SIMULASI FSW MENGGUNAKAN MODEL *MOVING HEAT* SOURCE DENGAN SUMBER PANAS SURFACE HEAT FLUX

SKRIPSI

TEKNIK MESIN KONSENTRASI KONSTRUKSI

Ditulis Untuk Memenuhi Persyaratan Memperoleh Gelar Sarjana Teknik

FATHI ROBBANY

NIM. 125060200111033

<u>d</u> d

UNIVERSITAS BRAWIJAYA

FAKULTAS TEKNIK MALANG

2017

SKRIPSI

TEKNIK MESIN KONSENTRASI KONSTRUKSI

Ditujukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik

FATHI ROBBANY NIM 125060200111033 - 62

Skripsi ini telah direvisi serta disetujui oleh dosen pembimbing

pada tanggal 27 Januari 2017

DOSEN PEMBIMBING I

DOSEN PEMBIMBING II

<u>Ir. Djarot B. Darmadi, MT., Ph.D</u> NIP. 19670518 199412 1 001

Prof. Dr. Ir. Rudy Soenoko, M.Eng.Sc. NIP 19490911 198403 1 001

Mengetahui Ketua Program Studi

Dr.Eng. Widya Wijayanti, ST., MT. NIP. 19750802 199903 2 002 Saya menyatakan dengan sebenar-benarnya bahwa sepanjang pengetahuan saya dan berdasarkan hasil penelusuran berbagai karya ilmiah, gagasan, dan makalah ilmiah yang diteliti dan diulas di dalam Naskah Skripsi ini adalah asli dari pemikiran saya. Tidak terdapat karya ilmiah yang pernah diajukan oleh orang lain untuk memperoleh gelar akademik suatu Perguruan Tinggi, dan tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis dikutip dalam naskah ini dan disebutkan sumber kutipan dan daftar pustaka.

Apabila ternyata didalam Naskah Skripsi ini dapat dibuktikan terdapat unsurunsur jiplakan, saya bersedia Skripsi dibatalkan, serta diproses sesuai dengan peraturan perundang-undangan yang berlaku (UU No. 20 Tahun 2003, pasal 25 ayat 2 dan pasal 70)

Malang, 27 Januari 2017

Mahasiswa,

Fathi Robbany NIM. 125060200111033

JUDUL SKRIPSI :

Simulasi FSW Menggunakan Model *Moving Heat Source* dengan Sumber Panas *Surface Heat Flux*

Nama Mahasiswa	: Fathi Robbany
NIM	: 125060200111033
Program Studi	: Teknik Mesin
Minat	: Teknik Konstruksi
5	

KOMISI PEMBIMBING :

Pembimbing 1	: Ir. Djarot B. Darmadi, MT., Ph.D
Pembimbing 2	: Prof.Dr.Ir. Rudy Soenoko, M.Eng.Sc

TIM DOSEN PENGUJI :

Dosen Penguji 1	: Ir. Endi Sutikno, MT.
Dosen Penguji 2	: Agung Sugeng Widodo, ST., MT., Ph.D.
Dosen Penguji 3	: Ir. Suharto, MT.

Tanggal Ujian	: 16 Januari 2017
SK Penguji	: 57/UN10.6.62/AK/2017

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Kuasa atas segala limpahan Rahmat, Inayah, Taufik dan Hidayahnya sehingga saya dapat menyelesaikan penyusunan skripsi dengan judul **"Simulasi FSW Menggunakan Model** *Moving Heat Source* **Dengan Sumber Panas Surface Heat Flux" dalam bentuk maupun isinya yang sederhana, tak lupa pula kami kirimkan shalawat serta salam kepada junjungan Nabi Besar Muhammad SAW beserta keluarganya, sahabatnya dan seluruh umatnya. Semoga skripsi ini dapat dipergunakan sebagai salah satu acuan, petunjuk maupun pedoman bagi pembaca dalam memahami cara-cara untuk memodelkan** *heat source moving* **atau lebih tepatnya proses** *friction stir welding* **pada ANSYS.**

Penulis menyadari bahwa skripsi ini dapat terselesaikan berkat bantuan, serta bimbingan dari berbagai pihak. Oleh karena itu sebagai penulis saya ingin mengucapkan terimakasih kepada :

- Keluarga dari penulis, Bapak Husein Aziz, Ibu Masruroh, Mas Haris, dan Mas Fahmi.
- Keluarga dari penulis, Bapak Husein Aziz, Ibu Masruroh, Mas Haris, dan Mas Fahmi.
- 3. Keluarga dari penulis, Bapak Husein Aziz, Ibu Masruroh, Mas Haris, dan Mas Fahmi.
- 4. Dosen Pembimbing I dan II penulis, Ir. Djarot B. Darmadi, MT., Ph.D selaku Pembimbing I dan Prof. Dr. Ir. Rudy Soenoko, M.Eng.Sc. selaku Pembimbing II.
- Bapak Dr.Eng. Nurkholis Hamidi, ST., M.Eng., selaku Ketua Jurusan Teknik Mesin, Fakultas Teknik Universitas Brawijaya
- Bapak Purnami ST., MT., selaku Sekretaris Jurusan Teknik Mesin, Fakultas Teknik Universitas Brawijaya.
- Ibu Dr.Eng. Widya Wijayanti, ST., MT. selaku Ketua Program Studi S1 Teknik Mesin, Fakultas Teknik Universitas Brawijaya.
- 8. Bapak Ir. Agustinus Ariseno., MT. Selaku Dosen Penasehat Akademik.
- 9. Bapak Dr.Eng. Moch. Agus Choiron, ST., MT. Selaku Ketua Lab Studio Perancangan dan Rekayasa Sistem (SPRS) Fakultas Teknik Universitas Brawijaya.
- 10. Seluruh Dosen Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya.

- 11. Seluruh pegawai dan karyawan Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya.
- 12. Pak Widia Setiawan, ST., MT
- 13. Rekan, sekaligus partner skripsi penulis, Daru Kurnia Jati.
- 14. Serta teman-teman dari penulis baik teman-teman dari angkatan 2012 (ADM12L) sampai dengan teman-teman kos yang tidak mungkin disebutkan satu persatu.

Semoga Allah SWT membalas segala amal kebaikan dari pihak-pihak yang membantu penulis dalam menyusun skripsi.

Harapan saya semoga skripsi ini membantu menambah pengetahuan dan pengalaman bagi para pembaca, sehingga saya dapat memperbaiki bentuk maupun isi skripsi ini sehingga kedepannya dapat lebih baik. Skripsi ini saya akui masih banyak kekurangan karena pengalaman yang saya miliki sangat kurang. Oleh kerena itu saya harapkan kepada para pembaca untuk memberikan masukan-masukan yang bersifat membangun untuk kesempurnaan skripsi ini.

Malang, 27 Januari 2017.

Penulis.

DAFTAR ISI

KATA PENGANTAR	v
DAFTAR ISI	vii
DAFTAR TABEL	ix
DAFTAR GAMBAR	X
DAFTAR SIMBOL	xiii
RINGKASAN	xiv
SUMMARY	xv
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	
1.3 Batasan Masalah	4
1.4 Tujuan Penulisan	
1.5 Manfaat Penulisan	
BAB II TINJAUAN PUSTAKA	
2.1 Studi Terdahulu	
2.2 Definisi Pengelasan	6
2.3 Friction Stir Welding	6
2.3.1 Pengertian FSW	6
2.3.2 Kelebihan dan Kekurangan FSW	8
2.3.3 Heat Generation	8
2.3.4 Contact Condition	11
2.3.5 Contact Conductance	12
2.3.6 Properti Termal dari Material	14
2.4 Numerical Analysis	14
2.4.1 ANSYS	14
2.4.2 Transient Termal Analysis	
2.4.3 Termal Finite Element Method	
2.4.4 Tipe Elemen	

2.4.5 Solid70
2.4.6 Surf152
2.4.7 Targe170
2.4.8 Conta17320
2.4.9 Bentuk Heat Source
2.4.10 Mesh Size and Time Step Relationship20
2.4.11 Simulasi Data Eksperimental Chao, Qi dan Tang21
2.5 Hipotesis
BAB III METODE PENELITIAN
3.1 Kondisi Eksperimental
3.2 Variable Penelitian
3.3 Pemodelan Termal
3.4 Flowchart Penelitian
3.4.1 Flowchart Keseluruhan
3.4.2 Flowchart Heat Input Pada Shoulder
3.4.3 Flowchart Heat Input Pada Pin
3.5 Cara Validasi Model
RAD IN HASH DAN DEMOLAHASAN
AAB IV HASIL DAN PENIBAHASAN 41 4.1 Derbon dingon Data Elemeniman dangan Data Simulasi 41
4.1 1 <i>Channel</i> 7 Sommei <i>Channel</i> 16
4.1.1 Channel 7 Sampai Channel 16
4.1.2 Channel 17 Sampar Channel 2040
4.1.5 Error Fada Model
4.2 Frediksi Profil Bonding dan Bonding Temperatur
4.5 Fredriksi From Bonding dan Bonding Temperatur
4.4 Quasi steady state I arametric study
BAB V PENUTUP
5.1 Kesimpulan
5.2 Saran
DAFTAR PUSTAKA LAMPIRAN

Tabel 1.1 Properti Al 2219 dan AlLi 2195	1
Tabel 2.1 Heat Input	22
Tabel 2.2 Variabel Input-an Chao	23
Tabel 3.1 Variabel Penelitian	28
Tabel 3.2 Material Properti Alumunium 6061	29
Tabel 4.1 Error Pada Setiap Channel	50

DAFTAR GAMBAR

Gambar 1.1 Fenomena yang terjadi pada pengelasan	2
Gambar 2.1 Skema Friction Stir Welding	7
Gambar 2.2 Proses Pada FSW: (a) Plunge; (b) Dwell; (c) Weld; (d) Dwell; (e)	
Pulling Out; (f) End of Prccess	7
Gambar 2.3 Shear Layer Surrounding the Tool	9
Gambar 2.4 Surface orientations and infinitesimal segment areas: (a) Horizonta	l; (b)
Vertical; (c) Conical/tilted	10
Gambar 2.5 Heat Generation Contribution from Shoulder, Probe Side and Prob	e Tip.10
Gambar 2.6 Konduksi Panas Pada Dua Material	13
Gambar 2.7 Heat Flow Pada Satu Dimensi	16
Gambar 2.8 Solid70	18
Gambar 2.9 Surf152	19
Gambar 2.10 Solid70 and Surf152 Coupling	19
Gambar 2.11 Bentuk Heat Source	20
Gambar 2.12 Dimensi Plat dan Koordinat dari Thermocouple	22
Gambar 2.13 Konduktifitas Thermal dan Specific Heat dari AA2195	23
Gambar 2.14 Boundary Condition Chao, Qi dan Tang	24
Gambar 2.15 Meshing ada Model Chao, Qi dan Tang	24
Gambar 2.16 Hasil pada <i>Top Layer</i>	25
Gambar 2.17 Hasil pada <i>Middle Layer</i>	25
Gambar 2.18 Hasil pada Bottom Layer	26
Gambar 3.1 Dimensi Benda Kerja dan Penempatan Thermocouple	27
Gambar 3.2 Penempatan Backing Plate	27
Gambar 3.3 Gambaran Penyeleksian Heat Input pada Shoulder	29
Gambar 3.4 Heat Input Model	30
Gambar 3.5 Heat Source Moving	30
Gambar 3.6 Boundary Condition Model	
Gambar 3.7 <i>Meshing</i> pada Model	32
Gambar 3.8 Flowchart Penelitian	33
Gambar 3.9 Flowchart Heat Input pada Shoulder	34

