

Gambar 4.229 Peta Tingkatan Objek Elemen Node Berdasarkan Mental map

Perbedaan warna pada peta menggambarkan tinggi rendahnya nilai suatu objek dalam elemen *Node*. Nilai ini didapatkan dari kuisioner yang mengacu pada penilaian mahasiswa baru terhadap elemen *Node*. Penjabaran total nilai kriteria *Node* pada kuisioner serta rankingnya dapat dilihat pada **Tabel 4.15**.

Tabel 4.15 Hasil Skoring dan Hirarki Objek pada Elemen Node

Node	Keunik an Bentuk	Menarik Dilihat	Skala (luas)	Fungsi Khusus	Nilai Histor is	Jumlah	Pemer ataan nilai	Hasil	Hirarki
ATT	A	В	С	D	Е	F	G	Н	I
1	40	40	40	33	36	189	1537	0,12	14
2	59	52	55	56	49	271	1537	0,18	8
3	19	17	18	22	20	96	1537	0,06	18
4	82	77	76	81	87	403	1537	0,26	6
5	40	49	42	42	35	208	1537	0,14	13
6	389	384	339	340	307	1759	1537	1,14	1
7	47	47	41	52	44	231	1537	0,15	12
8	73	70	67	72	77	359	1537	0,23	7
9	162	153	155	157	152	779	1537	0,51	4
10	205	211	207	205	180	1008	1537	0,66	2
11	207	194	187	201	192	981	1537	0,64	3
12	29	25	25	26	28	133	1537	0,09	16
13	150	150	140	156	151	747	1537	0,49	5
14	52	47	47	42	46	234	1537	0,15	11
15	34	30	34	38	28	164	1537	0,11	15
16	49	47	50	54	46	246	1537	0,16	9
17	24	21	21	26	25	117	1537	0,08	17
18	52	54	43	49	41	239	1537	0,16	10
19	4	2	2	11.5	4	17	1537	0,01	20
20	4	4	3	6	9	26	1537	0,02	19

Sumber: Hasil Analisis, 2016

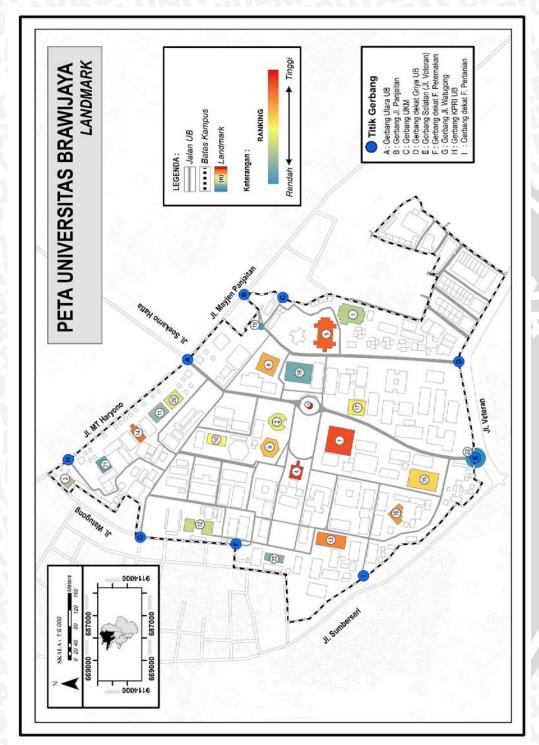
Keterangan:

A, B, C, D, E = Jumlah Skor pada Setiap Kriteria Penilaian

F = Jumlah Skor Setiap Objek Node (A + B + C + D + E)

G = Nilai Pemerataan Nilai Elemen *Node*

H = Hasil Pemerataan Nilai (F / G)


I Urutan Tingkatan (Hirarki) berdasarkan Hasil Pemerataan Nilai

4.7.5 Landmark

Hasil kuisioner elemen *landmark* menyatakan bahwa persentase responden yang memberikan nilai tinggi pada objek dalam masing-masing kriteria adalah sebanyak keunikan

bentuk (95%), skala (94%), kemudahan untuk dilihat (94%), fungsi penghubung dengan objek sekitar (92%), dan nilai historis (84%). *Landmark* atau penanda yang dipilih dan dinilai oleh responden diberi tingkatan untuk mengetahui ranking tiap objek untuk mengetahui urutan objek yang paling sering dipilih oleh responden dan juga paling berpengaruh dalam *wayfinding* mahasiswa baru. Jika divisualisasikan melalui lokasi studi, gambaran peta persebaran elemen *landmark* beserta tingkat pengaruhnya terhadap *wayfinding* dapat dilihat pada **Gambar 4.230**.

Gambar 4.230 Peta Tingkatan Objek Elemen Landmark Berdasarkan Mental map

Perbedaan warna pada peta menggambarkan tinggi rendahnya nilai suatu objek dalam elemen *landmark*. Nilai ini didapatkan dari kuisioner yang mengacu pada penilaian mahasiswa baru terhadap elemen *landmark*. Penjabaran total nilai kriteria *landmark* pada kuisioner serta rankingnya dapat dilihat pada **Tabel 4.16.**

Tabel 4.16 Hasil Skoring dan Hirarki Objek pada Elemen Landmark

Landmark	Keunik an Bentuk	Skala	Kemu dahan dilihat	Fungsi Penghu bung	Nilai Histor is	Jumlah	Pemera taan nilai	Hasil	Hirarki
	A	В	C	D	E	F	G	Н	I
1	34	36	37	33	33	173	1940	0,09	16
2	54	50	50	44		241	1940	0,12	13
3	34	29	33	35	26	157	1940	0,08	17
4	332	315	331	311	277	1566	1940	0,81	2
5	131	128	127	117	114	617	1940	0,32	4
6	90	89	85	83	84	431	1940	0,22	8
7	205	199	204		198	1007	1940	0,52	3
8	423	359	401	392	336	1911	1940	0,98	- 1
9	91	82	84	84	84	425	1940	0,22	9
10	56	56	50	46	47	255	1940	0,13	12
11	31	32	35(()	28	30	156	1940	0,08	18
12	41	43	40	_37	38	199	1940	0,10	15
13	104	108	106	94	99	511	1940	0,26	6
14	125	117	126	118	99	585	1940	0,30	5
15	71	76	74	62	60	343	1940	0,18	10
16	87	89	87	83	102	448	1940	0,23	7
17	59	58	58	56	47	278	1940	0,14	11
18	24	23	25	24	22	118	1940	0,06	20
19	14	9	9	11	10	53	1940	0,03	22
20	48	44	54	39	33	218	1940	0,11	<u>1</u> 4
21	16	17	17	15	10	75	1940	0,04	14 121
22	29	28	28	28	28	141	1940	0,07	19
23	11	11	11	9	9	51	1940	0,03	23

Sumber: Hasil Analisis, 2016

Keterangan:

A, B, C, D, E = Jumlah Skor pada Setiap Kriteria Penilaian

F = Jumlah Skor Setiap Objek Landmark (A + B + C + D + E)

G = Nilai Pemerataan Nilai Elemen *Landmark*

H = Hasil Pemerataan Nilai (F / G)

I = Urutan Tingkatan (Hirarki) berdasarkan Hasil Pemerataan Nilai

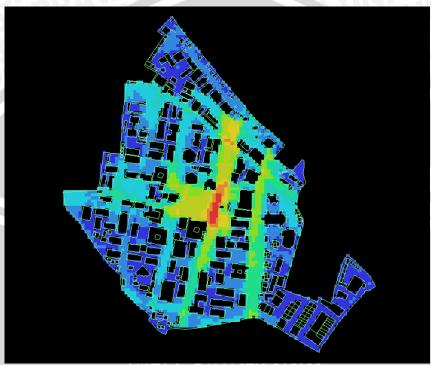
152

4.8 Analisis Space syntax: Visibility Graph Analysis (VGA)

Analisis *space syntax* menggunakan input berupa database peta Universitas Brawijaya yang dimasukkan ke dalam *software* Depth Map untuk mengetahui keterkaitan antara konektivitas, integritas, serta inteligibilitas ruang. Teknik analisa ini mengibaratkan ruang berada dalam sisi 2 Dimensi dan memasukkan unsur konektivitas, integritas, serta inteligibilitas ke ruang yang terdapat penghalang vertikal, berupa bangunan di dalamnya. Hasil yang didapatkan dari *space syntax* VGA dapat dilihat pada gambar berikut.

Gambar 4.231 Hasil Visual integration dengan menggunakan Depth Map

Dari gambar diatas, diketahui potensi spasial yang berada di Universitas Brawijaya. Warna yang dimunculkan dalam gambar tersebut diukur berdasarkan hubungan ruang tanpa intervensi dari pendapat pengguna. Ratusan *pixel* masuk pada area peta dan menghasilkan nilai konektivitas dan integritas dengan *barier* berupa bangunan serta batas kampus. Setelah pengambilan nilai dan pixel pada software Depth Map, dilakukan *converting* ke *shapefile* agar mudah melihat pixel serta nilai didalamnya. Penjelasan mengenai komponen *space syntax* dalam hubungannya dengan visual graph analysis (VGA) dapat dilihat pada penjabaran berikut.


4.8.1 *Connectivity*

Connectivity adalah jumlah ruang yang secara langsung terhubung dengan ruang lainnya dalam suatu konfigurasi ruang. Analisis visual graph yang dilakukan menggunakan software Depth Map dikonversi menjadi peta konektivitas, dapat dilihat pada gambar berikut.

