vec{0}$, sehingga sistem linear (2.8) memiliki titik kesetimbangan $\vec{u} = \vec{0}$ (Boyce dan DiPrima, 2009).

Teorema 2.2 (Kestabilan Sistem Otonomus Nonlinear)

- 1. Titik kesetimbangan sistem otonomus nonlinear (2.3) bersifat stabil asimtotik jika titik kesetimbangan sistem hasil linearisasi stabil asimtotik.
- 2. Titik kesetimbangan sistem otonomus nonlinear (2.3) bersifat tak stabil jika titik kesetimbangan sistem hasil linearisasi tak stabil (Finizio dan Ladas, 1982).

2.2 Angka Reproduksi Dasar

Angka reproduksi dasar (\mathcal{R}_0) adalah angka yang diperkirakan dari individu sekunder untuk memproduksi sebuah individu baru. Pada epidemiologi, \mathcal{R}_0 digunakan untuk menjelaskan jumlah individu terinfeksi oleh satu individu yang telah terinfeksi sebelumnya selama periode infeksi pada populasi *susceptible*. Jika $\mathcal{R}_0 < 1$ maka setiap individu yang terinfeksi memproduksi rata-rata kurang dari satu individu terinfeksi baru, dengan kata lain dapat diprediksi bahwa infeksi akan bersih dari populasi. Sebaliknya, jika $\mathcal{R}_0 > 1$ maka individu yang terinfeksi memproduksi rata-rata lebih dari satu individu terinfeksi baru. Dalam keadaan endemik, dapat ditentukan tindakan pengendalian dan besarnya nilai parameter yang tepat sehingga $\mathcal{R}_0 < 1$, serta memberikan informasi penting bagi inisiatif kesehatan masyarakat (Heffernan dkk., 2005).

2.3 Metode Generasi Selanjutnya

Metode generasi selanjutnya adalah pendekatan nilai \mathcal{R}_0 pada model yang mencakup kelas individu terinfeksi. Pada matriks generasi selanjutnya untuk model epidemi, populasi dipisahkan menjadi dua kompartemen yaitu terinfeksi dan tidak terinfeksi. Dimisalkan bahwa ada $1, \dots, m, m+1, \dots, n$ kompartemen. Kompartemen pertama sampai m terdiri dari individu terinfeksi, sedangkan sisanya kompartemen m+1 sampai n merupakan individu tidak terinfeksi (Ameh, 2009).

Sistem persamaan berikut ini merupakan model epidemi berbentuk

$$\dot{x}_i = g_i(x) = \mathcal{k}_i - \mathcal{Y}_i, i = 1, \dots, n$$

 y_i dapat dinyatakan dengan $y_i = y_i^- - y_i^+$ dengan

 x_i : jumlah individu dalam setiap kompartemen i. $g_i(x)$: laju lahirnya infeksi baru pada kompartemen i. k_i : infeksi baru yang masuk pada kompartemen i.

 y_i : transfer infeksi dari kompartemen satu ke kompartemen

lainnya.

 y_i^- : laju transfer keluar kompartemen ke i. y_i^+ : laju transfer masuk kompartemen ke i.

Didefinisikan K dan Y adalah matriks berukuran $m \times m$ sebagai

$$K = \begin{bmatrix} \frac{\partial k_i(x_0)}{\partial x_j} \end{bmatrix}, Y = \begin{bmatrix} \frac{\partial y_i(x_0)}{\partial x_j} \end{bmatrix}, \quad i, j = 1, \dots, m$$

dengan x_0 titik bebas penyakit, K non negatif dan Y matriks non-singular. Matriks generasi selanjutnya adalah $P = KY^{-1}$ dan angka reproduksi dasar dapat dituliskan sebagai

$$\mathcal{R}_0 = \eta(KY^{-1}) = \eta(P),$$

dengan $\eta(P)$ adalah *spectral radius* dari P, yaitu maksimum modulus nilai eigen dari P (Brauer, dkk, 2008).