Gambar 3.10 Flowchart Heat Input pada Pin	36
Gambar 3.11 Perhitungan Error I	38
Gambar 3.12 Perhitungan Error II	39
Grafik 4.1 Channel 7	41
Grafik 4.2 Channel 8	42
Grafik 4.3 Channel 9	42
Grafik 4.4 Channel 10	42
Grafik 4.5 Channel 11	43
Grafik 4.6 Channel 12	43
Grafik 4.7 Channel 14	43
Grafik 4.8 Channel 15	44
Gambar 4.9 Heat Flux Error	44
Grafik 4.10 Channel 16	45
Grafik 4.11 Channel 13	
Grafik 4.12 Channel 17	46
Grafk 4.13 Channel 18	46
Grafk 4.14 Channel 19	47
Grafk 4.15 Channel 20	47
Grafk 4.16 Channel 21	47
Grafk 4.17 Channel 22	48
Grafk 4.18 Channel 23	48
Grafk 4.19 Channel 24	48
Grafk 4.20 Channel 26	49
Grafik 4.21 Channel 25	49
Gambar 4.22 Error pada Setiap Channel	51
Gambar 4.23 Profil Temperatur Awal	52
Gambar 4.24 Profil Temperatur Tengah	52
Gambar 4.25 Profil Temperatur Akhir	52
Gambar 4.26 Profil Bonding Jika Bonding Temperatur 260 °C	53
Gambar 4.27 Profil Bonding Jika Bonding Temperatur 270 °C	53
Gambar 4.28 Profil Bonding Jika Bonding Temperatur 280 °C	53
Gambar 4.29 Profil Bonding Jika Bonding Temperatur 290 °C	53

Gambar 4.30 Profil Bonding Jika Bonding Temperatur 300 °C	54
Gambar 4.31 Profil Bonding Jika Bonding Temperatur 315 °C	54
Gambar 4.32 Kecepatan Normal	55
Gambar 4.33 5 Kali Kecepatan Normal	56
Gambar 4.34 10 Kali Kecepatan Normal	57
Gambar 4.35 15 Kali Kecepatan Normal	58
Gambar 4.36 20 Kali Kecepatan Normal	59
Gambar 4.37 20 Kali Kecepatan Normal dengan Gaya 4 Kali	60
Gambar 4.38 25 Kali Kecepatan Normal dengan Gaya 4 Kali	60
GITAS BRAN	

DAFTAR SIMBOL

Besaran dasar	Satuan dan Singkatannya	Simbol
Contact condition	VALUE	δ
Densitas	Kg/m ³	ρ
Emisifitas		σ
Gaya ke bawah	Newton	Fz
hbottom	W/m ² .°C	βb
Kecepatan pengelasan	Smm/sAS BRAN	v
Kecepatan putar	RPM	N
Kecepatan sudut	rad/s	ω
Koefisien gesek		μ
Koefisien konfeksi	W/m ² .°C	h
Konduktifits Termal	W/m.C	К
Konstanta Stefan-Boltzmann	W/m ² .C ⁴	Е
Lebar plat		L
Local heat input	W/m ²	q
Pin radius		ri
Pressure	Pa	Р
Shoulder radius		ro
Specific heat	J/Kg.C	с
Tebal plat	mm	Н
Temperatur ruangan	°C S G	То
Tinggi <i>pin</i>	mm	ri
Waktu	S	t

RINGKASAN

Fathi Robbany, Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya, Januari 2017, Simulasi FSW Menggunakan Model *Moving Heat Source* Dengan Sumber Panas *Surface Heat Flux,* Dosen Pembimbing : Djarot B. Darmadi dan Rudy Soenoko.

Alumunium merupakan material dengan kekuatan spesifik yang tinggi namun pada beberapa jenis alumunium seperti alumunium 2XXX dan 7XXX yang diklarifikasikan sebagai *non-weldable*, sangat sulit jika dilakukan penyambungan menggunakan *fusion welding*. Pada tahun 1991 *friction stir welding* (FSW) ditemukan oleh The Welding Institute (TWI), FSW merupakan solusi yang tepat untuk pengelasan alumunium karena hasil las-an FSW memiliki kekuatan yang lebih dibanding dengan *fusion welding*. Prinsip kerja dari pengelasan FSW adalah menggesekkan antara permukaan *tool* dengan permukaan benda kerja sehingga akan menimbulkan panas dan juga akan menyebabkan terdeformasinya material "*stirred*"

Penelitan dilakukan dengan metode simulasi hal ini dilakukan untuk menghindari biaya dari percobaan eksperimental, material yang digunakan adalah alumunium 6061 dan sumber panas berupa heat flux yang berjalan sesuai dengan kecepatan *tool* saat penelitian eksperimental. Untuk memastikan kebenaran dari model maka dilakukan validasi terhadap hasil data eksperimen.

Hasil dari model memiliki *error* I (perbandingan luasan) rata-rata sebesar 4.12% dan untuk *error* II (perbandingan tiap titik) rata-rata sebesar 12.64%. Penulis beranggapan bahwa model sudah baik karena memiliki luasan yang hampir sama dengan data eksperimen hanya profil dari grafik yang sedikit berbeda. Setelah model telah di-validasi maka dapat dilakukan prediksi dari profil temperatur, temperatur tertinggi berada pada akhir proses pengelasan yaitu sebesar 486.843 °C sekitar 80-90% dari suhu melting alumunium 6061.

Kata Kunci : *Friction stir welding*, validasi, profil temperatur, *moving heat source*, *heat flux*.

SUMMARY

Fathi Robbany, Mechanical Engineering Department, Faculty of Engineering, University of Brawijaya, in January 2017, Simulation of FSW Using Moving Heat Source Model With Surface Heat Flux. Supervisor : Djarot B. Darmadi and Rudy Soenoko.

Aluminium is material with high specific strength, but some types of aluminium such as 2XXX and 7XXX are classified as non-weldable, its very difficult if using fusion welding. In 1991 friction stir welding (FSW) was invented at The Welding Institute (TWI), FSW is the best solution for joining aluminium because welds have more strength than welding with fusion welding. The principle of FSW is heating of workpiece by friction between non-consumable tool and the workpiece, it will softens the material and it will be stirred by the pin.

Simulation method was chosen because it will avoided the cost of the experiment trials, the material used is aluminium 6061 and a heat flux are moving in accordance with the speed of experiment research tool. Simulation results will be validated against experiment results to ensure the correctness of the model.

The results of the model has an error I (area compared) which has an average by 4.12% and for error II (each point compared) which has average of 12.64%. The autors assume that the model is good because the results has the same area with experiment result just the profil of the model is slightly different. Once the model has been validated, we can predict the temperature profile, the highest temperature is at the end of the welding process which it value is 486.843 °C, its about 80-90% from the melting temperature of aluminium 6061.

Keywords : *Friction stir welding, validation, profile temperature, moving heat source, heat flux.*

BAB I PENDAHULUAN

1.1 Latar Belakang

Keberhasilan suatu rancangan konstruksi yang kuat dan ringan tidak terlepas dari kombinasi antara pemilihan material, desain, dan proses manufakturnya. Ketika material yang dipilih adalah alumunium, penyambungan adalah tantangan yang besar. Terutama alumunium 2XXX dan 7XXX yang diklarifikasikan sebagai *non-weldable*.(Mishra dan Ma, 2005:1)

Pada tahun 1993, NASA menantang Lockheed Martin Laboratories di Baltimore untuk menemukan material dengan kekuatan yang tinggi dan memiliki densitas yang rendah, lebih ringan dari material sebelumnya yaitu alumunium *alloy* Al-2219, yang digunakan untuk *space shuttle external tank*. Lockheed Martin, Reynolds Aluminium and the labs at Marshall Space Flight Center in Huntsville, telah menemukan paduan alumunium *lithium*, Al-Li-2195, yang mana dapat mengurangi berat dari *External Tank* sebesar 3402 kg. *Lithium* pada material baru tersebut menyebabkan alumunium lebih sulit di-las dan membutuhkan perbaikan las yang menyebabkan sambungan las memiliki kekuatan yang rendah. Manager dari proyek *External Tank* memutuskan menggunakan *friction stir welding* (FSW) karena hasil las-an dengan FSW lebih kuat dari *fusion arc welding* yang digunakan sebelumnya. (Amini A, 2014:684) Perbedaan dari material Al 2219 dengan Al 2195 dapat dilihat pada Tabel 1.1.

Alloy	Al 2219	AlLi 2195
Density (kg/m ³)	2840	2685
Specific Yield Strength at 20 K (m ² /s ²)	170240	226680
Specific Yield Strength at 80 K (m ² /s ²)	163000	219690
Specific Yield Strength at 25 C (m^2/s^2)	136700	194270
Yield Strength at 20 K (MPa)	483.5	608.6
Yield Strength at 80 K (MPa)	462.9	589.9
Yield Strength at 25 C (MPa)	388.2	521.6

Tabel 1.1 Properti Al 2219 dan AlLi 2195

Sumber : Pietrobon (2009:4)

Friction stir welding (FSW) ditemukan pada tahun 1991 di The Welding Institute (TWI). Proses pengelasan pada FSW bekerja di bawah suhu *melting* dari material benda kerja yaitu sekitar 80%-90% dari titik *melting*-nya. (Chao, Qi dan Tang, 2003:138) mereka juga berpendapat bahwa suksesnya proses FSW pada AA2195 akan menambah pengaplikasian material AA2195 ke berbagai komponen struktur terutama pada industri *aerospace* karena material AA2195 memiliki massa yang ringan dan kekuatan yang tinggi.

Pada proses *friction stir welding* (FSW), panas dihasilkan dari gesekan antara *tool* dan benda kerja. Benda kerja akan menerima 95% dari panas total sedangkan *tool* akan menerima 5% dari panas total. Panas yang mengalir pada benda kerja akan menentukan kualitas dari las-an, *residual stress* dan distorsi, seperti pada Gambar 1.1. Sedangkan panas yang mengalir pada *tool* akan berpengaruh pada keawetan *tool*. (Chao, Qi dan Tang, 2003:1)

Gambar 1.1 Fenomena yang terjadi pada pengelasan Sumber : Darmadi (2015:12)

Pada Gambar 1.1 dapat dengan jelas di-artikan bahwa pentingnya untuk mengetahui *heat input* pada proses pengelasan, karena secara langsung akan mempengaruhi temperatur benda kerja dan temperatur akan mempengaruhi kekuatan dari las-an ataupun kekuatan dari daerah yang terkena pengaruh dari panas las-an (HAZ). Sehingga dapat disimpulkan bahwa analisis *thermal* merupakan dasar dari fenomena yang terjadi pada proses pengelasan.

Untuk menghindari dari biaya percobaan experimental dan untuk meningkatkan kualitas las-an, dilakukan pemahaman tentang *heat input* secara simulasi. *Heat input* ini sangat penting pada proses las-an karena akan mempengaruhi temperatur, tegangan, dan mikrostruktur dari suatu sambungan las yang akan mempengaruhi kekuatan las tersebut. Simulasi dilakukan dengan menggunakan salah satu *software* yang berbasis FEA (*finite element analysis*) yaitu ANSYS Parametric Design Language (APDL) dan untuk mem-

2

validasi pemodelan *heat input* dilakukan validasi temperature untuk memastikan apakah pemodelan yang dilakukan dapat diterima atau tidak.

Berbagai penelitian tentang simulasi FSW telah dilakukan baik analisa termal, termomekanikal (TM) bahkan termo-mekanikal-metalurgikal (TMM). Chao, Qi dan Tang, 2003 melakukan simulasi *heat source moving* dengan mengabaikan panas dari *pin* untuk mempelajari persebaran panas pada FSW, Chao dan Qi juga meneliti tentang termomekanikal tentang FSW pada tahun 1998 dan 1999. Schmid 2006 dan Guerra 2011 meneliti tentang bagaimana material bergerak di sekitar *pin* ketika proses FSW sedang terjadi.

1.2 Rumusan Masalah

- 1. Bagaimana men-simulasikan proses FSW dengan asumsi-asumsi yang telah dibuat dengan program ANSYS (APDL).
- 2. Bagaimana prediksi profil temperatur saat proses FSW sedang berjalan.

1.3 Batasan Masalah

- 1. *Tool* (baik *shoulder* maupun *pin*) diasumsikan tidak memiliki sudut ataupun ulir.(berbentuk silinder)
- 2. Material dari benda kerja diasumsikan isotropic.
- 3. Heat input diasumsikan simetris.