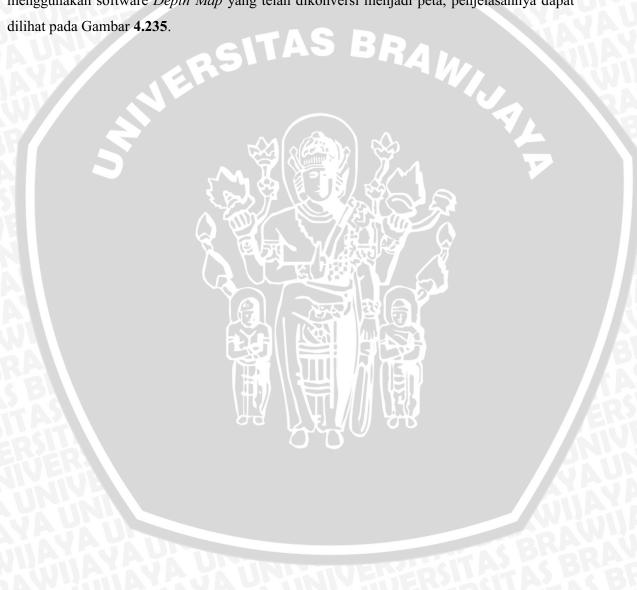
Gambar 4.232 Hasil Connectivity berdasarkan Visual Graph Analysis (VGA)

BRAWIJAYA

Konektivitas pada penelitian ini menggambarkan struktur ruang secara lokal, bukan global. Oleh karena itu, tampilan konektivitas tersebut hanya digunakan untuk melakukan verifikasi mengenai kemudahan membaca potensi struktur ruang. Peta konektivitas berfungsi sebagai input dalam inteligibilitas ruang dan juga penentu integritas ruang yang representatif. Berikut peta konektivitas yang asli berdasarkan aplikasi depth map untuk analisis *space syntax*.

Gambar 4.233 Hasil Connectivity berdasarkan Visual Graph Analysis (VGA) pada Depth Map

4.8.2 *Intelligibility*


Intelligibility merupakan hipotesis atas kemudahan observer (pengguna ruang) dalam memahami struktur ruang salam suatu konfigurasi ruang. Analisis dilakukan menggunakan Depth Map untuk melihat besaran nilai inteligibilitas ruang dengan menghubungkan antara variabel x (Connectivity) dengan variabel y (Visual Integrity).

Gambar 4.234 Hasil Space syntax Intelligibility berdasarkan Visual Graph Analysis (VGA)

Dari hasil pengerjaan Depth Map, dihasilkan nilai R^2 sebesar 0,755106. Hal ini mengartikan bahwa korelasi antara nilai integrity dan connectivity pada struktur ruang di Kampus Universitas Brawijaya memiliki nilai intelligibility sangat tinggi (X > 0,5), sehingga nilai yang digunakan untuk klasifikasi objek menggunakan nilai integrity (global).

4.8.3 Integrity

Integrity adalah dimensi yang mengukur posisi relatif dari masing-masing ruang terhadap ruang-ruang lainnya dalam suatu konfigurasi ruang. Analisis visual graph dilakukan menggunakan software Depth Map yang telah dikonversi menjadi peta, penjelasannya dapat dilihat pada Gambar **4.235**.

Gambar 4.235 Hasil Integrity berdasarkan Visual Graph Analysis (VGA)

Peta yang relevan sebagai pengaruh struktur ruang terhadap pengamat akan keunikan dalam ruang, yaitu peta integritas ruang. Peta integritas secara valid dapat digunakan, jika nilai intelligibility menunjukkan angka tinggi, sehingga struktur ruang memiliki potensi dapat dibaca dengan mudah. Dalam struktur ruang di Universitas Brawijaya, ditemukan nilai R² yang menunjukkan nilai intelligibility ruang sangat tinggi, yakni 0,755106. Hal ini menandakan observer akan mudah mengenali strukutur ruang karena koridor-koridor dalam ruang tersebut terhubung secraa logis, sehingga peta integrity valid digunakan secara representatif.

Gambar 4.236 Hasil Visual integration berdasarkan Visual Graph Analysis (VGA) pada Depth Map

4.9 Tingkatan Objek Wayfinding Berdasarkan Space syntax

Setelah mendapatkan titik imajiner berupa nilai visual integration, dilakukan overlay antara titik tersebut dengan objek wayfinding yang akan diteliti. Overlay dilakukan kepada masing-masing objek wayfinding untuk mendapatkan tingkatan (ranking) objek berdasarkan space syntax (visual integration) pada masing-masing objek dalam elemen, yaitu elemen Path, Edge, Zone, Node, dan Landmark. Untuk mendapatkan ranking dari masing-masing objek, diperlukan nilai rata-rata dalam angka yang dihasilkan oleh titik imajiner. Hasil pengambilan nilai rata-rata dari masing-masing titik imajiner pada setiap objek wayfinding dapat dilihat pada penjabaran berikut.

Setelah dilakukan overlay titik imajiner visual integration dengan objek Path, ditemukan beberapa titik yang berada pada masing-masing objek. Untuk mendapatkan tingkatan (ranking) pada masing-masing objek, dilakukan pengambilan nilai rata-rata pada titik imajiner yang berada pada objek dan sekitar. Tingkatan objek Path berdasarkan space syntax dapat dapat dilihat pada tabel berikut.

Tabel 4.17 Tingkatan Objek berdasarkan Space syntax pada Elemen Path

	Total Nilai	Jumlah Titik Imajiner	Rata-rata	Hivoulsi	
Objek Path	A	В	C	Hirarki	
1-1	85,7130541	17	5,041944	14	
2	133,4352094	42	3,177029	27	
3	59,8115676	14	4,272255	24	
4	97,4771527	18	5,415397	11	
5	139,9705655	25	5,598823	8	
6	107,86196	19	5,676945	5	
7	63,7051672	15	4,247011	25	
8	129,6833419	24	5,403473	12	
9	74,7758428	13	5,751988	4	
10	235,9550067	46	5,129457	13	
11	313,9764211	56	5,606722	7	
12	80,933098	13	6,225623	1	
13	45,0684961	8 14 45	5,633562	6	
14	153,3504643	26	5,898095	3	
15	122,6762558	22	5,576193	9	
16	134,1682556	22	6,098557	2	
17	65,2428413	13	5,018680	15	
18	114,3358746	25	4,573435	18	
19	155,3259598	35	4,437885	22	
20	72,6607991	15	4,844053	17	
21	74,6850922	17\	4,393241	23	
22	93,8348173	19	4,938675	16	
23	142,054881	32	4,439215	21	
24	138,9000799	25	5,556003	10	
25	227,8230302	50	4,556461	19	
26	133,9861956	32	4,187069	26	
27	62,3457403	14	4,453267	20	
28	51,3225831	20	2,566129	28	

Sumber: Hasil Analisis, 2016

Keterangan:

A = Total nilai titik-titik imajiner pada objek path

B = Jumlah titik imajiner yang terpilih pada sekitar objek *path*

C = Rata-rata nilai (A / B = C)

4.9.2 *Edge*

Setelah dilakukan *overlay* titik imajiner *visual integration* dengan objek *Edge*, ditemukan beberapa titik yang berada pada masing-masing objek. Untuk mendapatkan tingkatan (ranking) pada masing-masing objek, dilakukan pengambilan nilai rata-rata pada titik imajiner yang berada pada objek dan sekitar. Tingkatan objek *Edge* berdasarkan *space syntax* dapat dapat dilihat pada tabel berikut.

Tabel 4.18 Tingkatan Objek berdasarkan *Space syntax* pada Elemen *Edge*

Objek <i>Edge</i>	Total Nilai	Jumlah Titik Imajiner	Rata-rata	Hirarki
Objek Luge	A	В	C	IIII ai Ki
1	123,3535	32	3,854796	2
2	114,8318	25	4,593271	1
3	64,89521	17	3,817365	3
4	0	0	0	7
5	181,4809	49	3,703692	4
6	21,87047	6	3,645078	5
7	52,41848	15	3,494565	6

Sumber: Hasil Analisis, 2016

Keterangan:

A = Total nilai titik-titik imajiner pada objek edge

B = Jumlah titik imajiner yang terpilih pada sekitar objek edge

C = Rata-rata nilai (A / B = C)

4.9.3 Zone

Setelah dilakukan *overlay* titik imajiner *visual integration* dengan objek *Zone*, ditemukan beberapa titik yang berada pada masing-masing objek. Untuk mendapatkan tingkatan (ranking) pada masing-masing objek, dilakukan pengambilan nilai rata-rata pada titik imajiner yang berada pada objek dan sekitar. Tingkatan objek *Zone* berdasarkan *space syntax* dapat dapat dilihat pada tabel berikut.

Tabel 4.19 Tingkatan Objek berdasarkan Space syntax pada Elemen Zone

Objek Zene	Total Nilai	Jumlah Titik Imajiner	Rata-rata	Hirarki
Objek Zone	A	В	C	нігагкі
	332,0595	78	4,257173	9
2	348,3322	81	4,300397	8
3	229,752	56	4,102714	10
4	319,0429	66	4,833983	3
5	583,5223	126	4,63113	6
6	416,0186	93	4,473318	7
7	605,3186	117	5,173663	1-1
8	112,1851	30	3,739504	12

01117	Total Nilai	Jumlah Titik Imajiner	Rata-rata	11: 1:	
Objek Zone	A	В	C	Hirarki	
9	213,7552	58	3,685434	14	
10	545,1986	115	4,740858	5	
11	161,4658	33	4,892902	2	
12	196,2996	50	3,925992	11	
13	237,0715	64	3,704242	13	
14	178,3565	37	4,820445	4	

Sumber: Hasil Analisis, 2016

Keterangan:

A = Total nilai titik-titik imajiner pada objek zone

B = Jumlah titik imajiner yang terpilih pada sekitar objek zone

C = Rata-rata nilai (A / B = C)

4.9.4 *Node*

Setelah dilakukan *overlay* titik imajiner *visual integration* dengan objek *Node*, ditemukan beberapa titik yang berada pada masing-masing objek. Untuk mendapatkan tingkatan (ranking) pada masing-masing objek, dilakukan pengambilan nilai rata-rata pada titik imajiner yang berada pada objek dan sekitar. Tingkatan objek *Node* berdasarkan *space syntax* dapat dapat dilihat pada tabel berikut.