2.4 Kriteria Kestabilan Routh-Hurwitz

Jika suatu sistem linear mempunyai persamaan karakteristik berbentuk

$$\lambda^{n} + a_{1}\lambda^{n-1} + a_{2}\lambda^{n-2} + \dots + a_{n-1}\lambda + a_{n} = 0, \tag{2.9}$$

maka kestabilan titik kesetimbangannya dapat ditentukan dengan menggunakan kriteria Routh-Hurwitz tanpa harus menentukan nilai eigennya.

Definisi 2.4.1 Kestabilan Routh-Hurwitz

Dengan menggunakan koefisien-koefisien persamaan (2.9) dibangun m matriks

$$H_{1} = \begin{bmatrix} a_{1} \end{bmatrix}, H_{2} = \begin{bmatrix} a_{1} & 1 & 0 \\ a_{3} & a_{2} \end{bmatrix}, H_{3} = \begin{bmatrix} a_{1} & 1 & 0 \\ a_{3} & a_{2} & a_{1} \\ a_{5} & a_{4} & a_{3} \end{bmatrix},$$

$$H_{j} = \begin{bmatrix} a_{1} & 1 & 0 & 0 & \dots & 0 \\ a_{3} & a_{2} & a_{1} & 1 & \dots & 0 \\ a_{5} & a_{4} & a_{3} & a_{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{2j-1} & a_{2j-2} & a_{2j-3} & a_{2j-4} & \dots & a_{j} \end{bmatrix}, \dots, H_{m} = \begin{bmatrix} a_{1} & 1 & 0 & \dots & 0 \\ a_{3} & a_{2} & a_{1} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n} & a_{n-1} & a_{n-2} & \dots & a_{m} \end{bmatrix}$$

Titik kesetimbangan sistem bersifat stabil jika dan hanya jika determinan matriks Routh-Hurwitz positif, yakni

Det
$$H_i > 0$$
 untuk $i = 1,2,3, ..., m$ (Brauer dan Chavez, 2010).

Kriteria kestabilan Routh-Hurwitz untuk kasus khusus matriks

$$J = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 (2.10)

dapat diselesaikan dengan Lemma 2.1. Persamaan karakteristik matriks (2.10) adalah

$$\lambda^3 + A_1\lambda^2 + A_2\lambda + A_3 = 0.$$

Lemma 2.1

Misalkan
$$A_1 = -\text{tr}(J)$$
, $A_2 = J_1 + J_2 + J_3$, dan $A_3 = -\det(J)$ dimana $J_1 = a_{11}a_{22} - a_{21}a_{12}$, $J_2 = a_{11}a_{33} - a_{31}a_{13}$, $J_3 = a_{22}a_{33}$.

Persamaan karakteristik matriks (2.10) akan mempunyai nilai eigen negatif jika dan hanya jika memenuhi kondisi

- (i) $A_1 > 0$,
- (ii) $A_2 > 0$,
- (iii) $A_3 > 0$,
- (iv) $A_1A_2 A_3 > 0$.

Dari matriks (2.10) dapat diketahui nilai $A_1A_2 - A_3$ adalah

$$\begin{aligned} A_1A_2 - A_3 &= -(a_{11} + a_{22} + a_{33})(J_1 + J_2 + J_3) + \det(J) \\ &= -a_{11}(J_1 + J_2 + J_3) - a_{22}(J_1 + J_3) - a_{33}(J_2 + J_3) \\ &- a_{11}a_{22}a_{33} + a_{13}a_{21}a_{32} \end{aligned}$$
 (Liu dan Takeuchi, 2006).

2.5 Matriks Partisi

2.5.1 Definisi Matriks Partisi

Suatu matriks dapat dipartisikan menjadi submatriks, dengan cara mengikutkan hanya beberapa kolom dari matriks aslinya (Laintarawan dkk., 2009). Secara umum dapat dipartisikan baris dan kolom matriks A yang berukuran m x n dengan $m = m_1 + \ldots + m_q$, $n = n_1 + \ldots + n_r$ dan $A_{\alpha\beta}$ menunjukkan matriks partisi atau submatriks.

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1r} \\ \vdots & \ddots & \vdots \\ A_{q1} & \cdots & A_{qr} \end{bmatrix} \begin{matrix} m_1 \\ \vdots \\ m_q \\ n_1 & \cdots & n_r \end{matrix}$$

Dengan notasi ini, partisi $A_{\alpha\beta}$ mempunyai dimensi m_{α} x n_{β} dan dapat dikatakan bahwa $A = (A_{\alpha\beta})$ adalah matriks partisi ukuran q x r (Golub dan Loan, 2013).