1.4 Tujuan Penulisan

- 1. Agar dapat men-simulasikan proses FSW dengan asumsi-asumsi yang telah dibuat dengan program ANSYS (APDL).
- 2. Agar dapat memprediksi profil temperatur pada benda kerja.

1.5 Manfaat Penulisan

- 1 Dapat mem-validasi (temperatur) pada FSW
- 2 Dapat memprediksi profil temperature pada benda kerja.
- 3 Dapat memodelkan fenomena-fenomena yang terjadi pada proses FSW dengan asumsiasumsi yang telah dibuat.

BAB II TINJAUAN PUSTAKA

2.1 Studi Terdahulu

Chao, Qi dan Tang (2003) di dalam jurnalnya merumuskan *boundary condition* baik pada *tool* maupun benda kerja untuk mempelajari *heat transfer* pada proses *friction stir welding*. Dalam jurnalnya mereka mensimulasikan proses FSW dengan *moving heat source*, mereka menggunakan 9 thermocouple yang akan divalidasikan dengan simulasi FEA (*finite element analysis*) menggunakan *software* ABAQUS. Untuk *heat generation*-nya sendiri mereka hanya menggunakan *heat flux* dari *shoulder* karena mengasumsikan panas hanya berasal dari gesekan antara *shoulder* dengan permukaan benda kerja. Perumusan persebaran *local heat* terhadap jarak juga dipaparkan dalam jurnalnya, seperti pada Persamaan (2-1) berikut:

$$q(r) = \frac{3Qr}{2\pi(r_o^3 - r_i^3)}$$
; for $r_i \le r \le r_o$ (2-1)

dengan :

Q = *Heat Generation* Total

r_o = Jari-jari *Shoulder*

 $r_i = Jari-jari Pin$

Colegrove (2003) menyajikan *finite element* berdasarkan dari model termal *friction stir welding*. Model FSW Colegrove lebih mendekati kondisi asli karena terdapat *backing plate* dan *tool*. *Heat input* pada pemodelanya dicocokan sedemikian rupa sehingga hasil dari simulasi mendekati hasil dari pengujian experimental.

Song dan Kovacevic (2003) menggunakan *moving coordinate* untuk mensimulasikan baik *tool* dan benda kerja ketika proses penetrasi dan pengangkatan pada FSW, pemodelan ini memungkinkan untuk mendapatkan distribusi temperatur di sekitar *pin. Moving coordinate* juga memudahkan pemodelan sehingga *heat source moving* tidak diperlukan lagi.

Soundarajan dan Kovacevic (2005) membuat pemodelan *termomechanical* dengan *mechanical tool loading* yang mempunyai *contact conductance* seragam yang digunakan untuk memprediksi *stress* pada benda kerja dan *backing plate*. Sedangkan *contact conductance* yang

6

tidak seragam dari distribusi tekanan digunakan untuk memprediksi temperatur pada model termal. Lalu *thermomechanical* model digunakan untuk memprediksi *stress*.

Chen dan Kovacevic (2004) dalam jurnalnya mengemukakan 3-D model *finite* element analysis untuk mempelajari histori termal dan proses thermomechanical pada butt welding untuk alumunium alloy 6061-T6. Model menggabungkan reaksi mekanik dari tool dan proses thermomechanical dari material yng di las. Gesekan antara material benda kerja, pin, dan shoulder adalah sumber dari heat input pemodelan. Untuk mengukur residual stress pada benda kerja digunakan X-ray, sehingga dapat dilakukan validasi pemodelan.

Feng, Wang, David dan Sklad (2007) telah menyajikan pemodelan *thermalmechanical-metallurgical* (TMM) untuk mempelajari perubahan *microstructure* dan efeknya pada distribusi *residual stress* pada *friction stir welding* dengan menggunakan material Al6061-T6. Dalam jurnalnya dikatakan *welding speed* berpengaruh besar terhadap *residual stress*.

2.2 Definisi Pengelasan

Pengelasan adalah proses untuk menggabungkan dua material lewat penggabungan lokal dari kombinasi yang tepat antara temperatur, tekanan dan kondisi metalurgi. Dari temperatur dan tekanan, mulai dari pengelasan dengan temperatur tinggi tanpa tekanan sampai tekanan tinggi dengan temperatur yang rendah.(*Welding Science and Technology, Introduction to Welding Technology*:1)

2.3 Friction Stir Welding

2.3.1 Pengertian FSW

Friction stir welding (FSW) adalah proses pengelasan *solid-state* yang ditemukan dan dipatenkan pada tahun 1991 oleh *The Welding Institute* (TWI) of United Kingdom. Prinsip kerja pada proses FSW adalah menggesek-kan antara plat dengan *non-consumable tool* dengan tekanan tertentu yang akan menghasilkan panas dan zona plastis yang akan di "*stir*" oleh *pin* pada benda kerja. Sekema pada FSW dapat dilihat pada Gambar 2.1.

Gambar 2.1 Skema *Friction Stir Welding* Sumber : Mishra dan Ma (2005:2)

Terdapat beberapa proses dalam FSW, yaitu *plunge, dwell, weld,* dan *pulling out* seperti pada Gambar 2.2. *Plunge* adalah proses ketika *tool* bergerak menusuk benda kerja sampai *shoulder* menyentuh benda kerja(a) lalu diikuti proses *dwell*, pada proses ini *tool* berputar pada tempat yang sama beberapa waktu(b). Hal ini bertujuan untuk memanaskan benda kerja agar *tool* dapat melakukan proses berikutnya yaitu *weld*(c). Setelah proses *weld* diikuti proses *dwell* sekali lagi(d) dan pada proses akhir tool diangkat dari benda kerja atau prosses *pulling out*(e). Pada proses *pulling out* ini *tool* akan meninggalkan lubang pada benda (f).

Gambar 2.2 Proses Pada FSW: (a) *Plunge*; (b) *Dwell*; (c) *Weld*; (d) *Dwell*; (e) *Pulling Out*; (f) *End of Proccess*

Sumber : Durdanovic, Mijajlovic, Milcic dan Stamenkovic (2009:9)

8

2.3.2 Kelebihan dan Kekurangan FSW

FSW memiliki banyak kelebihan terutama karena proses penggabungan-nya secara *solid-state* sehingga cacat las-an yang diakibatkan oleh pendinginan dari *phase liquid* ke *solid* dapat di hindari, seperti porositas, *solute redistribution* dan *solidification cracking*.

FSW memiliki beberapa kelebihan dibandingkan dengan fusion welding seperti:

- lebih efisien.
- ramah lingkungan.
- dapat menggabungkan metal yang sulit untuk di las dengan fusion welding.
- no consumables, dan tidak membutuhkan filler ataupun gas pelindung.
- lebih aman karena tidak ada asap beracun dan tidak adanya percikan dari lelehan material.
- proses machining lebih sedikit.
- properties dari materialnya tidak berubah banyak.
- sambungan las memiliki mekanikal properti yang baik.

Sedangkan untuk kekurangan dari FSW adalah sebagai berikut :

- saat tool diangkat akan meninggalkan lubang.
- material harus dijepit dengan baik agar material tetap pada tempatnya.
- tidak *flexible* dibandingkan dengan las busur.
- kecepatan pengelasan lebih lambat dibandingkan dengan *fusion welding* terutama untuk material yang keras.

2.3.3 Heat Generation

Untuk menentukan *heat input* pada pemodelan diperlukan pemahaman tentang besaran dari *heat generation* dan fenomenanya. Pada proses FSW panas dihasilkan dari gesekan antara *tool* dengan benda kerja dan deformasi plastis dari material benda kerja yang berada dekat dengan *tool*. Sehingga pada proses FSW *heat input* dapat dibagi menjadi dua kondisi, yaitu :

- 1. Frictional dissipation
- 2. Plastic dissipation

Frictional dissipation disebabkan oleh gesekan antara *tool* dengan bagian permukaan benda kerja sedangkan untuk *plastic dissipation* disebabkan oleh deformasi dari material

benda kerja di sekeliling *tool* (Gambar 2.3). Terdapat tiga kondisi ketika proses pengelasan FSW sedang terjadi, yaitu:

- 1. Full Sliding
- 2. Full Sticking
- 3. Sliding and Sticking

Gambar 2.3 *Shear Layer Surrounding the Tool* Sumber : Schmidt (2010:287)

(

(

Ketiga kondisi tersebut diklarifikasikan berdasarkan pergerakan realtif dari *tool* terhadap benda kerja. Dikatakan *full sliding* ketika *tool* berputar dan material yang ada di sekitar *tool* tidak terdeformasi atau biasa disebut *sticking rate* = 0. Untuk *full sticking* material yang berada di sekitar *tool* terdeformasi dengan kecepatan putar sama dengan *tool* atau biasa disebut *sticking rate* = 1. Sedangkan untuk *Sliding and sticking*, material yang berada di sekitar *tool* terdeformasi namun kecepatan putarnya tidak sama dengan *tool*, *sticking rate* lebih besar dari nol dan kurang dari 1. Untuk *sticking rate* sendiri akan dijelaskan pada sub bab *contact condition*.

Menurut Schmidt (2004) total *heat generation* (Q) dapat diperoleh dari pengintegralan dari *local heat generation*(q) pada permukaan *tool. Local heat generation* sendiri dapat di hitung dengan persamaan :

$$q = \tau \omega_r \tag{2-2}$$

$$dengan:$$

$$c_{contact} = \mu P$$

$\omega_r = Kecepatan linier$

Gambar 2.4 Orientasi Permukaan dan *infinitesimal segment areas:* (a) Horizontal; (b) Vertikal; (c) Conical/tilted Sumber : Schmidt, Hattel dan Wert (2004:150)

Dengan mengintegrasikan *local heat generation* pada koordinat polar seperti pada Persamaan (2-2) pada *shoulder*, *pin side*, dan *pin tip* (Gambar2.4) maka akan didapatkan persamaan kontribusi dari *shoulder*, *pin side* dan *pin tip*. Seperti pada Gambar 2.5.

Gambar 2.5 *Heat Generation Contribution from Shoulder, Probe Side and Probe Tip* Sumber :Schmidt (2010:279)

Heat generation dari *shoulder* didapatkan dari peng-integral-an secara melingkar dan melintang dari tekanan (gaya yang diberikan *tool* dibagi dengan luas penampang *tool*) dikali

dengan koefisien gesek, lalu dikalikan dengan kecepatan sudut dan jari-jari tool lalu dikalikan dengan luasan pada sembarang koordinat ($d\theta dr$). Seperti pada Persamaan (2-4):

$$Q_{shoulder} = \int_{R_{pin}}^{R_{shoulder}} \int_{0}^{2\pi} \tau_{contact} \,\omega \,r \,r \,d\theta \,dr$$

$$= \int_{R_{pin}}^{R_{shoulder}} 2\pi \,\tau_{contact} \,\omega \,r^2 \,dr$$

$$= \frac{2}{3}\pi \,\omega \,\tau_{contact} (R_{shoulder}^3 - R_{pin}^3)$$
(2-4)

Heat generation dari pin side/probe side:

$$Q_{probe \ side} = \int_{0}^{H_{pin}} \int_{0}^{2\pi} \tau_{contact} \ \omega \ r \ r \ d\theta \ dz$$

$$= \int_{0}^{H_{pin}} 2\pi \ \tau_{contact} \ \omega \ r^{2} \ dz$$

$$= 2 \ \pi \ \omega \ \tau_{contact} \ R_{pin}^{2} \ H_{pin}$$
(2-5)

Dengan mengasumsikan *pin* berbentuk silinder sehingga tidak ada sudut ataupun ulir. Didapatkan heat generation dari *pin tip*:

$$Q_{pin tip} = \int_{0}^{R_{pin}} \int_{0}^{2\pi} \tau_{contact} \,\omega \,r \,r \,d\theta \,dr$$

= $\int_{0}^{R_{pin}} 2\pi \,\tau_{contact} \,\omega \,r^{2} \,dr$
= $\frac{2}{3}\pi \,\omega \,\tau_{contact} \,R_{pin}^{3}$ (2-6)