Tabel 4.20 Tingkatan Objek berdasarkan Space syntax pada Elemen Node

Objek Neda	Total Nilai	Jumlah Titik Imajiner	Rata-rata	Hirark	
Objek Node	A	B	\mathbf{c}		
1	11,21577	2	5,607883	5	
2	13,14475	2	6,572374	1	
3	17,96086	YE 1431 14	4,490215	15	
4	4,840071		4,840071	13	
5	15,29227		5,097424	10	
6	108,4301	19	5,706849	4	
7	24,3107	Ja 1) 4:1 // //	6,077674	2	
8	5,801557	7177	5,801557	3	
9	65,73091	21	3,130044	20	
10	366,9614	66	5,560021	7	
11	218,5342	58	3,767832	19	
12	27,41627	6	4,569378	14	
13	133,8665	24	5,577771	6	
14	60,14559	12	5,012132	12	
15	61,58988	12	5,13249	9	
16	132,6342	31	4,278522	16	
17	46,88169	11	4,261972	17	
18	105,3051	21	5,014528	11	
19	81,36715	15	5,424477	8	

Objek Wada	Total Nilai	Jumlah Titik Imajiner	Rata-rata	Himaulei
Objek Node	A	В	C	Hirarki
20	16,78776	4	4,196941	18

Sumber: Hasil Analisis, 2016

Keterangan:

A = Total nilai titik-titik imajiner pada objek *node*

B = Jumlah titik imajiner yang terpilih pada sekitar objek *node*

C = Rata-rata nilai (A / B = C)

4.9.5 Landmark

Setelah dilakukan *overlay* titik imajiner *visual integration* dengan objek *landmark*, ditemukan beberapa titik yang berada pada masing-masing objek. Untuk mendapatkan tingkatan (ranking) pada masing-masing objek, dilakukan pengambilan nilai rata-rata pada titik imajiner yang berada pada objek dan sekitar. Tingkatan objek *landmark* berdasarkan *space syntax* dapat dapat dilihat pada tabel berikut.

Tabel 4.21 Tingkatan Objek berdasarkan Space syntax pada Elemen Landmark

Objek	Total Nilai	Jumlah Titik Imajiner	Rata-rata	Hirarki	
Landmark	A		\mathbf{C}	пігагкі	
1	54,29604	15	3,619736	18	
2	97,6249	18	5,423605	2	
3	29,25309		2,659371	23	
4	57,95339	T+3-11 H4555	5,26849	3	
5	121,1642	28	4,327293	12	
6	86,4248	17.	5,083812	5	
7	124,7736	25	4,990943	7	
8	67,49399	12 12	5,6245	1	
9	75,52074	16	4,720046	9	
10	44,89471		4,081337	15	
11	54,53697	13	4,195151	14	
12	72,17832	20:	3,608916	19	
13	58,73759	15	3,915839	17	
14	33,02801	10	3,302801	20	
15	80,6968	20	4,03484	16	
16	38,17586	12	3,181322	21	
17	65,18708	14	4,65622	10	
18	80,92237	16	5,057648	6	
19	17,96086	4	4,490215	11	
20	37,82279	8	4,727848	8	
21	24,96264	8	3,120331	22	
22	51,72534	12	4,310445	13	
23	41,56891	8	5,196114	4	

Sumber: Hasil Analisis, 2016

Keterangan:

A = Total nilai titik-titik imajiner pada objek *landmark*

B = Jumlah titik imajiner yang terpilih pada sekitar objek *landmark*

C = Rata-rata nilai (A / B = C)

4.10 Hubungan antara Mental map dengan VGA (Overlay)

Peneliti mengaitkan antara pendapat responden terhadap objek-objek wayfinding dengan konfigurasi yang dihasilkan dari ruang di Universitas Brawijaya melalui pendekatan visual. Terdapat perbedaan antara ranking yang dihasilkan dari mental map dengan space syntax. Dari perbandingan dua output ranking tersebut, akan menghasilkan pilihan objek yang potensial sebagai wayfinding utama.

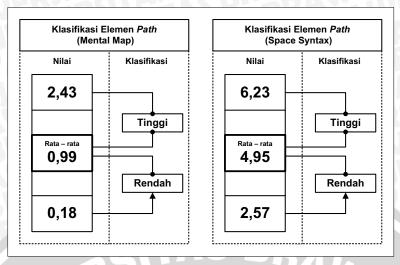
Tabel 4.22 Prioritas Pemilihan Objek Potensial sebagai Wayfinding Utama

Mental map	Space syntax	Keterangan	Potensi Objek	Konsep
Tinggi	Tinggi	Jika pendapat responden serta konfigurasi ruangnya tinggi, maka objek tersebut dapat menjadi objek potensial sebab dari segi struktur ruang yang sudah menunjukkan mudah teridentifikasi serta didukung oleh pilihan objek berdasarkan pendapat responden.	Tinggi	 Mempertahankan fungsi objek yang terpilih Melakukan pemeliharaan pada lokasi objek
Tinggi	Rendah	Jika konfigurasi ruang rendah, hal ini mengartikan ruang tersebut kurang dapat terintegrasi, meskipun ada responden yang memilih objek tersebut.	Sedang	 Melakukan perencanaan pengembangan konfigurasi ruang untuk meningkatkan integrasi visual dengan objek wayfinding
Rendah	Tinggi	Jika pendapat responden menyatakan rendah, sedangkan konfigurasi ruang meyatakan bahwa objek tersebut berpotensi dan mudah untuk diidentifikasi, maka ada yang bermasalah pada objek tersebut, baik karena visualnya terganggu maupun disebabkan oleh faktor lain.	Tinggi	Memperkuat fungsi objek sebagai elemen yang diperuntukkan sebagai objek wayfinding dengan penataan pada other sensory information serta signage system
Rendah	Rendah	Jika objek sama-sama rendah, hal ini mengartikan bahwa objek tersebut tidak layak menjadi wayfinding utama dan hanya menjadi objek pelengkap saja. Seperti yang diketahui dari konsep point of interest, bahwa dalam suatu ruang tidak mengharuskan semua objek memiliki nilai tinggi.	Rendah	

Sumber: Hasil Analisis, 2016

Pada **Tabel 4.19**, terdapat pembagian potensi objek menjadi tinggi, sedang dan rendah. Hal ini bermaksud untuk menemukan prioritas objek yang berpotensi sebagai wayfinding di Universitas Brawijaya. Penentuan prioritas objek yang akan dimasukkan dalam konsep wayfinding adalah objek yang memiliki potensi objek tinggi, karena orientasi pejalan

kaki saat berada di ruang adalah konfigurasi ruang yang ada, sehingga fokus penelitian dimaksudkan untuk mengetahui integrasi ruang dengan objek elemen *wayfinding* yang dipilih oleh pengguna ruang tersebut.


Untuk potensi objek sedang, hal ini mengartikan bahwa objek tersebut baik dari sudut pandang pengguna, tetapi rendah tingkatannya dari segi konfigurasi ruang. Tingkatan rendah pada *space syntax* bukan berati tidak ada integrasi sama sekali didalamnya, namun memiliki persentase lebih sedikit dan bukan merupakan prioritas utama. Hal ini yang membuat potensi objek tersebut lebih rendah dibandingkan dengan potensi objek yang lebih tinggi tingkatannya dan layak untuk masuk ke dalam konsep *wayfinding*.

Pada potensi objek rendah, dari segi pendapat responden serta konfigurasi ruangnnya menyatakan bahwa tingkatan objek tergolong rendah. Hal ini mengartikan bahwa objek tersebut kurangnya pendapat pengguna tentang objek serta ruangnnya memang berada pada lokasi yang kurang integrasi visualnya dibandingkan dengan objek lain, sehingga objek tersebut tidak termasuk dalam objek yang berpotensi karena kurangnya integrasi visual ruang terhadap objek yang wayfinding yang dipilih oleh pengguna ruang.

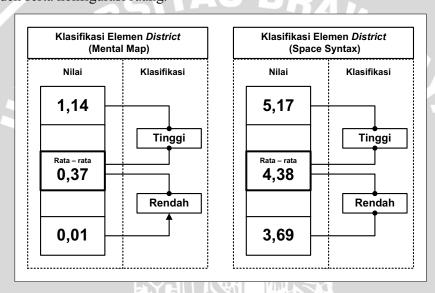
Pada penelitian ini, objek yang dimasukkan ke dalam konsep wayfinding, yakni objek dengan potensi objek tinggi. Pada masing-masing elemen wayfinding, dilakukan pemilihan objek yang berpotensi menurut prioritas pada tabel diatas, sehingga didapat objek yang sesuai dengan kriteria. Jika dibagi berdasarkan tinggi rendahnya objek, maka akan menjadi pembagian klasifikasi pada elemen wayfinding sebagai berikut.

A. Path

Jumlah objek yang dimiliki elemen *Path* pada kampus Universitas Brawijaya adalah 28 objek. Peneliti membagi menjadi dua bagian klasifikasi dalam mengetahui kategori klasifikasi dari masing-masing objek dalam elemen. Cara yang dilakukan, yakni menggunakan rata-rata dari jumlah nilai akhir pada masing-masing analisis. Pada analisis *mental map*, nilai yang masuk klasifikasi tinggi berada pada *Path* 2, 3, 4 10, 11, 12, 13, 18, 23, 26, dan 27, sedangkan pada analisis *space syntax* yang masuk klasifikasi tinggi berada pada *Path* 1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, dan 24. Klasifikasi ini diperuntukkan untuk mencari objek yang berpotensi sebagai *wayfinding* kampus berdasarkan pendapat responden serta konfigurasi ruang. Untuk penjelasan yang lebih jelas mengenai penentuan klasifikasi tinggi-rendahnya ranking suatu objek, dapat dilihat pada gambar berikut.