Misal $A \in \mathbb{R}^{mxn}$. Jika $\alpha = [\alpha_1, ..., \alpha_s]$ dan $\beta = [\beta_1, ..., \beta_t]$ adalah vektor integer dengan komponen berbeda yang memenuhi $1 \le \alpha_i \le m$ dan $1 \le \beta_i \le n$, maka

$$A(\alpha, \beta) = \begin{bmatrix} \alpha_{\alpha_{1,\beta_{1}}} & \cdots & \alpha_{\alpha_{1,\beta_{t}}} \\ \vdots & \ddots & \vdots \\ \alpha_{\alpha_{s,\beta_{1}}} & \cdots & \alpha_{\alpha_{s,\beta_{t}}} \end{bmatrix} m_{q} \\ n_{1} & \dots & n_{r}$$

adalah submatriks dari matriks A berukuran $s \times t$. jika $\alpha = \beta = 1$: k dan $1 \le k = \min\{m, n\}$, maka $A(\alpha, \beta)$ adalah *leading principal submatrix* (Golub dan Loan, 2013).

2.6.2 Operasi Matriks Partisi

Misal A dan B adalah matriks partisi yang berukuran 2 x 3.

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \\ B_{31} & B_{32} \end{bmatrix}$$

Matriks-matriks partisi yang identik dapat ditambahkan dengan menjumlahkan blok yang sesuai:

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \\ B_{31} & B_{32} \end{bmatrix} = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \\ A_{31} + B_{31} & A_{32} + B_{32} \end{bmatrix}$$

Perkalian matriks partisi membutuhkan banyak ketentuan dalam dimensi. Contohnya yaitu jika

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \\ A_{31}B_{11} + A_{32}B_{21} & A_{31}B_{12} + A_{32}B_{32} \end{bmatrix}$$

adalah benar, maka dimensi kolom dari A_{11} , A_{21} dan A_{31} harus sama dengan dimensi baris dari B_{11} dan B_{12} . Demikian juga, dimensi kolom dari A_{12} , A_{22} dan A_{32} harus sama dengan dimensi baris dari B_{21} dan B_{22} (Golub dan Loan, 2013).

2.6.3 Determinan Matriks Partisi

Teorema 2.3

Diberikan S adalah matriks $(nN) \times (nN)$ yang dipartisi dalam (N^2) blok dengan ukuran $n \times n$,

$$S = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1N} \\ S_{21} & S_{22} & \dots & S_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ S_{N1} & S_{N2} & \dots & S_{NN} \end{bmatrix}$$

maka determinan dari S adalah

$$\det(S) = \prod_{k=1}^{N} \det(\alpha_{kk}^{(N-k)}), \tag{2.11}$$

dimana $\alpha^{(k)}$ didefinisikan

$$\begin{split} &\alpha_{ij}^{(0)} = S_{ij} \\ &\alpha_{ij}^{(k+1)} = \alpha_{ij}^{(k)} - \alpha_{i,N-k}^{(k)} \left(\alpha_{N-k,N-k}^{(k)}\right)^{-1} \alpha_{N-k,j}^{(k)}, \\ &i,j,k = 1,\dots,N \end{split}$$

(Powell, 2011).

Untuk N = 2 menurut persamaan (2.11), determinan dari S adalah

$$det(S) = det(\alpha_{11}^{(1)}) det(\alpha_{22}^{(0)}).$$

Berdasarkan definisi $\alpha^{(k)}$ diperoleh

$$\alpha_{22}^{(0)} = S_{22}$$

$$\alpha_{11}^{(1)} = S_{11} - S_{12}S_{22}^{-1}S_{21}$$

sehingga didapatkan hasil

$$det(S) = det(S_{22})det(S_{11} - S_{12}S_{22}^{-1}S_{21}).$$

Jika S adalah matriks blok segitiga atau matriks blok diagonal, maka $det(S) = det(S_{22})det(S_{11})$,

Pembuktian Teorema 2.3 dapat dilihat pada artikel yang ditulis oleh Powell (2011).