Total *heat generation* didapat dari pertambahan *heat generation* dari *shoulder*, *pin side* dan *pin tip*. Sehingga dapat dituliskan seperti Persamaan (2-7).

$$Q_{total} = Q_{shoulder} + Q_{pin side} + Q_{pin tip}$$
(2-7)

2.3.4 Contact Condition

Sticking rate selain digunakan untuk mengetahui kecepatan relatif antara material benda kerja yang terdeformsi atau ter-stir oleh pin dengan kecepatan tool, juga digunakan untuk mengetahui prosentase heat generation dari gesekan antara tool dengan benda kerja (frictional dissipation) atau heat generation dari deformasi plastis material di sekitar tool (plastic dissipation). Sticking rate dapat didefinisikan sebagai:

$$\delta = \frac{v_{shear \, layer}}{v_{tool}} = \frac{v_{shear \, layer}}{\omega r}$$
(2-8)

 $\delta = 0$ full sliding, $\delta = 1$ full sticking, keadaan sliding dan sticking terjadi jika $0 < \delta < 1$

repository.ub.ac.i

12

Untuk mengetahui besarnya total *heat input* yang akan dimasukkan dalam pembebanan pada model, total *heat generation* dari *frictional dissipation* dapat dihitung dengan Persamaan (2-13)

$$\tau_{\rm friction} = \mu P \tag{2-9}$$

dengan:

Atool

P = Normal Pressure

 μ = Koefisien Gesek

Dengan memasukkan Persamaan (2-9) ke dalam Persamaan (2-3) maka akan didapatkan Persamaan (2-10).

$$Q = \frac{2}{3}\pi\omega R_{shoulder}^{3}\mu p$$
(2-10)
$$p = \frac{F_{z}}{F_{z}}$$
(2-11)

$$A_{tool} = \pi R_{shoulder}^2 \tag{2-12}$$

Dengan mensubtitusikan Persamaan (2-11) dan Persamaan (2-12) ke dalam Persamaan (2-10) maka akan didapatkan :

$$Q = \frac{2}{3}\omega R_{shoulder}\mu F_z \tag{2-13}$$

2.3.5 Contact Conductance

Contact conductance (h_c) adalah konduksi yang terjadi pada dua luasan permukaan yang bersentuhan. *Gap conductance* (hg) adalah konduksi yang terjadi pada daerah yang berisi fluida (biasanya udara) antara dua material yang bersentuhan. *Gap conductance* diasumsikan mengalami konduksi bukan konfeksi karena jaraknya yang sangat kecil. *Radiative conductance* (h_r) adalah radiasi termal antara dua material yang bersentuhan. Ketiganya bekerja bersamaan sehingga dapat dirumuskan menjadi :

$$\mathbf{h}_{j} = \mathbf{h}_{c} + \mathbf{h}_{g} + \mathbf{h}r \tag{2-14}$$

Total dari termal contact conductance dirumuskan sebagai berikut:

$$C_c = \frac{Q}{\Delta T} \tag{2-15}$$

Gambar 2.6 Konduksi Panas Pada Dua Material Sumber : Mantelli dan Yovanovich (2002:600)

Terdapat beberapa faktor yang mempengaruhi *contact conductance* baik dari properti materialnya maupun dari variabel eksternal dari kedua material yang bersentuhan. Berikut faktor-faktor yang mempengaruhi:

- 1. Profil geometri permukaan kedua benda
- 2. Tekanan (P)
- 3. Ketebalan gap
- 4. Konduktifitas termal dari kedua material
- 5. Kekerasan permukaan
- 6. Modulus elastisitas
- 7. Temperatur
- 8. Interstitial material

2.3.6 Properti Termal dari Material

1. Konduktifitas termal

Konduktifitas termal adalah properti dari suatu material yang menggambarkan tentang perpindahan energi termal. Jika panas hanya mengalir pada sumbu x, konduktifitas termal dapat dirumuskan menjadi: $k_x = \frac{q_x}{\partial_T/\partial_x}$. Pada material yang isotropis, konduktifitas termal pada arah sumbu x,y dan z memiliki besaran yang sama, kx = ky = kz = k. Pada kenyataanya konduktifitas termal suatu material dipengaruhi oleh suhu pada material tersebut.

2. Specific heat

Specific heat adalah energi yang dibutuhkan untuk merubah satu derajat temperatur setiap satuan masa dari material. Semakin tinggi *spesific heat* suatu material akan semakin sulit untuk menaikkan suhu material tersebut.

3. Koefisien konveksi

Koefisien konveksi adalah suatu properti material yang mendeskripsikan tentang kondisi antara permukaan suatu benda dengan fluida yang ada di sekitarnya. Semakin tinggi koefisien konveksi maka panas yang dialirkan dari suhu tinggi ke suhu rendah juga akan semakin banyak.

4. Emisivitas

Emisivitas adalah rasio dari besarnya energi inframerah aktual yang terpancarkan dibandingkan dengan besarnya energi inframerah yang dapat terpancarkan secara teoritis. Semakin tinggi emisivitas maka akan semakin besar energy yang terpancarkan oleh radiasi. Emisivitas memiliki nilai antara 0 sampai dengan 1.

2.4 Numerical Analysis

2.4.1 ANSYS

ANSYS adalah sebuah program komputer yang digunakan untuk *finite element* analysis dan desain. Program ANSYS sangat berguna, dan dapat digunakan untuk mensimulasi berbagai bidang seperti aerospace, automobiles dan power transmission. ANSYS dapat melakukan beberapa hal, seperti:

- Membuat pemodelan atau mengimpor model dari program CAD (*Computer Aided Design*) lain.
- Mengaplikasikan beban pada model atau mengaplikasikan kondisi-kondisi pemodelan.

- Dapat mempelajari respon fisika seperti stress dan distribusi temperatur.

- Dapat mengoptimalkan desain ketika proses pengembangan untuk mengurangi biaya produksi

- Melakukan test prototype ketika tidak bisa dilakukan dengan percobaan seperti aplikasi pada biomedikal.

ANSYS Parametric Design Language atau yang disingkat APDL, adalah scripting *language* yang dapat digunakan untuk mengotomatiskan perintah-perintah yang digunakan baik untuk pemodelan, pengaplikasian beban ataupun melihat hasil simulasi. APDL memiliki banyak fitur yang meliputi pengulangan perintah, macros, *if-then-else branching*, do-loops dan operasi vektor dan matrix. RAD

Transient Thermal Analysis 2.4.2

Analisa termal digunakan untuk menghitung kuantitas termal dan distribusi temperatur pada suatu objek. Program ANSYS dapat menghitung konduksi, konveksi, dan radiasi.

Pada termal analisis temperatur transient (T) dari benda kerja mempunyai fungsi waktu (t) dan bergantung dari koordinatnya (x,y,z). Seperti pada rumus non-linier heat *transfer* berikut:

$$k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right) + Q_{int} = \rho c_p \frac{\partial T}{\partial t}$$
dengan :
$$(2-16)$$

- k = Konduktifitas *Thermal*
- T = Temperatur

Q_{int} = Internal Heat Source

- ρ = Density fo the plate material
- $c_p = Specific heat$

t = Time

Untuk boundary condition dari konveksi dan radiasi perhitungan menggunakan persamaan berikut :

$$q_{c} = hA(T - T_{0})$$
(2-17)

$$q_{rad} = \varepsilon \sigma A(T^{4} - T_{0}^{4})$$
(2-18)
dengan :

$$A = Luasan$$

16

 $q_{c} = Convective heat flux losses$ $q_{rad} = Radiation heat flux losses$ $T_{0} = Atmosphere temperature$ h = Convective heat transfer coefficient $\varepsilon = Stefan-Boltzmann constant$ $\sigma = emissivity$

2.4.3 Thermal Finite Element Method

Jika sebuah plat yang sangat panjang dengan luas penampang yang relatif kecil dibandingkan dengan panjang dari plat tersebut dan pada ujung kiri plat tersebut dikenai *heat flow* seperti pada Gambar 2.7. Sehingga dapat dianggap menjadi analisa satu-dimensi dengan menggunakan persamaan Fourier, *heat flow* pada arah x dapat ditulis sebagai berikut:

$Q = -kA\frac{d\theta}{dx}$	(2-19)
Yang mana :	
A = Luasan	
k = Konduktifitas termal	
θ = Temperatur	
Jika k dianggap konstan maka Persamaan (2-19) menjadi	
$Q = -kA\frac{\Delta\theta}{L}$	(2-20)

Yang mana $\Delta \theta = \theta_2 - \theta_1$ merupakan turunnya temperatur sepanjang L. Seperti pada Gambar 2.7, pada node 1 *heat flow* masuk (bernilai positif), sehingga persamaan pada node 1 menjadi:

(2-21)

Gambar 2.7 *Heat Flow* Pada Satu Dimensi Sumber : Madenci dan Guven (2015:6)

Reaksi pada node 2 adalah $q_2 = -q_1$ atau dapat ditulis sebagai berikut :

$$Q_2 = -kA\frac{\theta_1 - \theta_2}{L} \tag{2-22}$$

Dengan menggabungkan Persamaan (2-21) dengan Persamaan (2-22) akan didapatkan persamaan sebagai berikut:

$$\frac{kA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} = \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} \text{ atau } k^{(e)} \theta^{(e)} = Q^{(e)}$$
(2-23)

Yang mana $\theta^{(e)}$ adalah nilai yang tidak diketahui, dalam kasus ini adalah temperatur sedang untuk $k^{(e)}$ dan $Q^{(e)}$ mewakili matriks karakteristik dari elemen dan beban pada sisi kanan persamaan. RSITAS BRAM

2.4.4 Tipe Elemen

Tiap tipe elemen memiliki kegunaan, jumlah *node*, dan *degree of freedom*(dof) yang berbeda-beda. Tipe elemen dipilih berdasarkan kegunaan dan ke-efisienannya, semakin banyak jumlah node maka akan semakin mendekati keadaan nyata namun dengan resiko waktu komputasi akan semakin lama. Sedangkan degree of freedom dipilih berdasarkan input (boundary condition dan materials properties) dan output (thermal, mechanical, *thermomechanic*, etc)

2.4.5 Solid70

Solid70 adalah salah satu tipe elemen dalam ANSYS, Solid70 memiliki kemampuan konduksi 3-D, setiap elemen-nya memiliki 8 node (i,j,k,l,m,n,o,p) dengan satu degree of freedom pada tiap-tiap node-nya yaitu temperatur. Jika pemodelan juga dibutuhkan untuk menganalisa secara struktural maka solid70 dapat di-couple dengan elemen struktural yang sebanding misal Solid185. Solid70 juga dapat di degenerasi menjadi 5 atau 6 node dengan bentuk piramida atau prisma. Berikut adalah gambaran dari Solid70:

18

Gambar 2.8 Solid70 Sumber: ANSYS 14.5

Pada Gambar 2.8 angka-angka (1-6) menunjukan nomer *face* pada elemen. Nomer *face* pada elemen digunakan untuk memberi *boundary condition* yang bersifat luasan (*area*) dalam kasus ini adalah *heat flux*. Solid70 dapat diberi *input* konveksi atau *heat flux* tapi tidak dapat diberi *input* keduanya. Hal ini dapat ditanggulangi dengan melapisi dengan elemen tipe yang lain.

2.4.6 Surf152

Surface effect elements sangat berguna baik untuk analisa struktural maupun analisa termal, elemen ini memberikan kemudahan untuk mengaplikasikan pembebanan pada pemodelan. *Surface effect elements* tidak mempunyai *physical properties*, elemen ini hanya digunakan untuk pengaplikasian pembebanan. Gambar 2.9 menunjukan elemen Surf152.

Salah satu *surface effect element* adalah Surf152 yang digunakan sebagai layer elemen yang berfungsi seperti kulit, dalam hal ini digunakan untuk melapisi Solid70. Surf152 diaplikasikan pada 3-D *thermal analyses*, Surf152 digunakan untuk memberikan *surface effect* atau pembebanan secara simultan. Berikut gambar dari elemen Surf152 yang di-*couple* bersama Solid70:

Gambar 2.10 Solid70 *and* Surf152 *Coupling* Sumber : Minhoto, Pais dan Pereira (2005:18)

2.4.7 Targe170

20

Jika ada dua benda saling bersentuhan (mengalami kontak), maka dapat dianggap sisi yang satu sebagai "*target*" dan sisi yang lain sebagai "*contact*".