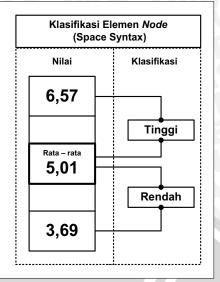
Gambar 4.237 Klasifikasi Penentuan Potensi Objek pada Elemen Path

B. Edge


Elemen edge hanya memiliki 7 objek sebagai wayfinding kampus, sehingga elemen ini hanya terdapat 7 tingkatan ranking sesuai dengan jumlah objeknya. Dalam mencari objek yang berpotensial dalam struktur ruang kampus, dilakukan pembagian klasifikasi tinggi sampai rendah dengan cara menggunakan rata-rata dari jumlah nilai akhir pada analisis mental map dan space syntax. Pada analisis mental map, nilai yang masuk klasifikasi tinggi berada pada Edge 1, 2, dan 3, sedangkan pada analisis space syntax yang masuk klasifikasi tinggi berada pada Edge 1 dan Edge 2. Penjelasan pembagian klasifikasi objek dapat dilihat pada gambar berikut.

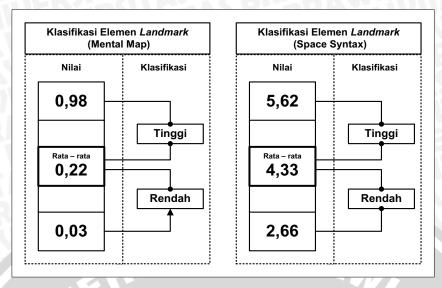
Gambar 4.238 Kriteria Penentuan Potensi Objek pada Elemen Edge

C. Zone


Jumlah objek yang dimiliki elemen *zone* sejumlah 14 objek yang tersebar di kampus Universitas Brawijaya. Dalam mencari objek yang berpotensial dalam struktur ruang kampus, dilakukan pembagian klasifikasi tinggi sampai rendah dengan cara menggunakan rata-rata dari jumlah nilai akhir pada analisis *mental map* dan *space syntax*. Pada analisis *mental map*, nilai yang masuk klasifikasi tinggi berada pada *Zone* 2, 4, 5, 6, 7, dan 8, sedangkan pada analisis *space syntax* yang masuk klasifikasi tinggi berada pada *Zone* 4, 5, 6, 7, 10, 11, dan 14. Hal ini dilakukan untuk mencari objek yang berpotensi sebagai *wayfinding* kampus berdasarkan pendapat responden serta konfigurasi ruang.

Gambar 4.239 Kriteria Penentuan Potensi Objek pada Elemen Zone

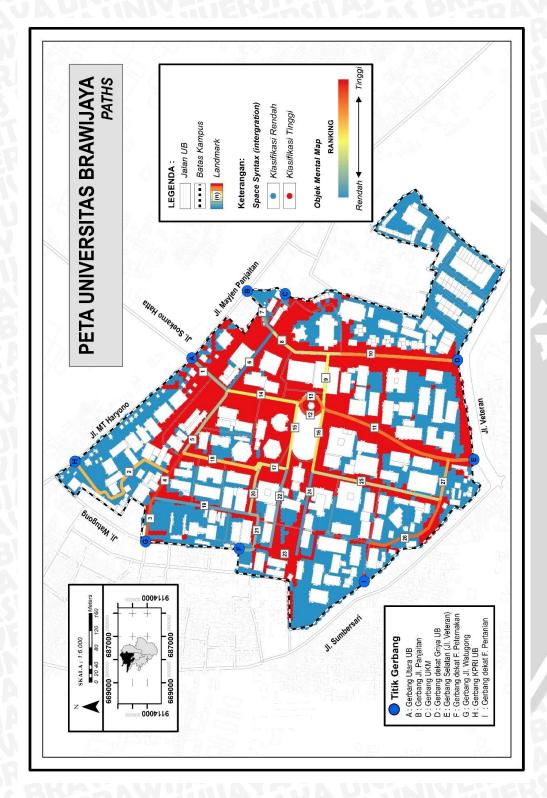
D. Node


Elemen *node* memiliki 20 objek sebagai *wayfinding* kampus. Dalam mencari objek yang berpotensial dalam struktur ruang kampus, dilakukan pembagian klasifikasi tinggi sampai rendah dengan cara menggunakan rata-rata dari jumlah nilai akhir pada analisis *mental map* dan *space syntax*. Pada analisis *mental map*, nilai yang masuk klasifikasi tinggi berada pada *Node* 6, 9, 10, 11, dan 13, sedangkan pada analisis *space syntax* yang masuk klasifikasi tinggi berada pada *Node* 1, 2, 5, 6, 7, 8, 10, 13, 14, 15, 18, dan 19. Penjelasan kriteria pembagian klasifikasi tinggi-randahnya potensi objek dapat dilihat pada gambar berikut.

Gambar 4.240 Kriteria Penentuan Potensi Objek pada Elemen Node

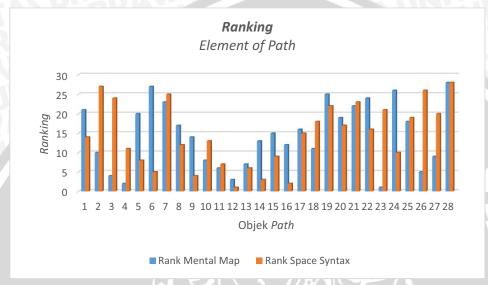
E. Landmark

Jumlah objek yang dimiliki elemen *landmark* pada kampus Universitas Brawijaya adalah 23 objek. Dalam mencari objek yang berpotensial dalam struktur ruang kampus, dilakukan pembagian klasifikasi tinggi sampai rendah dengan cara menggunakan rata-rata dari jumlah nilai akhir pada analisis *mental map* dan *space syntax*. Pada analisis *mental map*, nilai yang masuk klasifikasi tinggi berada pada *Landmark* 4, 5, 6, 7, 8, 9, 13, 14, dan 16, sedangkan pada analisis *space syntax* yang masuk klasifikasi tinggi berada pada *Landmark* 2, 4, 5, 6, 7, 8, 9, 17, 18, 19, 20, dan 23. Hal ini diperuntukkan untuk mencari objek yang berpotensi sebagai *wayfinding* kampus berdasarkan pendapat responden serta konfigurasi ruang. Untuk penjelasan yang lebih jelas mengenai penentuan klasifikasi tinggi- rendahnya ranking suatu objek, dapat dilihat pada gambar berikut.



Gambar 4.241 Kriteria Penentuan Potensi Objek pada Elemen Landmark

Setelah mengetahui pembagian kalsifikasi nilai tinggi dan rendah pada masingmasing objek, dilakukan perbandingan dari hasil analisis *mental map* dengan *space syntax*, sehingga dapat diketahui objek yang berpotensial dalam struktur ruang kampus Universitas Brawijaya. Berikut merupakan perbandingan ranking antara *mental map* dengan *space syntax* dari tiap objek pada masing-masing elemen *wayfinding* di kampus Universitas Brawijaya.


4.10.1 *Path*

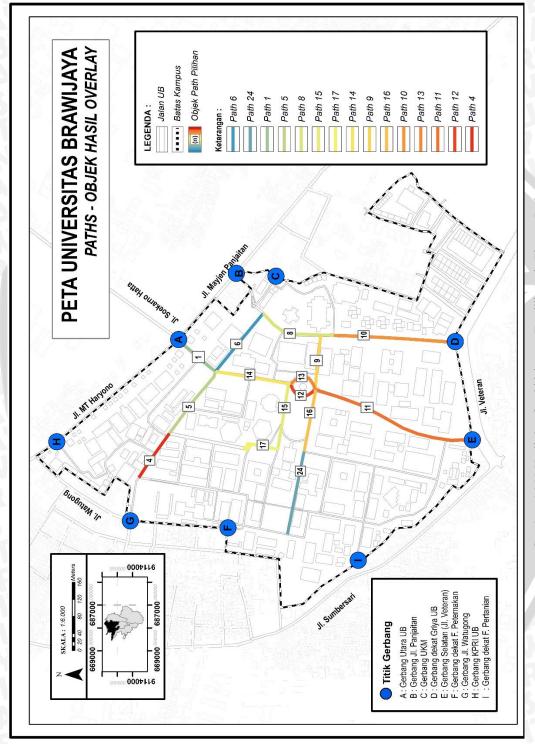
Pada elemen *Path* yang memiliki 28 objek, teridentifikasi bahwa objek-objek tersebut memiliki ranking yang beragam. Nilai dari pendapat responden serta konfigurasi ruang tersebut diklasifikasikan menggunakan klasifikasi tingkatan tinggi dan rendah, sehingga dapat diketahui objek pilihan yang berpotensi dalam struktur ruang. Peta *overlay* dari kedua analisis *mental map* dengan peta *space syntax* tersebut dapat dilihat pada gambar berikut.

Gambar 4.242 Overlay Analisis Mental map dengan Space syntax pada Elemen Path

Dari peta tersebut, dapat diketahui urutan warna semua objek *Path* berdasarkan analisis *mental map* dan konfigurasi ruang *space syntax*. Warna pada *space syntax* dibagi berdasarkan 2 klasifikasi, yakni tinggi dan rendah, sehingga dapat dengan mudah mengkategorikan klasifikasi pada analisisi tersebut, sedangkan warna pada *mental map* mengatikan tingkatan berdasarkan hirarki objek pada analisis. Berikut merupakan grafik yang menunjukkan perbandingan ranking antara *Mental map* dengan *Space syntax*.