Elemen Targe170 digunakan untuk mewakili permukaan "*target*" pada kasus 3-D. Seperti pada Surf152, Targe170 digunakan untuk melapisi elemen Solid70.

2.4.8 Conta173

Jika elemen Targe170 digunakan untuk mewakili "*target*" maka Conta173 digunakan untuk mewakili permukaan "*contact*" pada kasus 3-D. Elemen ini dapat digunakan baik pada 3-D struktural maupun analisis *coupled-field contact*.

2.4.9 Bentuk Heat Source

Dari sticking rate dapat ditentukan pemodelan bentuk dari heat source yang tepat, apakah point heat source, line heat source, surface heat source, volume heat source atau heat source gabungan. Gambar 2.11 menunjukan macam – macam bentuk heat source yang biasa digunakan.

Point	Line	Stacked	Volume	Surface
•				

Gambar 2.11 Bentuk *Heat Source* Sumber : Hilgert, (2012:14)

Dalam kasus ini penulis mengasumsikan proses yang terjadi hanya *full sliding* karena sulitnya mendapatkan data kapan terjadi *sticking* dan *sliding*, kapan terjadi *full sticking* dan sulitnya mengetahui lebar dari material yang ter-*stir* oleh *pin*.(Malde, 2009:24)

2.4.10 Mesh Size and Time Step Relationship

Temperatur maksimal yang tinggi, perbedaan gradien yang besar dan perubahan temperatur yang cepat akibat dari *heat source* menyebabkan model harus memiliki *meshing* yang halus dan *time step* yang kecil.
Dari Persamaan (2-16), dengan asumsi material yang digunakan bersifat isotropic, yang mempengaruhi temperatur hanya konduktifitas termal, tidak ada internal heat generation, dan heat transfer hanya terjadi pada satu dimensi saja, katakanlah pada sumbu X. Maka akan didapatkan persamaan yang lebih sederhana :

$$\rho c_p \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial X^2} \tag{2-24}$$

Untuk perubahan temperatur yang sama, maka Persamaan (2-24) menjadi :

$$\Delta t = \frac{(\Delta X)^2}{\kappa}$$
(2-25)

$$\kappa = \frac{k}{(\rho C_p)}$$
(2-26)
dengan :

$$\Delta t = time \ step$$

$$\Delta X = \text{kerenggangan antar node}$$

dengan :

 $\Delta t = time \ step$

 $\Delta X =$ kerenggangan antar node

 κ = thermal diffusivity

Dari Persamaan (2-25) maka besarnya mesh dan time step pada pemodelan dapat ditentukan apakah sudah mencukupi atau belum mencukupi.

2.4.11 Simulasi Data Eksperimental Chao, Qi dan Tang

Simulasi ini dilakukan untuk membandingkan model dengan data eksperimen pada jurnal terdahulu. Data eksperimental didapat dari jurnal (Chao,Qi dan Tang 2003), dalam jurnalnya didapatkan jenis material yang digunakan, dimensi plat dan tool, parameter pengelasan, serta penempatan dan jenis dari thermocouple.

Material yang digunakan adalah Alumunium Alloy 2195 (AA2195) yang berbentuk plat dengan dimensi L x W x H = 610mm x 102 mm x 8.1 mm. Sedangkan untuk *tool* terbuat dari material M2 tool steel dengan dimensi 25.4 mm untuk diameter shoulder, dan 10 mm untuk diameter *pin*. Untuk mengukur temperatur pada lokasi-lokasi yang di-inginkan digunakan 9 thermocouple dengan jenis 36 gauge K type thermocouple, thermocouple di letakkan masing-masing pada kedalaman 2mm, 4 mm dan 8.1 mm dan dengan jarak pada center line masing-masing pada 5 mm, 12,7 mm, 25,4 mm. Berikut adalah layout dari ukuran dan bentuk plat maupun tool dan tiap-tiap lokasi dari thermocouple.

Gambar 2.12 Dimensi Plat dan Koordinat dari *Thermocouple* Sumber : Chao, Qi dan Tang (2003:140)

Dalam jurnal Chao, Qi dan Tang (2003) tinggi dari *pin* di asumsikan nol, sehingga *heat source* hanya berasal dari gesekan *shoulder* dengan benda kerja. Untuk mengetahui tinggi dari *pin* dilakukan perhitungan terbalik dari parameter-parameter pengelasan yang tercantum pada jurnalnya.

Pengelasan dilakukan dengan kecepatan putar 240 RPM dan dengan kecepatan pengelasannya adalah 2,36 mm/s untuk *normal weld* dan 3,32 mm/s untuk *cold weld*. Namun penulis hanya akan mem-validasi *normal w*eld karena cara kerja dari *normal weld* dan *cold weld* pada dasarnya sama, hanya saja kecepatannya yang berbeda. Tekanan dan gaya tidak ditemukan dalam jurnalnya, tetapi terdapat *heat input* yang disajikan dalam bentuk tabel seperti Tabel 2.1.

Tabel 2.1	Heat	Input
-----------	------	-------

	Heat input the workpied	Heat input to the welding tool Q_3		
Welding process	Watt or J/sec	J/mm	Watt or J/sec	
Normal weld Cold weld	1740 1860	737 560	86 85	

Sumber : Chao, Qi dan Tang (2003:143)

Dengan menggunakan Persamaan (2-10) didapatkan tekanan (Pa), sama dengan 30456037,12 Pa, dengan asumsi koefisien gesek (μ) sebesar 0,5. Sehingga gaya kebawah (Fz) dapat diketahui dengan membagi tekanan dengan luas penampang *shoulder*. Untuk tinggi dari *pin* sendiri didapatkan dengan memasukkan parameter-parameter pengelasan kedalam Persamaan (2-4), Persamaan (2-5) dan Persamaan (2-6), yang nantinya akan dijumlahkan seperti pada Persamaan (2-7). Hasil perhitungan dari Persamaan (2-7) harus

sama dengan total *heat input* pada pada Tabel 2.1 diatas, sehingga akan di ketahui tinggi dari *pin*.

Dengan mengacu pada jurnal dan dengan menggunakan persamaan-persamaan diatas maka didapatkan variabel – variabel yang di-*input*-kan pada model yang akan disimulasikan, berikut variable-variabel tersebut:

Nama	Besaran	Satuan
Shoulder Radius	12.7	mm
Pin Radius	5TAG DA	mm
Tinggi Pin	1.6	mm
Koefisien Gesek	0.3	•••
Kecepatan Pengelasan	2.36	mm/s
Kecepatan Sudut	25,14285714	rad/s
Total Heat Input	1826	Watt
Temperatur Awal	25	°C
Densitas AA2195	2685	Kg/m ³
hbottom	350	W/m ² .°C
htop,side	30	W/m ² .°C

Tabel 2.2 Variabel Input-an Chao

Untuk specific heat dan konduktivitas termal material AA2195 dapat dilihat pada

Gambar 2.13 Konduktifitas *thermal* dan *Specific Heat* dari AA2195 Sumber : Chao, Qi dan Tang (2003:141)

Setelah didapatkan semua variabel yang dibutuhkan maka, akan dilakukan pemodelan dengan menentukan geometri, *meshing*, dan *boundary condition*, hal ini berdasarkan dari keadaan saat pengujian eksperimental. *Boundary condition* dan *Meshing* model dapat dilihat pada Gambar 2.14 dan Gambar 2.15.

Gambar 2.15 Meshing pada Model Chao, Qi dan Tang

Setelah dilakukan simulasi didapatkan temperatur hasil simulasi masing-masing pada *top*, *middle* dan *bottom* dari benda kerja seperti pada Gambar 2.16, 2.17 dan 2.18.

Gambar 2.16 Hasil pada Top Layer

Gambar 2.17 Hasil pada Middle Layer

Gambar 2.18 Hasil pada Bottom Layer

Dari hasil simulasi di atas dapat disimpulkan bahwa pemodelan memiliki kecenderungan yang sama dan memiliki temperatur yang mendekati dibandingkan dengan hasil eksperimental Chao, Qi dan Tang, (2003), dan dengan rata-rata *error* sebesar 4,4%.

2.5 Hipotesis

Berdasarkan dasar teori dan simulasi yang dilakukan sebelumnya seperti pada subbab 2.4.11 maka hipotesa yang diperoleh bahwa hasil simulasi akan mendekati hasil eksperimen, namun hal ini juga bergantung pada besar kecilnya *mesh*. Sedangkan untuk profil temperatur sendiri, semakin kekanan (searah *weld direction*) maka akan semakin panas hal ini dikarenakan efek pre-*heat* dari proses sebelumnya.

BAB III METODE PENELITIAN

3.1 Kondisi Experimental

Pengelasan dilakukan pada material alumunium 6061, dengan kecepatan pengelasan dan kecepatan putar masing-masing sebesar 15 mm/menit dan 2000 Rpm. Sebanyak 32 *Thermocouple* diletakkan pada benda kerja untuk mengukur temperatur yang dihasilkan pada saat proses pengelasan, ukuran benda kerja serta penempatan *thermocouple* tertera pada Gambar 3.1 berikut . *Thermocouple* yang bernomer genap berada paling dekat dengan sambungan, begitu seterusnya hingga *channel* 32.

Gambar 3.1 Dimensi Benda Kerja dan Penempatan Thermocouple

Backing plate digunakan untuk menahan putaran dan tekanan dari *tool*, juga digunakan sebagai tempat menjepit benda kerja, penempatan *backing plate* dapat dilihat pada Gambar 3.2.

Gambar 3.2 Penempatan Backing Plate

3.2 Variabel Penelitian

Variabel-variabel yang akan dimasukan dalam simulasi adalah parameter-parameter yang didapatkan dari pengujian eksperimental. Variabel penilitian yang digunakan dapat dilihat pada Tabel 3.1

Nama	Besaran	Satuan
Shoulder Radius	10	mm
Pin Radius	2,5	mm
Tinggi Pin		mm
Koefisien Gesek	0.3	
Kecepatan Pengelasan	0.25	mm/s
Kecepatan Sudut	209	rad/s
Gaya ke bawah (Fz)	1200	Newton
Panjang Plat	180	mm
Lebar Plat	60	mm
Tebal Plat	10	mm
Temperatur Awal	33	°C
hbottom	(Best Fit)	W/m ² .°C
h _{overall}	30	W/m ² .°C
Panas ke benda kerja	0.95	

Konveksi fiksi (hbottom) ditentukan dengan melakukan beberapa percobaan angka sehingga hasil simulasi mendekati hasil dari eksperimen, hal ini dilakukan karena sulitnya menentukan kontak konduktansi pada area bawah plat dengan *backing plate*-nya, (Chao, Qi dan Tang : 2003). Sedangkan untuk material properti dari Alumunium 6061 dapat dilihat pada Tabel 3.2.

Tabel 3.2 Material Properti Alumunium 6061

	Temperature (°C)	Thermal conductivity (W/m °C)	Heat capacity (J/kg °C)	Density (kg/m ³)	Young's modulus (GPa)	Yield strength (MPa)	Thermal expansion (µm/ °C)	Poisson's ratio	Melting point (°C)
AISI A2 Steel		23.8	1096	7860	203		10.6	0.23	
Al alloy 6061-T6	0 93.3 204.4 315.6 427.7 571.1	162 177 192 207 223 253	917 978 1028 1078 1133 1230	2703 2685 2657 2630 2602 2574	69.7 66.2 59.2 47.78 31.72 0	277.7 264.6 218.6 66.2 17.9 0	22.4 24.61 26.6 27.6 29.6 34.2	0.23	582652

Sumber : Chen dan Kovacevic, (2004:511)

3.3 Pemodelan Termal

Pemodelan Menggunakan elemen Solid70 dengan 8 *node* yang berbentuk balok dan dilapisi dengan elemen Surf152 untuk pengaplikasian konveksi agar dapat berjalan bersamaan dengan pembebanan *heat flux* pada Solid70. Elemen Targe170 dan Conta174 ditempatkan pada sambungan las, elemen ini digunakan agar dapat melihat kontak status dari sambungan las.

TAS BRA

Heat input untuk *shoulder* diaplikasikan *heat flux* pada elemen yang memiliki *centeroid* (X,Y) lebih kecil atau sama dengan 10 mm dan lebih besar atau sama dengan 5 mm dari koordinat referensi (X,Y). berikut gambaran penyeleksian *heat input*:

Gambar 3.3 Gambaran Penyeleksian *Heat Input* pada *Shoulder* Sumber : Song dan Kovacevic, (2003:76)

Sedangkan untuk *heat input* pada *pin*, diaplikasikan *heat flux* pada elemen yang memiliki *centeroid* (X,Y) = 5 mm. Pada Gambar 3.4 warna merah dan kuning menunjukkan *heat flux* pada *Shoulder* sedangkan warna biru menunjukkan *heat flux* pada *pin* :

Gambar 3.4 Heat Input Model

Heat input baik pada *shoulder* maupun pada *pin* seperti pada Gambar 3.4, akan berpindah dari elemen satu ke elemen lain tergantung dari kecepatan pengelasan. Ilustrasi *heat source moving* dapat dilihat pada Gambar 3.5.

Gambar 3.5 Heat Source Moving

Sumber : Dr.Kareem N. Salloomi, Dr. Laith Abed Sabri, Yahya M. Hamad, Sanaa Numan Mohammed(2013:10)

Gambar 3.6 menunjukkan skema *boundary condition* dari model, untuk *boundary condition* yang berada di bawah plat, konveksi fiksi (β) yang tepat di bawah *tool* memiliki nilai yang paling besar lalu semakin kecil seiring bertambahnya jarak terhadap *tool*. Sedangkan konveksi + radiasi akan disederhanakan menjadi h_{overall} sebesar 30 W/m².°C.

Meshing pada model dilakukan se-efisien mungkin, sehingga hasil simulasi akan mendekati data hasil dari percobaan eksperimen, tetapi waktu yang dibutuhkan untuk menyelesaikan simulasi se-minimal mungkin. Pada daerah yang dekat dengan *heat source*, *mesh* dibuat kecil, lalu *mesh* membesar seiring bertambahnya jarak terhadap *heat source*. Model terdiri dari 5856 elemen Solid70, 720 elemen Surf152, 288 elemen Conta170 dan 288 elemen Targe173 sehingga totalnya adalah 7152 elemen dan 7240 node. Berikut *Meshing* pada model :

Gambar 3.7 Meshing Benda Kerja

3.4 Flowchart Penelitian

Untuk mempermudah penelitian dan memperjelas alur penelitian maka dibuatlah *flowchart* penelitian agar penelitian sesuai dengan yang diinginkan penulis. Penulis akan membagi *flowchart* menjadi dua bagian, bagian pertama adalah *flowchart* keseluruhan, pada bagian ini akan menampilkan diagram alir secara keseluruhan, dan bagian ke-dua adalah flowchart *heat input*, bagian ini adalah sub dari *flowchart* penelitian, tepatnya pada bagian "*Input Load*". Pada bagian ini akan dijelaskan tentang bagaimana memilih elemen yang akan dikenai *heat flux* dan bagaimana *heat source* bergerak dari titik satu ke titik yang lain.

3.4.1 Flowchart Keseluruhan

epository.ub.ac.i

34

3.4.2 Flowchart Heat Input Pada Shoulder

BRAWIJAY

Gambar 3.9 Flowchart Heat Input pada Shoulder

3.4.3 Flowchart Heat Input Pada Pin

Ε

Е

Gambar 3.10 Flowchart Heat Input pada Pin

3.5 Cara Validasi Model

Untuk mengetahui besarnya perbedaan suatu model dengan hasil eksperimental atau untuk mengetahui *error* dari suatu model, maka akan dilakukan dua cara. Cara pertama atau *error* I, perbedaan luasan antara simulasi dengan eksperimen akan dibagi dengan luasan eksperimen dikali dengan 100%. Seperti pada Gambar 3.11.

Gambar 3.11 Perhitungan Error I

Pada *error* II ditentukan dengan cara membandingkan dua titik (eksperimental dan simulasi) yang masing-masing titiknya memiliki koordinat sumbu X yang sama, lalu dari dua titik tersebut akan diketahui nilai koordinat sumbu Y dari masing-masing titik. Perbedaan nilai koordinat sumbu Y pada masing-masing titik ini disebut *residual, residual* akan dibagi dengan nilai koordinat sumbu Y data eksperimen. Sedangkan *error* II didapatkan dari rata-rata pertambahan *residual* per nilai koordinat sumbu Y data eksperimen, seperti yang terlihat pada Gambar 3.12.

BAB IV HASIL DAN PEMBAHASAN

Dari pemodelan yang telah dilakukan, pemodelan membutuhkan waktu sekitar 2 jam pada komputer core i7 3.6 Ghz dengan ram 8 GB. Sedangkan untuk hasil simulasi akan akan dipaparkan pada sub bab 4.1 yaitu perbandingan grafik hasil dari data eksperimen dengan data hasil dari simulasi.

4.1 Perbandingan Data Eksperimen dengan Data Simulasi

Garis merah menunjukkan hasil data dari simulasi sedangkan tanda plus (+) berwarna hitam merupakan hasil dari data eksperimen, hal ini berlaku pada semua grafik perbandingan data eksperimen dengan data simulasi.

4.1.1 Channel 7 Sampai Channel 16

Grafik 4.1 Channel 7

epository.ub.ac.ic

Grafik 4.4 Channel 10

BRAWIJAYA

42

Ĩ

Grafik 4.6 Channel 12

Grafik 4.8 Channel 15

Dapat dilihat pada Grafik 4.1 sampai dengan Grafik 4.8 hasil dari simulasi sudah mendekati dari hasil eksperimen. Dapat dilihat pula bahwa hasil dari simulasi sedikit lebih besar dari pada hasil dari eksperimen, penulis berpendapat bahwa penyebab lebih tingginya hasil simulasi dikarenakan tiga penyebab. Penyebab pertama karena terdapat *heat flux* yang lebih daripada yang seharusnya akibat dari proses *meshing*. Proses *meshing* tidak dapat dihindari di dalam FEM, tetapi dapat di minimalisi dengan memperhalus *meshing*.

Gambar 4.9 Heat Flux Error

Pada Gambar 4.9 dapat dilihat daerah yang diarsir dengan garis biru adalah *heat flux* pada kondisi nyata, sedangkan pengaplikasian *heat flux* pada simulasi dapat dilihat pada gambar 3.4, dan untuk daerah yang berwarna merah adalah *heat flux error* akibat dari kurang kecilnya *meshing* pada model.

Untuk penyebab ke dua, terjadi karena pergantian konveksi fiksi (β) pada daerah benda kerja yang bersentuhan dengan *backing plate* terlalu cepat sehingga tidak mewakili proses *pulling out* pada proses FSW keadaan nyata. Hal ini juga akan berakibat pada bergesernya *peak* temperatur, dapat dilihat pada seluruh grafik (*channel* 7 – *channel* 26) *peak* temperatur bergesar pada detik 810 ke atas, karena pada detik ke 810 konveksi fiksi (β)

langsung diubah secara mendadak, sehingga energi yang yang telah masuk lebih banyak yang terkonduksikan ke dalam benda kerja daripada yang hilang akibat lingkungan.

Sedangkan penyebab ke tiga disebabkan oleh penyederhanaan konveksi+radiasi (h_{overall}) sebesar 30 W/m².°C. Pada suhu rendah penyerderhanaan ini masih mendekati kondisi aktual karena kecilnya pengaruh radiasi pada suhu rendah, hal ini dapat dilihat pada kecenderungan pada awal dan akhir grafik akan tetapi pada suhu tinggi, pengaruh dari radiasi cukup besar sehingga pada suhu *peak* grafik simulasi cenderung lebih tinggi dibandingkan dengan grafik pada pengujian eksperimen.

Grafik 4.10 Channel 16

Terdapat perbadaan pada *channel* 16 (Grafik 4.10), karena data eksperimen lebih tinggi dibandingkan dengan hasil simulasi, hal ini bisa dikarenakan, tidak dimodelkannya proses *dweling*. Proses *dweling* sendiri digunakan untuk *pre-heat* pada benda kerja agar benda kerja melunak sehingga dapat dilakukan proses *welding*.

Grafik 4.11 Channel 13

BRAWIJAYA

Pada *channel* 13 (Grafik 4.11) hasil dari simulasi sedikit lebih rendah dibandingkan dengan hasil eksperimen, bahkan pada *channel* 13 suhu *peak* lebih tinggi dibandingkan dengan *channel* 14 yang berada lebih dekat dengan sumber panas las. Hal ini dapat disebabkan karena *thermocouple* pada *channel* 13 tidak bekerja dengan baik, sehingga data yang diperoleh tidak konsisten.

4.1.2 Channel 17 Sampai Channel 26

Grafik 4.16 Channel 21

BRAWIJAYA

Grafik 4.18 Channel 23

ò

+

Waktu (s)

Grafik 4.20 Channel 26

Pada Grafik 4.12 sampai dengan Grafik 4.20 naiknya grafik pada data eksperimen lebih lama dibandingkan dengan naiknya grafik pada data simulasi. Hal ini dapat disebabkan karena penempatan *thermocouple* tidak sesuai dengan yang di-inginkan, jika dilihat dari grafik eksperimen yang lebih lama naiknya dibandingkan dengan simulasi dan *peak* temperatur pada eksperimen lebih tinggi hal ini dapat dikarenakan penempatan *thermocouple* lebih ke kanan (searah *weld direction*) sehingga suhu *peak*-nya lebih tinggi dan perubahan temperatur awalnya lebih lama dibandingkan dengan data dari simulasi.

Grafik 4.21 Channel 25

Perbedaan kecenderungan terjadi pada *channel* 25, yang mana data dari simulasi lebih tinggi dari data eksperimen, hal ini dapat disebabkan karena pemasangan *thermocouple* yang tidak menempel secara sempurna saat dilakukan penelitian eksperimen.

4.1.3 Error Pada Model

NO	Channel	Error I (%)	Error II (%)
1	Channel 7	2.273571	6.584659
2	Channel 8	0.821616	11.20663
3	Channel 9	4.765122	8.409687
4	Channel 10	1.29336	6.405682
5	Channel 11	3.773588	5.720086
6	Channel 12	1.017515	6.877507
7	Channel 13	1.445913	6.977619
8	Channel 14	6.532099	6.674516
9	Channel 15	8.579738	6.191786
10	Channel 16	3.761155	5.856605
11	Channel 17	0.986798	18.12839
12	Channel 18	6.643866	19.3483
13	Channel 19	1.285181	26.86826
14	Channel 20	13.90635	17.0301
15	Channel 21	2.746092	16.69572
16	Channel 22	3.688728	17.01495
17	Channel 23	0.647336	17.70811
18	Channel 24	1.40155	14.72004
19	Channel 25	14.20634	14.73116
20	Channel 26	2.70961	19.8091
Σ	Rata-rata	4.124277	12.64794

Tabel 4.1 Error Pada Setiap Channel

Pada Tabel 4.1 dapat dilihat *error* dari tiap-tiap *channel, error* I adalah jika luasan di bawah grafik simulasi dibandingkan dengan luasan di bawah grafik eksperimen sedangkan *error* II adalah Jika grafik dari simulasi dibandingkan tiap-tiap titik dengan grafik data eksperimen. Error juga dapat dilihat pada Gambar 4.22.

OD

Gambar 4.22 Error pada Setiap Channel

Nilai pada *error* I sangat baik karena mempunyai *error* yang bernilai kecil, yang artinya luasan dibawah kurva simulasi mempunyai *error* rata-rata 4.124%, bila dibandingkan dengan luasan dibawah kurva dari eksperimen. *Error* terkecil terdapat pada *channel* 8 sebesar 0.8216%, sedangkan *error* terbesar terdapat pada *channel* 25 yaitu sebesar 14.2%.