Gambar 4.243 Diagram Perbandingan Ranking Elemen Path

Diagram diatas didapat dari hasil analisis berupa hirarki berdasarkan pendapat responden (*mental map*) dengan konfigurasi ruang (*space syntax*). Dengan melihat hasil tersebut, maka dapat diketahui objek pada elemen *Path* yang menjadi objek potensial. Untuk penjelasan lebih lanjut mengenai penjabaran perbandingan ranking yang menunjukkan objek yang layak dimasukkan ke dalam konsep, dapat dilihat pada **Tabel 4.23**.


Tabel 4.23 Penentuan Kelayakan Objek berdasarkan Ranking pada Elemen Path

Path		Mental map			Space syntax			
ruin	Nilai	Ranking	Klasifikasi	Nilai	Ranking	Klasifikasi	Objek	
1	0,65	21	Rendah	5,04	14	Tinggi	Tinggi	
2	1,05	10	Tinggi	3,18	27	Rendah	Sedang	
3	1,75	4	Tinggi	4,27	24	Rendah	Sedang	
4	2,12	2	Tinggi	5,42	11	Tinggi	Tinggi	
5	0,72	19	Rendah	5,60	8	Tinggi	Tinggi	
6	0,18	27	Rendah	5,68	5	Tinggi	Tinggi	
7	0,40	23	Rendah	4,25	25	Rendah	Rendah	
8	0,76	17	Rendah	5,40	12	Tinggi	Tinggi	
9	0,90	13	Rendah	5,75	4	Tinggi	Tinggi	
10	1,09	9	Tinggi	5,13	13	Tinggi	Tinggi	

Path	Mental map				Potensi		
11	1,60	6	Tinggi	5,61	7	Tinggi	Tinggi
12	1,85	3	Tinggi	6,23	1	Tinggi	Tinggi
13	1,31	7	Tinggi	5,63	6	Tinggi	Tinggi
14	0,90	14	Rendah	5,90	3	Tinggi	Tinggi
15	0,79	16	Rendah	5,58	9	Tinggi	Tinggi
16	0,91	12	Rendah	6,10	2	Tinggi	Tinggi
17	0,81	15	Rendah	5,02	15	Tinggi	Tinggi
18	1,00	11	Tinggi	4,57	18	Rendah	Sedang
19	0,20	26	Rendah	4,44	22	Rendah	Rendah
20	0,71	20	Rendah	4,84	17	Rendah	Rendah
21	0,58	22	Rendah	4,39	23	Rendah	Rendah
22	0,35	24	Rendah	4,94	16	Rendah	Rendah
23	2,43	1	Tinggi	4,44	21	Rendah	Sedang
24	0,21	25	Rendah	5,56	10	Tinggi	Tinggi
25	0,76	18	Rendah	4,56	19	Rendah	Rendah
26	1,61	5	Tinggi	4,19	26	Rendah	Sedang
27	1,15	8	Tinggi	4,45	20	Rendah	Sedang
28	0	28	Rendah	2,57	_28	Rendah	Rendah

Sumber: Hasil Analisis, 2016

Dari tabel **Tabel 4.23**, dapat diketahui objek yang termasuk dalam klasifikasi objek potensial dengan melihat kolom potensi objek. Setelah dilakukan *overlay* dari ranking *mental map* dengan *space syntax*, didapatkan objek-objek yang berpotensi sebagai *wayfinding* dalam struktur ruang kampus. Pada elemen *Path*, diketahui terdapat 15 objek yang masuk ke dalam kriteria prioritas objek, yakni *Path* 1, *Path* 4, *Path* 5, *Path* 6, *Path* 8, *Path* 9, *Path* 10, *Path* 11, *Path* 12, *Path* 13, *Path* 14, *Path* 15, *Path* 16, *Path* 17, dan *Path* 24. Untuk gambaran yang lebih jelas mengenai lokasi objek yang menjadi prioritas dalam pemilihan objek berdasarkan klasifikasi yang dilakukan, dapat dilihat pada gambar peta hasil *overlay* berikut.

Gambar 4.244 Hasil Overlay Objek yang Terpilih pada Elemen Path

4.10.2 Edge

Elemen *edge* memiliki tujuh objek sebagai objek *wayfinding* yang memiliki beragam ranking dalam perbandingan antara ranking *mental map* dengan *space syntax*. Hasil nilai dari pendapat responden serta konfigurasi ruang tersebut diklasifikasikan menggunakan kriteria tingkatan tinggi dan rendah, sehingga dapat diketahui objek yang berpotensi dalam struktur ruang. Peta *overlay* dari kedua analisis *mental map* dengan peta *space syntax* pada pembahsan *edge* kampus dapat dilihat pada gambar berikut.

Gambar 4.245 Overlay Analisis Mental map dengan Space syntax pada Elemen Edge

Dari peta tersebut, dapat diketahui urutan warna semua objek *edge* berdasarkan kedua analisis *mental map* dan *space syntax*. Warna pada *space syntax* dibagi berdasarkan dua klasifikasi, yakni tinggi dan rendah, sehingga dapat dengan mudah mengkategorikan klasifikasi pada analisisi tersebut, sedangkan warna pada *mental map* mengatikan tingkatan berdasarkan hirarki objek pada analisis. Untuk melihat perbandingan kedua analisis tersebut, berikut ini merupakan diagram perbandingan ranking dari masing-masing objek dalam elemen *Edge*.

Gambar 4.246 Diagram Perbandingan Ranking Elemen Edge

Diagram diatas didapat dari hasil analisis berupa hirarki berdasarkan pendapat responden (*Mental map*) dengan konfigurasi ruang (*Space syntax*). Dengan melihat hasil tersebut, maka dapat diketahui objek pada elemen *edge* yang menjadi objek potensial. Untuk penjelasan lebih lanjut mengenai penjabaran perbandingan ranking yang menunjukkan objek yang layak dimasukkan ke dalam konsep, dapat dilihat pada **Tabel 4.24**.

Tabel 4.24 Penentuan Kelayakan Objek berdasarkan Ranking pada Elemen Edge

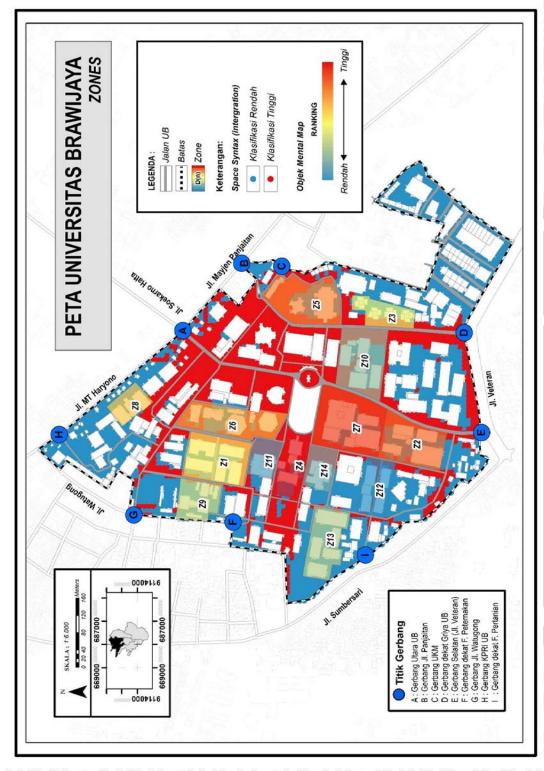
Edge	Mental map			W	Potensi		
Luge	Nilai	Ranking	Klasifikasi	Nilai	Ranking	Klasifikasi	Objek
1	1,30	2	Tinggi	3,85	204	Tinggi	Tinggi
2	1,45	1	Tinggi	4,59	1	Tinggi	Tinggi
3	1,11	3	Tinggi	3,82	3	Rendah	Sedang
4	0,71	4	Rendah	0	7	Rendah	Rendah
5	0,62	5	Rendah	3,70	4	Rendah	Rendah
6	0,19	6	Rendah	3,65	5	Rendah	Rendah
7	0,09	7	Rendah	3,49	6	Rendah	Rendah

Sumber: Hasil Analisis, 2016

Setelah dilakukan *overlay* dari ranking *mental map* dengan *space syntax*, *overlay* tersebut menghasilkan objek-objek yang berpotensi sebagai *wayfinding* dalam struktur ruang kampus. Pada elemen *edge*, diketahui terdapat 2 objek yang masuk ke dalam kriteria prioritas

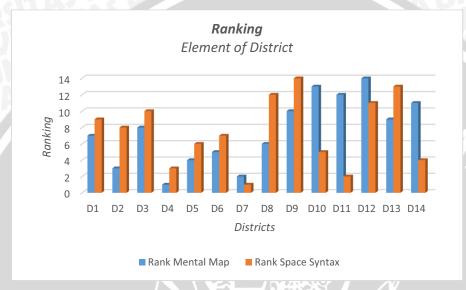
objek, yakni *Edge* 1 dan *Edge* 2. Gambaran lokasi objek yang masuk dalam konsep *wayfinding* sebagai objek potensial, dapat dilihat pada gambar berikut.

BRAWIJAYA


Gambar 4.247 Hasil Overlay Objek pada Elemen Edge

BRAWIJAYA

4.10.3 Zone

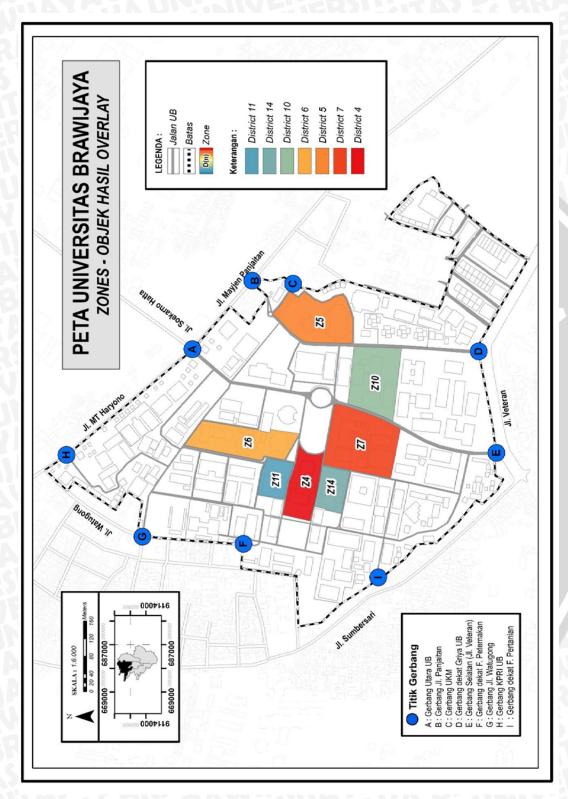

Elemen zone memiliki 14 objek berbeda sebagai objek wayfinding. Perbandingan ranking objek dalam zone diperuntukkan untuk mendapatkan objek yang sesuai dengan konfigurasi ruang. Nilai dari pendapat responden serta konfigurasi ruang tersebut diklasifikasikan menggunakan kriteria tingkatan tinggi dan rendah, sehingga dapat diketahui objek yang berpotensi dalam struktur ruang dari hasil perbandingan keduaa ranking dari hasil analisis mental map dengan space syntax. Peta overlay dari kedua analisis mental map dengan peta space syntax tersebut dapat dilihat pada gambar berikut.

Gambar 4.248 Peta Overlay Analisis Mental map dengan Space syntax pada Elemen Zone

Dari peta tersebut, dapat diketahui urutan warna semua objek *zone* berdasarkan kedua analisis *mental map* dan *space syntax*. Warna pada *space syntax* dibagi berdasarkan dua klasifikasi, yakni tinggi dan rendah, sehingga dapat dengan mudah mengkategorikan klasifikasi pada analisisi tersebut, sedangkan warna pada *mental map* mengatikan tingkatan berdasarkan hirarki objek pada analisis. Untuk melihat perbandingan kedua analisis tersebut, berikut ini merupakan diagram perbandingan ranking dari masing-masing objek dalam elemen *zone*.

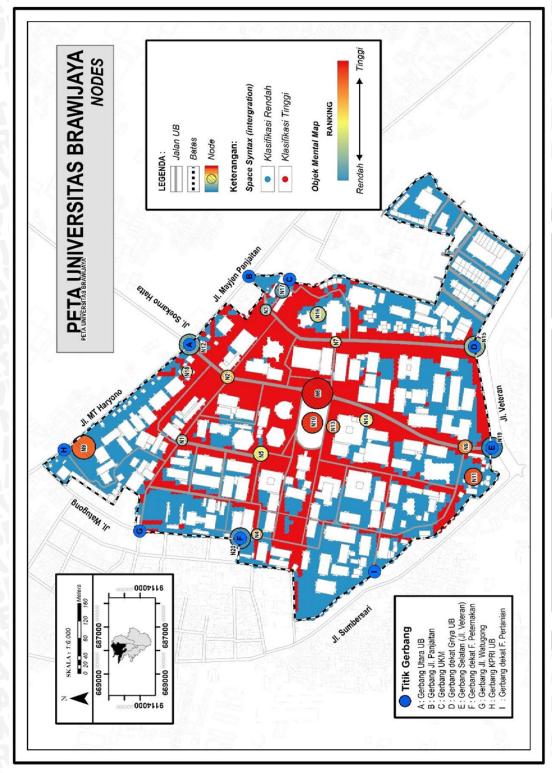
Gambar 4.249 Diagram Perbandingan Ranking Elemen Zone

Dari diagram diatas, diketahui semua perbandingan ranking objek pada elemen distrik memiliki ranking yang berbeda. Untuk mengetahui kelayakan objek yang akan dimasukkan ke dalam konsep *wayfinding*, dilakukan perbandingan ranking antara pendapat responden dengan konfigurasi ruang, yang menghasilkan tingkat tinggi atau rendah peran objek tersebut terhadap struktur ruang di kampus Universitas Brawijaya. Dengan melihat hasil tersebut, maka dapat diketahui objek pada elemen *zone* yang menjadi objek potensial. Untuk penjelasan lebih lanjut mengenai penjabaran perbandingan ranking yang menunjukkan objek yang layak dimasukkan ke dalam konsep, dapat dilihat pada **Tabel 4.25**.

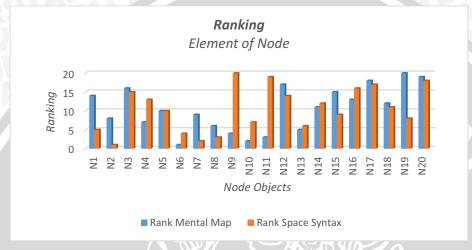

Tabel 4.25 Penentuan Kelayakan Objek berdasarkan Ranking pada Elemen Zone

Zone	Mental map				Potensi		
	Nilai	Ranking	Klasifikasi	Nilai	Ranking	Klasifikasi	Objek
1	0,36	7	Rendah	4,26	9	Rendah	Rendah
2	0,73	3	Tinggi	4,30	8	Rendah	Sedang
3	0,29	8	Rendah	4,10	10	Rendah	Rendah
4	1,14	1	Tinggi	4,83	3	Tinggi	Tinggi
5	0,58	4	Tinggi	4,63	6	Tinggi	Tinggi

Zone 6	Mental map				Potensi		
	0,48	5	Tinggi	4,47	7	Tinggi	Tinggi
7	1,07	2	Tinggi	5,17	1	Tinggi	Tinggi
8	0,40	6	Tinggi	3,74	12	Rendah	Sedang
9	0,07	9	Rendah	3,69	14	Rendah	Rendah
10	0,02	11	Rendah	4,74	5	Tinggi	Tinggi
11	0,01	13	Rendah	4,89	2	Tinggi	Tinggi
12	0,01	14	Rendah	3,93	11	Rendah	Rendah
13	0,02	10	Rendah	3,70	13	Rendah	Rendah
14	0,01	12	Rendah	4,82	4	Tinggi	Tinggi


Sumber: Hasil Analisis, 2016

Setelah dilakukan *overlay* dari ranking *mental map* dengan *space syntax*, *overlay* tersebut menghasilkan objek-objek yang berpotensi sebagai *wayfinding* dalam struktur ruang kampus. Pada elemen *zone*, diketahui terdapat 7 objek yang masuk ke dalam kriteria prioritas pemilihan objek, yakni *Zone* 4, *Zone* 5, *Zone* 6, *Zone* 7, *Zone* 10, *Zone* 11, dan *Zone* 14. Untuk gambaran yang lebih jelas mengenai lokasi objek yang menjadi prioritas dalam pemilihan objek berdasarkan klasifikasi yang dilakukan, dapat dilihat pada gambar peta hasil *overlay* berikut.

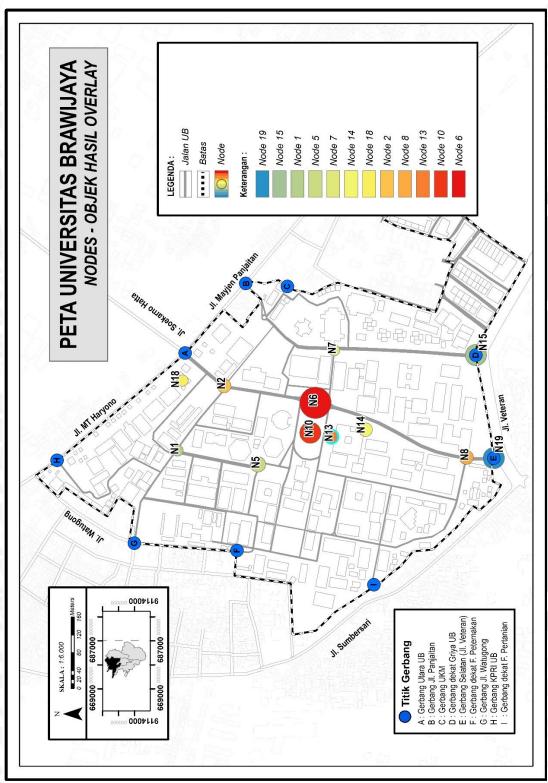

Gambar 4.250 Hasil Overlay Objek pada Elemen Zone

Gambar 4.251 Peta Overlay Analisis Mental map dengan Space syntax pada Elemen Node

Dari peta tersebut, dapat diketahui urutan warna semua objek *node* berdasarkan kedua analisis *Mental map* dan *Space syntax*. Warna pada *space syntax* dibagi berdasarkan dua klasifikasi, yakni tinggi dan rendah, sehingga dapat dengan mudah mengkategorikan klasifikasi pada analisisi tersebut, sedangkan warna pada *mental map* mengatikan tingkatan berdasarkan hirarki objek pada analisis. Untuk melihat perbandingan kedua analisis tersebut, berikut ini merupakan diagram perbandingan ranking dari masing-masing objek dalam elemen *node*.