Namun jika data simulasi dibandingkan per-titik (*error* II), *error* mempunyai nilai yang besar, dengan rata-rata *error* sebesar 12,64%. *Error* terkecil terdapat pada *channel* 11 dengan nilai 5.72%, dan yang terbesar terdapat pada *channel* 19 yaitu sebesar 26.86%. Data keseluruhan *channel* dapat dilihat pada Lampiran 2.

4.2 Prediksi Profil Temperatur

Profil temperatur pada benda kerja akan menentukan *residual stress* dan juga akan mempengaruhi kekuatan benda kerja pada daerah yang mencapai suhu rekristalisasi. Baik *residual stress* dan kekuatan benda kerja, keduanya akan mempengaruhi kekuatan benda kerja maupun kekuatan dari sambungan las-nya.

Gambar 4.24 Profil Temperatur Tengah

Gambar 4.25 Profil Temperatur Akhir

Jika awal pengelasan dari kiri benda kerja, maka temperatur tertinggi berada pada ujung kanan benda kerja seperti gambar 4.25. Dapat dilihat temperatur maksimal dari proses FSW pada simulasi adalah sebesar 486.843 °C, hal ini sesuai dengan dasar teori bahwa proses pengelasan FSW menghasilkan temperatur maksimal sekitar 80-90 persen dari temperatur *melting* benda kerja yaitu sebesar 582 °C.

4.3 Prediksi Profil Bonding dan Bonding Temperatur

Karena tidak adanya data eksperimen untuk profil *bonding* dari sambungan las maka untuk memprediksi *bonding* temperatur dilakukan peng-inputan beberapa suhu bonding, pada pengelasan gesek temperatur *bonding* minimal adalah sebesar suhu rekristalisasi dari material benda kerja tersebut (Afriansyah:2016). Sedangkan untuk alumunium sendiri, Chao mengemukakan dalam jurnalnya (Chao, Qi dan Tang:2003), alumunium mengalami rekristalisasi pada suhu sekitar 200 °C hingga 300 °C, sedangkan Avner dan Sidney mengemukakan bahwa suhu rekristalisasi alumunium paduan sekitar 315 °C.

a. Profil Bonding pada Jika Bonding Temperatur 260 °C

Gambar 4.26 Profil Bonding Jika Bonding Temperatur 260 °C

b. Profil *Bonding* pada Jika *Bonding* Temperatur 270 °C

Gambar 4.27 Profil Bonding Jika Bonding Temperatur 270 °C

c. Profil Bonding pada Jika Bonding Temperatur 280 °C

Gambar 4.28 Profil Bonding Jika Bonding Temperatur 280 °C

d. Profil Bonding pada Jika Bonding Temperatur 290 °C

Gambar 4.29 Profil *Bonding* Jika Bonding Temperatur 290 °C

e. Profil Bonding pada Jika Bonding Temperatur 300 °C

Gambar 4.30 Profil Bonding Jika Bonding Temperatur 300 °C

f. Profil Bonding pada Jika Bonding Temperatur 315 °C

Gambar 4.31 Profil Bonding Jika Bonding Temperatur 315 °C

Kondisi *Sticking* (berwarna kuning) mengartikan bahwa sambungan belum menyatu (*closed gap with sliding condition*), sedangkan untuk kondisi *sticking* menunjukkan bahwa sambungan sudah menyatu (*closed gap and bonded condition*).

Dari Gambar 4.26 sampai dengan Gambar 4.31, kita dapat memprediksi *bonding* profil pada hasil las-an jika diketahui suhu rekristalisasi benda kerja atau kita dapat memprediksi *bonding* temperatur benda kerja jika hasil dari pengelasan eksperimen tersedia.

4.4 Quasi Steady State Parametric Study

Penentuan parameter-parameter pengelasan agar mencapai *quasi steady state* adalah penting untuk dilakukan, karena ketika proses pengelasan mengalami *quasi steady state* maka tiap-tiap titik dari pengelasan (baik pada sambungan maupun pada material) dapat dianggap memiliki kualitas yang sama. Salah satu kelebihan penelitian menggunakan metode simulasi pada proses pengelasan adalah dapat menentukan apakah proses sudah mengalami *quasi steady state* dengan cara mengaplikasikan temperatur maksimal pada tiap-tiap node pada semua waktu dan juga dapat dilakukan dengan mengambil data dari beberapa node yang memiliki koordinat Y yang sama dengan koordinat X yang bervariasi.

Beberapa variasi kecepatan telah di-simulasikan, antara lain dengan kecepatan normal(15mm/menit), 5x kecepatan normal, 10x kecepatan normal, 15x kecepatan normal, dan 20x kecepatan normal. Supaya gambar mempunyai kecermatan terhadap warna yang tinggi maka dilakukan *ploting* gambar menggunakan 128 beda *contour*, hal ini akan membuat gambar seolah "*blur*" karena disebabkan oleh banyaknya perbedaan warna.

Heat input tiap-tiap variasi kecepatan disamakan dengan cara memperbesar gaya dari model sehingga akan didapatkan hasil seperti pada Gambar 4.32 sampai 4.36, gambar tersebut adalah gambar temperatur maksimal pada tiap-tiap node pada semua waktu.

a. Hasil dari simulasi menggunakan kecepatan normal (15mm/menit)

Karena kecepatan yang lambat sehingga panas menyebar sehingga *quasi steady state* tidak dapat dicapai, dapat dilihat pada Gambar 4.32 pada bagian profil temperatur semakin ke kanan maka akan semakin panas.

b. Hasil dari simulasi menggunakan kecepatan normal (75mm/menit)

Pada kecepatan 5x kali kecepatan normal sudah terlihat profil temperatur memiliki sedikit perbedaan warna pada tapi pada step peningkatan suhu meningkat seperti pada Gambar 4.33, pada garis berwarna ungu dan kuning mengalami peningkatan yang tajam.
c. Hasil dari simulasi menggunakan kecepatan normal (150mm/menit)

Semakin bertambahnya kecepatan perbedaan warna dan peningkatan grafik akan semakin kecil hal ini menandakan semakin dekatnya dengan kondisi *quasi steady state*. Seperti pada Gambar 4.34 hanya garis kuning yang mengalami peningkatan yang drastis, dan pada profil temperatur sudah semakin sedikit mengalami perbedaan warna.

58

d. Hasil dari simulasi menggunakan kecepatan normal (225mm/menit)

Pada Gambar 4.35 profil temperatur sudah memiliki warna yang sama pada daerah yang terkena *heat flux*, tapi jika dilihat dari grafik temperatur terhadap waktu, garis yang berwarna kuning memiliki peningkatan pada akhir *load-step* (lingkaran merah).

e. Hasil dari simulasi menggunakan kecepatan normal (300mm/menit)

Pada kecepatan ini quasi steady state telah dicapai hal ini ditandai oleh profil temperatur yang memiliki warna sama dan pada grafik temperatur terhadap waktu (Gambar 4.36) memiliki peningkatan suhu yang landai (ditandai oleh garis kuning), peningkatan suhu ini diakibatkan oleh *pre-heat* dari *load-step* sebelumnya.

Pada Gambar 4.36 juga dapat dilihat dengan *heat input* yang sama dengan kecepatan 20x kecepatan normal yang juga berarti membutuhkan 20x gaya normal agar heat input sama, profil temperatur pada simulasi ini memiliki suhu melebihi suhu *melting* yang artinya hal ini tidak dapat dilakukan pada pengujian eksperimen (tidak sesuai dengan dasar teori), karena suhu maksimum proses FSW yaitu 80-90% suhu *melting* benda kerja. Setelah dilakukan beberapa percobaan variasi gaya pada kecepatan

BRAWIJAYA

60

300mm/menit didapatkan suhu yang sesuai dengan dasar teori, seperti pada Gambar 4.37 yang didapatkan dari simulasi dengan *input*-an kecepatan 300mm/menit dan dengan gaya sebesar 4800 N.

Gambar 4.37 20 Kali Kecepatan Normal dengan Gaya 4 Kali

Gambar 4.38 25 Kali Kecepatan Normal dengan Gaya 4 Kali

Untuk memastikan pada kecepatan diatas 20x kecepatan normal juga mencapai *quasi steady state* dilakukan simulasi sekali lagi dengan kecepatan 25x kecepatan normal dengan gaya 4800 N dan hasilnya sama dengan kecepatan 20x kecepatan normal seperti yang terdapat pada Gambar 4.38.

Dengan metode simulasi kita dapat menentukan parameter pengelasan agar mencapai *quasi steady state* dengan mudah dan murah, dan untuk kondisi pengelasan diatas penulis menyarankan agar penelitian dilakukan menggunakan kecepatan 300mm/menit dengan gaya 4800 N agar mencapai *quasi steady state*.

BAB V PENUTUP

5.1 Kesimpulan

- Dari hasil simulasi diketahui error I dan error II masing-masing dari *channel* 7-26 ratarata sebesar 4.124% dan 12,64%. Hal ini menandakan bahwa model memiliki luasan di bawah kurva yang hampir sama dengan hasil eksperimen (dengan perbedaan 4.12%) hanya saja profil dari kurva tersebut memiliki perbedaan yang cukup besar yaitu sebesar 12,64%.
- 2. Temperatur tertinggi pada setiap *load step* berada pada daerah yang dekat sumber panas lalu berkurang seiring bertambahnya jarak, sedangkan untuk peak temperatur tertinggi berada pada saat las-an berada pada ujung benda kerja yaitu sebesar 486.843 °C.

5.2 Saran

- 1. Semua proses pada FSW seperti *plunge*, *dwell,weld* dan *pull out* sebaiknya dimodelkan dalam pemrograman.
- 2. Sebaiknya radiasi lebih dipertimbangkan lagi karena pada suhu tinggi, radiasi akan memberikan efek yang besar.
- 3. Penggantian elemen solid70 8-node menjadi solid90 20-node, hal ini akan menambah keakurasian hasil simulasi, walaupun juga akan menambah waktu simulasi.
- 4. Untuk dapat memprediksi residual stress yang terjadi pada proses pengelasan, sebaiknya juga dilakukan analisa secara mekanikal (*thermo-mechanical analysis*).

DAFTAR PUSTAKA

Afriansyah, A. 2016. Pengaruh Variasi Waktu Gesekan dan Sudut Chamfer Terhadap Nilai Kekuatan Tarik Sambungan Las Gesek Al-Mg-Si Dengan Upset Force 500 kgf. Universitas Brawijaya.

- Amini, A. &Asadi, P. 2014. Friction Stir Welding Applications in Industry. Elsevier. p. 671-722.
- ANSYS Help v16.2. 2015. ANSYS Inc.
- Avner, S,H. Introduction To Physical Metallurgy, Second Edition. New York: McGRAW-HILL.
- Chao, Yuh.J., Qi, X. &Tang, W. 2003. *Heat Transfer in Friction Stir Welding-Experimentl and Numerical Studies*. Journal of Manufacturing Science and Engineering. Vol. 125. p. 138-145
- Chen, C. &Kovacevic, R. 2004. Thermomechanical modelling and force analysis of friction stir welding by the finite element method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 218:509.
- Colegrove, Paul.A.2003. *Modelling of Friction Stir Welding*. Cambridge:University of Cambridge.
- Darmadi, Djarot.B.2015.*Residual Stress Analysis of Pipeline Girth Weld Joints*. Lambert Academic Publishing.ISBN-10: 3659448281.ISBN-13: 978-3659448287.
- Durdanovic, M.B., Mijajlovic, M.M., Milcic.D.S and Stamenkovic.D.S. 2009. Heat Generation During Friction Stir Welding Process. Tribology in Industry. Vol. 3, No.1&2
- Feng, Z., Wang, X.L., David, S.A., and Sklad, P.S. 2007. Modelling of Residual Stresses and Property Distributions in Friction Stir Welds of Aluminum Alloy 6061-T6. Science and Technology of Welding and Joining. Vol. 12. p. 348-356.
- Hasselstrom, A.K.J and Nilsson, U.E. 2012. *Thermal Contact Conductance in Bolted Joints*. Sweden: Chalmers University of Technology
- Introduction to Welding Technology. Welding Science and Technology. Chapter 1. p. 1-28.
- Larsen, Anders., Stolpe, Mathias., Hattel. J.H. 2012. Estimating the Workpiece Backing Plate Heat Transfer Coefficient in Friction Stir Welding. Engineering Computations: International Journal for Computer-Aided Engineering and Software. Vol. 29. No. 1. p. 65-82.