Gambar 4.252 Diagram Perbandingan Ranking Elemen Node

Dalam diagram tersebut, diketahui perbandingan ranking semua objek dalam elemen node memiliki ranking yang beragam dan tidak ada yang setara atau sama. Untuk mengetahui objek yang potensial dan bermasalah, dilakukan perbandingan ranking dari mental map dan space syntax, sehingga mendapatlkan objek yang layak dimasukkan ke dalam konsep wayfinding. Dengan melihat hasil overlay tersebut, maka dapat diketahui objek pada elemen node yang menjadi objek potensial. Untuk penjelasan lebih lanjut mengenai penjabaran perbandingan ranking yang menunjukkan objek yang layak dimasukkan ke dalam konsep, dapat dilihat pada **Tabel 4.26**.

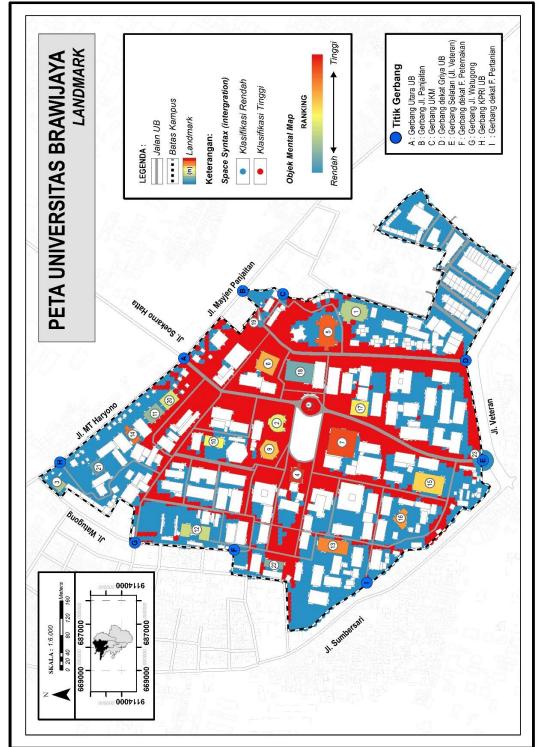

Tabel 4.26 Penentuan Kelayakan Objek berdasarkan Ranking pada Elemen Nodes

Mada	Mental map				Space syr	Dodonoi Ohiok	
Node	Nilai	Ranking	Klasifikasi	Nilai	Ranking	Klasifikasi	Potensi Objek
1	0,12	14	Rendah	5,61	5	Tinggi	Tinggi
2	0,18	8	Rendah	6,57	1	Tinggi	Tinggi
3	0,06	18	Rendah	4,49	15	Rendah	Rendah
4	0,26	6	Rendah	4,84	13	Rendah	Rendah
5	0,14	13	Rendah	5,10	10	Tinggi	Tinggi
6	1,14	1	Tinggi	5,71	4	Tinggi	Tinggi
7	0,15	12	Rendah	6,08	2	Tinggi	Tinggi

Node	MA	Mental n	nap		Space sy	entax	Potensi Objek
8	0,23	7	Rendah	5,80	3	Tinggi	Tinggi
9	0,51	4	Tinggi	3,13	20	Rendah	Sedang
10	0,66	2	Tinggi	5,56	7	Tinggi	Tinggi
11	0,64	3	Tinggi	3,77	19	Rendah	Sedang
12	0,09	16	Rendah	4,57	14	Rendah	Rendah
13	0,49	5	Tinggi	5,58	6	Tinggi	Tinggi
14	0,15	11	Rendah	5,01	12	Tinggi	Tinggi
15	0,11	15	Rendah	5,13	9	Tinggi	Tinggi
16	0,16	9	Rendah	4,28	16	Rendah	Rendah
17	0,08	17	Rendah	4,26	17	Rendah	Rendah
18	0,16	10	Rendah	5,01	11	Tinggi	Tinggi
19	0,01	20	Rendah	5,42	8	Tinggi	Tinggi
20	0,02	19	Rendah	4,20	18	Rendah	Rendah

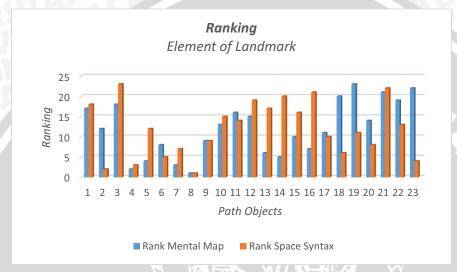
Sumber: Hasil Analisis, 2016

Dari tabel **Tabel 4.26**, dapat diketahui objek yang termasuk dalam klasifikasi objek potensial dengan melihat kolom potensi objek. Setelah dilakukan *overlay* dari ranking *mental map* dengan *space syntax*, *overlay* tersebut menghasilkan objek-objek yang berpotensi sebagai *wayfinding* dalam struktur ruang kampus. Pada elemen *node*, diketahui terdapat 12 objek yang masuk ke dalam kriteria prioritas objek, yakni *Node* 1, *Node* 2, *Node* 5, *Node* 6, *Node* 7, *Node* 8, *Node* 10, *Node* 13, *Node* 14, *Node* 15, *Node* 18, dan *Node* 19. Untuk gambaran yang lebih jelas mengenai lokasi objek yang menjadi prioritas dalam pemilihan objek *node* berdasarkan klasifikasi yang dilakukan, dapat dilihat pada gambar peta hasil *overlay* berikut.



Gambar 4.253 Hasil Overlay Objek pada Elemen Node

4.10.5 Landmark

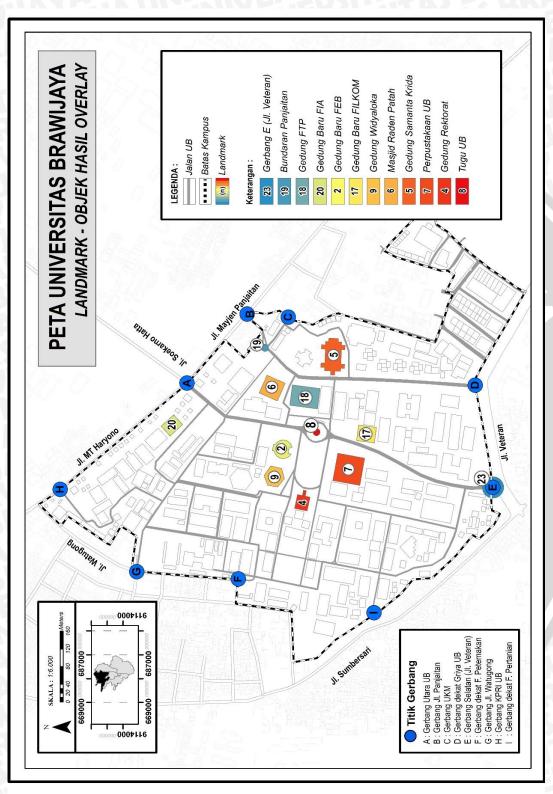

Elemen *landmark* memiliki 23 objek *wayfinding* yang ditentukan berdasarkan pendapat ahli serta responden. Nilai yang dihasilkan dari pendapat responden serta konfigurasi ruang tersebut diklasifikasikan menggunakan kriteria tingkatan tinggi dan rendah, sehingga dapat diketahui objek yang berpotensi dalam struktur ruang. Untuk mengetahui objek yang potensial, dilakukan perbandingan ranking antara pendapat responden dengan konfigurasi ruang, yang dapat dilihat pada peta *overlay* berikut.

Gambar 4.254 Peta Overlay Analisis Mental map dengan Space syntax pada Elemen Landmark

Dari peta tersebut, dapat diketahui urutan warna semua objek *landmark* berdasarkan kedua analisis *Mental map* dan *Space syntax*. Warna pada *space syntax* dibagi berdasarkan dua klasifikasi, yakni tinggi dan rendah, sehingga dapat dengan mudah mengkategorikan klasifikasi pada analisisi tersebut, sedangkan warna pada *mental map* mengatikan tingkatan berdasarkan hirarki objek pada analisis. Untuk melihat perbandingan kedua analisis tersebut, berikut ini merupakan diagram perbandingan ranking dari masing-masing objek dalam elemen *landmark*.

Gambar 4.255 Diagram Perbandingan Ranking Elemen Landmark

Perbandingan antara *mental map* dengan *space syntax* menghasilkan tingkat tinggi dan rendah suatu objek dalam elemen *landmark*. Dengan melihat hasil tersebut, maka dapat diketahui objek pada elemen *node* yang menjadi objek potensial. Untuk penjelasan lebih lanjut mengenai penjabaran perbandingan ranking yang menunjukkan objek yang layak dimasukkan ke dalam konsep, dapat dilihat pada **Tabel 4.27**.


Tabel 4.27 Penentuan Kelayakan Objek berdasarkan Ranking pada Elemen *Landmarks*

		Mental mo	up J	17.41	Determination in		
Landmark	Nilai	Ranking	Klasifikasi	Nilai	Ranking	Klasifikasi	Potensi Objek
1	0,09	16	Rendah	3,62	18	Rendah	Rendah
2	0,12	13	Rendah	5,42	2	Tinggi	Tinggi
3	0,08	17	Rendah	2,66	23	Rendah	Rendah
4	0,81	2	Tinggi	5,27	3	Tinggi	Tinggi
5	0,32	4	Tinggi	4,33	12	Tinggi	Tinggi
6	0,22	8	Tinggi	5,08	-5	Tinggi	Tinggi
7	0,52	3	Tinggi	4,99	7	Tinggi	Tinggi
8	0,98	1	Tinggi	5,62	1	Tinggi	Tinggi
9	0,22	9	Tinggi	4,72	9	Tinggi	Tinggi
10	0,13	12	Rendah	4,08	15	Rendah	Rendah

Landmark		Mental m	ар		Space synt	ax	Potensi Objek
11	0,08	18	Rendah	4,20	14	Rendah	Rendah
12	0,10	15	Rendah	3,61	19	Rendah	Rendah
13	0,26	6	Tinggi	3,92	17	Rendah	Sedang
14	0,30	5	Tinggi	3,30	20	Rendah	Sedang
15	0,18	10	Rendah	4,03	16	Rendah	Rendah
16	0,23	7	Tinggi	3,18	21	Rendah	Sedang
17	0,14	11	Rendah	4,66	10	Tinggi	Tinggi
18	0,06	20	Rendah	5,06	6	Tinggi	Tinggi
19	0,03	22	Rendah	4,49	11	Tinggi	Tinggi
20	0,11	14	Rendah	4,73	8	Tinggi	Tinggi
21	0,04	21	Rendah	3,12	22	Rendah	Rendah
22	0,07	19	Rendah	4,31	13	Rendah	Rendah
23	0,03	23	Rendah	5,20	4	Tinggi	Tinggi

Sumber: Hasil Analisis, 2016

Dari tabel Tabel 4.26, dapat diketahui objek yang termasuk dalam klasifikasi objek potensial dengan melihat kolom potensi objek. Setelah dilakukan overlay dari ranking mental map dengan space syntax, overlay tersebut menghasilkan objek-objek yang berpotensi sebagai wayfinding dalam struktur ruang kampus. Pada elemen landmark, diketahui terdapat 12 objek yang masuk ke dalam kriteria prioritas objek, yakni Landmark 2, Landmark 4, Landmark 5, Landmark 6, Landmark 7, Landmark 8, Landmark 9, Landmark 17, Landmark 18, Landmark 19, Landmark 20, dan Landmark 23. Untuk gambaran yang lebih jelas mengenai lokasi objek yang menjadi prioritas dalam pemilihan objek landmark berdasarkan klasifikasi yang dilakukan, dapat dilihat pada gambar peta hasil dari overlay berikut.

Gambar 4.256 Hasil Overlay Objek pada Elemen Landmark

4.11 Other sensory Information

Other sensory Information merupakan salah satu variabel dalam environtmental information. Dalam penelitian ini, other sensory information yang digunakan, yakni jenis paving pada trotoar, lampu jalan, tempat sampah, serta vegetasi. Peran Other sensory information dalam penelitian ini digunakan sebagai objek pendukung dalam elemen citra mental wayfinding system pejalan kaki di kampus Universitas Brawijaya. Objek dalam elemen citra mental yang telah terpilih berdasarkan hasil dari analisis pendapat responden serta konfigurasi ruang diperkuat dengan adanya objek other sensory yang terdapat pada area sekitar objek citra mental (Path, edge, zone, node, dan landmark). Berikut hasil survei pada kuisioner mengenai sensor lain pada wayfinding di kampus Universitas Brawijaya.

4.11.1 *Paving*

Berdasarkan hasil survei primer, *paving* pada trotoar di kampus Universitas Brawijaya memiliki delapan jenis permukaan yang berbeda. Hal ini dapat mempengaruhi ingatan pejalan kaki terkait visualisasi dari *pavement furniture* yang memiliki keunikan tersendiri. Hasil kuisioner menyatakan bahwa ada 48 (24%) responden yang menyatakan *paving* dapat mempengaruhi *wayfinding* seseorang saat berada di kampus Universitas Brawijaya, sedangkan 153 (76%) responden menyatakan tidak berpengaruh. Berikut penjabaran *paving* yang dipilih oleh beberapa responden tersebut.

Tabel 4.28 Penjabaran Jenis Paving yang Dipilih oleh Responden

Paving	Jumlah Responden	Persentase
1	12	25%
2	8	17%
3	6	13%
4	3	6%
5	0	0%
6	0	0%
7	5	10%
8	11	23%

Sumber: Hasil Analisis, 2016

4.11.2 Lampu Jalan

Lampu jalan di kampus Universitas Brawijaya mayoritas diklasifikasikan menjadi dua jenis, yakni jenis A dan jenis B. Lampu Jalan yang merupakan salah satu *street furniture* dapat menjadi objek yang dapat membantu elemen utama menjadi *wayfinding system*, terutama saat suasana gelap. Selain sebagai estetika, lampu jalan yang mengikuti alur jalan, dapat menjadi pengarah ketika malam hari, sehingga dapat meminimalisir tingkat tersesat

pada kampus. Berdasarkan hasil kuisioner, 32 (16%) dari 201 responden menyatakan bahwa lampu jalan berpengaruh terhadap *wayfinding* seseorang saat berada di kampus.

Tabel 4.29 Penjabaran Jumlah Responden pada Lampu Jalan sebagai Wayfinding

Lampu Jalan	Jumlah Responden	Persentase	
A	20	63%	
В	12	38%	

Sumber: Hasil Analisis, 2016

4.11.3 Vegetasi

Vegetasi berdasarkan fungsinya ada beberapa macam, yaitu sebagai estetika, tutupan lahan (*ground cover*), peneduh, pengarah, dan pembatas (*physical barrier*). Dari fungsifungsi tersebut, vegetasi dapat memperkuat objek citra mental menjadi objek yang berpengaruh dalam *wayfinding system*. Berdasarkan hasil kuisioner, jumlah responden yang menyatakan vegetasi berpengaruh, yakni 60 responden, sedangkan 141 lainnya menyatakan tidak berpengaruh.

Tabel 4.30 Penjabaran Pendapat Responden pada Vegetasi sebagai Wayfinding

Vegetasi	Jumlah Responden	Persentase
Berpengaruh	60	30%
Tidak Berpengaruh	141	70%

Sumber: Hasil Analisis, 2016

4.12 Konsep Objek Wayfinding Pilihan di Kampus Brawijaya

Analisis *Mental map* dan *Space syntax* menghasilkan tingkatan atau hirarki pada objek *wayfinding* berdasarkan pendapat pengguna serta konfigurasi ruang. Dari Hirarki tersebut, kemudian diklasifikasikan berdasarkan tinggi rendahnya suatu objek dalam elemen, sehingga menghasilkan objek yang berpotensi dalam *wayfinding system* di Universitas Brawijaya. Setelah dilakukan *overlay*, ada beberapa objek yang terpilih menjadi *wayfinding system*, yakni *Path* (14 objek), *edge* (4 objek), *zone* (7 objek), *node* (10 objek), dan *landmark* (12 objek). Penjabaran potensi masing-masing objek citra mental *wayfinding* dapat dilihat pada **Tabel 4.26** (*Path*), **Tabel 4.27** (*Edge*), **Tabel 4.28** (*Zone*), **Tabel 4.29** (*Node*), dan **Tabel 4.30** (*Landmark*). Kolom keterangan pada tabel tersebut merupakan penjelasan hasil kuisioner serta hasil survei apda objek, kolom other sensory merupakan pembahasan objek sensor lain yang berada di sekitar objek, kolom kriteria yang mendukung merupakan informasi tentang potensi yang dimiliki objek berdasarkan pilihan responden, kolom klasifikasi membahas tentang hasil akhir dari klasifikasi pada analisis mental map dan space

syntax. Pembahasan pada kolom tersebut merupakan pertimbangan untuk mengkasilkan konsep yang merupakan perlakuan pada objek.

Tabel 4.31 Penjabaran Hasil Analisis Variabel pada Elemen Paths

Konsep	Penambahan Jalur khusus pejalan kaki pada sisi jalan serta menggunakan paving yang paling tinggi persentasenya, seperti paving 1 Perlu adanya objek pengarah sekaligus melindungi pejalan kaki saat hujan, misalkan seperti penambahan pergola/walkways roof atau tanaman-tanaman peneduh	 Mempertahankan fungsi jalan sebagai jalan penghubung dengan jalan sekitar Pemeliharaan fungsi objek pada lokasi, seperti pada trotoar, lampu jalan, dan vegetasi.
Klasifikasi**	• Mental map: Rendah • Space syntax: Tinggi	• Mental map: Tinggi • Space syntax: Tinggi
Kriteria yang Mendukung*	Responden yang memberikan skor tinggi (angka 3 -5): • Perkerasan jalan (92%) • Skala (100%) • Pelengkap Jalan (85%) • Fungsi Penghubung dengan jalan sekitar (92%) • Nilai Historis (69%)	memberikan skor tinggi (angka 3 -5): • Perkerasan jalan (76%) • Skala (63%) • Pelengkap Jalan (59%) • Fungsi Penghubung dengan jalan sekitar (76%) • Nilai Historis (71%)
Other Sensory	 Lampu Jalan Terdapat lampu jenis A dan B sebagai penerangan saat gelap. Vegetasi Terdapat beberapa vegetasi pengarah yang mengarahkan dari/ke Path I menuju Path 5, Path 6, dan Path 14 	Terdapat jenis Paving 2 pada permukaan trotoar Path 4. Sebanyak 8 orang menyatakan bahwa paving jenis 2 menpengaruhi dalam proses wayfinding • Lampu Jalan Terdapat lampu jenis A sebagai penerangan saat gelap. • Vegetasi Vegetasi vegetasi yang ada berupa peneduh pada parkir mahasiswa FT serta sebagai pengarah jalan di sebagai pengarah jalan di
Keterangan	Path 1 berdekatan dengan Gerbang A yang menjadi salah satu pintu masuk Kampus UB. Hasil kuisioner menunjukkan bahwa dari 201 responden yang terlibat, 6% diantaranya memilih Path 1 sebagai objek yang berpengaruh terhadap wayfinding pengguna.	terusan dari segmen Path 3 dan menghubungkan jalan menuju Path 2, Path 5, Path 18, dan Path 19. Hasil kuisioner menunjukkan bahwa 23% dari jumlah keseluruhan responden memilih Path 4 sebagai salah satu objek wayfinding yang berpengaruh
Path	TAS BRANG	WILAYAVAUN