- Madenci, E and Guven, I. 2015. *The Finite Element Method and Applications in Engineering Using ANSYS®, second edition.* Springer International Publishing 2015.
- Malde, Manthan. 2006. *Thermomechanical Modeling and Optimization of Friction Stir Welding*. Hyderabad:Osmania University.
- Mantelli, M.B.H and Yovanovich. M.M. 2002. *Thermal Contact Resistance, Chapter 16* of Spacecraft Thermal Control Handbook, Volume I: Fundamental Technologies, Second Edition.

Minhoto, Manuel.J.C. A Model for Pavement Temperature Prediction.

- Mishra, R.S., Ma, Z.Y. 2005. *Friction Stir Weldin and Processing*. Materials Science and Engineering R 50. p. 1–78.
- Pietrobon, Steven.S. 2009. Analysis of Propellant Tank Masses. National Aeronautics and Space Administration. p. 1-7.
- Reese, Gordon.S. 2012. Analytical Thermal Model of Friction Stir Welding with Spatially Distributed Heat Source. Provo:Brigham Young University.
- Salloomi, K.N., Sabri, L.A., Hammad.Y.M. & Mohammed, S.N. 2013. 3-Dimensional Nonlinear Finite Element Analysis of both Thermal and Mechanical Response of Friction Stir Welded 2024-T3. Journal of Information Engineering and Applications.Vol.3, No.9. p. 6-15.
- Schmidt, H., Hattel, J. &Wert. J. 2004. An Analytical Model for the Heat Generation in Friction Stir Welding. Modelling Simul. Mater. Sci. Eng. Vol. 12. p. 143–157.
- Schmidt, H.N.B., Dickerson, T.L. &Hattel, J.H. 2006. *Material Flow in Butt Friction Stir Welds in AA2024-T3*. Acta Materialia.Vol.54. p. 1199–1209.
- Schmidt, H.B. &Hattel, J.H. 2008. Thermal Modelling of Friction Stir Welding. Scripta Materialia. Vol. 58. p. 332–337
- Schmidt, H.N.B. 2010. *Modelling Thermal Properties in Friction Stir Welding*. Denmark: Technical University of Denmark.
- Song, M. &Kovacevic, R. 2003. Numerical and Experimental Study of the Heat Trnsfer Process in Friction Stir Welding. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture. Vol. 217. p. 73-85.
- Soundararajan, V., Zekovic, S. & Kovacevic, R. 2005. *Thermo-mechanical Model with Adaptive Boundary Conditions for Friction Stir Welding of Al 6061*. International Journal of Machine Tools & Manufacture. Vol. 45. p. 1577-1587.

INERSITAS BRAWING

LAMPIRAN

Lampiran 1. Macro Pemodelan Heat Source Moving

!#PREPROCESSOR#!

/PREP7\$ET,1,SOLID70\$\$ET,2,SURF152\$KEYOPT,2,4,1\$KEYOPT,2,8,2\$ET,3,SURF152\$KEYOPT,3,4,1 KEYOPT,3,8,2\$ET,4,TARGE170\$ET,5,CONTA173\$KEYOPT,5,1,2\$KEYOPT,5,4,3\$R,6\$R,2\$R,3 RMODIF,6,14,20E6\$RMODIF,6,35,465.6\$MPTEMP,1,0,93.3,204.4,315.6,427.7,571.1 MPDATA,DENS,1,,2703,2685,2657,2630,2602,2574\$MPDATA,KXX,1,,162,177,192,207,223,253 MPDATA,C,1,,917,978,1028,1078,1133,1230\$MPDATA,DENS,2,,2703,2685,2657,2630,2602,2574 MPDATA,KXX,2,,162*10,177*10,192*10,207*10,223*10,253*10 MPDATA,C,2,,917,978,1028,1078,1133,1230 panjang=180/1000\$lebar=60/1000\$tebal=10/1000\$xndiv=180/2.5\$zndiv=10/2.5\$eel=2.5/1000\$lv12=48 *DO,tu,1,2

RECTNG,,panjang,,10/1000\$RECTNG,,panjang,14/1000,26/1000

RECTNG,,panjang,26/1000,40/1000

RECTNG,,panjang,lvl2/1000,60/1000\$*GET,nomerkpt,KP,,NUM,MAX

*DO,kpt,1,xndiv-1

nomerkpt=nomerkpt+1\$K,nomerkpt,kpt*2.5/1000,10/1000

*ENDDO

*DO,kpt,2,xndiv-2,2

nomerkpt=nomerkpt+1\$K,nomerkpt,kpt*2.5/1000,14/1000

*ENDDO

*DO,luasan,1,xndiv

KSEL,S,LOC,X,(luasan-1)*2.5/1000,luasan*2.5/1000\$KSEL,R,LOC,Y,10/1000,14/1000

*GET,bwtluas,KP,,NUM,MIN\$bwtluas2=KPNEXT(bwtluas)\$bwtluas3=KPNEXT(bwtluas2)

A,bwtluas,bwtluas2,bwtluas3,

*ENDDO

*DO,luasan,1,xndiv/2

KSEL,S,LOC,X,luasan*5/1000-2.5/1000\$KSEL,R,LOC,Y,10/1000

*GET,bwtluas,KP,,NUM,MIN\$KSEL,S,LOC,X,(luasan-1)*5/1000\$KSEL,R,LOC,Y,14/1000

*GET,bwtluas2,KP,,NUM,MIN\$KSEL,S,LOC,X,luasan*5/1000\$KSEL,R,LOC,Y,14/1000

*GET,bwtluas3,KP,,NUM,MIN\$ALLSEL,ALL\$A,bwtluas,bwtluas2,bwtluas3,

```
*ENDDO
```

*DO,kpt,2,xndiv-2,2

nomerkpt=nomerkpt+1\$K,nomerkpt,kpt*2.5/1000,40/1000

*ENDDO

loncat=5

*DO,kpt,4,xndiv-28,4

nomerkpt=nomerkpt+1\$K,nomerkpt,kpt*2.5/1000+(loncat/1000),lvl2/1000\$loncat=loncat+5

*ENDDO

loncat=0

*DO,luasan,1,xndiv/3

KSEL,S,LOC,X,loncat,loncat+(5/1000)\$KSEL,R,LOC,Y,40/1000,lv12/1000

*GET,bwtluas,KP,,NUM,MIN\$bwtluas2=KPNEXT(bwtluas)\$bwtluas3=KPNEXT(bwtluas2)

```
A,bwtluas,bwtluas2,bwtluas3,$loncat=loncat+(5+(mod(luasan,2)*5))/1000
```

*ENDDO

*DO,luasan,0,xndiv/6-1

KSEL,S,LOC,X,(luasan)*(15/1000),(luasan+1)*15/1000\$KSEL,R,LOC,Y,lv12/1000

*GET,bwtluas,KP,,NUM,MIN\$*GET,bwtluas2,KP,,NUM,MAX

KSEL,S,LOC,X,luasan*15/1000+5/1000,luasan*15/1000+(10/1000)\$KSEL,R,LOC,Y,40/1000

*GET,bwtluas3,KP,,NUM,MIN\$*GET,bwtluas4,KP,,NUM,MAX\$ALLSEL,ALL

*IF,luasan,LE,10,THEN

A,bwtluas,bwtluas2,bwtluas4,bwtluas3

*ELSE

A,bwtluas2,bwtluas,bwtluas4,bwtluas3

*ENDIF

*ENDDO

```
LOCAL,11,0,0,0,0, ,90, ,1,1,$WPCSYS,-1,11,
```

*ENDDO

CSYS,0\$WPCSYS,-1

```
ASEL,S,LOC,Y,$AGLUE,ALL$ARSYM,Z,ALL, , , ,0,1$ASEL,S,LOC,Z,$VEXT,ALL,,,0,0,-10/1000
ASLV,S$ASEL,INVERSE$AGLUE,ALL$VEXT,ALL,,,0,-10/1000,$ALLSEL,ALL
VSEL,S,LOC,Y,,lebar$VGLUE,ALL$VATT,1,,1$VSEL,S,LOC,Y,,-10/1000$VGLUE,ALL$VATT,1,,1
LSEL,S,LENGTH,,6.4/1000$LESIZE,ALL,,,1$LSEL,S,LOC,Z,-0.1/1000,-9.9/1000
LSEL,A,LOC,Y,-0.1/1000,-9.9/1000$LSEL,A,LOC,Y,0.1/1000,9.9/1000$LESIZE,ALL,,,4
LSEL,S,LENGTH,,panjang$LSEL,U,LOC,Y,11/1000,lebar$LSEL,U,LOC,Z,-11/1000,-lebar
LESIZE,ALL,,,xndiv$LSEL,S,LENGTH,,12/1000$LSEL,A,LENGTH,,14/1000
LSEL,U,LOC,Y,1v12/1000,lebar$LSEL,U,LOC,Z,-1v12/1000,-lebar$LESIZE,ALL,,,4
LSEL,S,LOC,Y,11/1000,40/1000$LSEL,A,LOC,Z,-11/1000,-40/1000$LSEL,R,LENGTH,,panjang
LESIZE,ALL,,,xndiv2$LSEL,S,LOC,Y,1v12/1000,lebar$LSEL,A,LOC,Z,-1v12/1000,-lebar
```

LSEL,R,LENGTH,,(60-lv12)/1000\$LESIZE,ALL,,,1\$LSEL,S,LOC,Y,43/1000,60/1000 LSEL,A,LOC,Z,-43/1000,-60/1000\$LSEL,R,LENGTH,,panjang*4/xndiv LSEL,U,LOC,Z,-0.1/1000,-9.9/1000\$LSEL,U,LOC,Y,-0.1/1000,-9.9/1000\$LESIZE,ALL, , ,1 LSEL,S,LOC,Y,46/1000,60/1000\$LSEL,A,LOC,Z,-46/1000,-60/1000\$LSEL,R,LENGTH,,panjang LESIZE,ALL,,,xndiv/6\$LSEL,S,LENGTH,,4/1000\$LESIZE,ALL, , ,1 LSEL,S,LOC,Y,40.1/1000,lv12.1/1000\$LSEL,A,LOC,Y,10.1/1000,14.1/1000 LSEL,A,LOC,Z,-10.1/1000,-14.1/1000\$LSEL,A,LOC,Z,-40.1/1000,-1v12.1/1000 LSEL,A,LOC,Y,0.1/1000,9.9/1000\$LESIZE,ALL, , ,1\$VSEL,S,LOC,Y,10/1000,14/1000 VSEL,A,LOC,Y,40/1000,lv12/1000\$VSEL,A,LOC,Z,10/1000,14/1000 VSEL,A,LOC,Z,40/1000,lv12/1000\$CM,vkecil,VOLUME\$ALLSEL,ALL\$VSWEEP,ALL\$NSEL,S,LOC,Z, NSEL,U,LOC,Y,6/1000\$ESEL,ALL\$TYPE,2\$REAL,2\$ESURF\$NSEL,S,LOC,Z,-10/1000 NSEL,R,LOC,Y,6/1000\$ESEL,ALL\$TYPE,2\$REAL,3\$ESURF\$ASEL,S,,150\$NSLA,S,1\$TYPE,4 MAT,1\$REAL,6\$TSHAP,LINE\$ESURF\$ASEL,S,,,300\$NSLA,S,1\$TYPE,5\$MAT,1\$REAL,6 TSHAP,QUAD\$ESURF\$NSEL,S,LOC,Z,-10/1000\$NSEL,U,LOC,Y,6/1000,-10/1000\$ESEL,ALL\$EPLOT

!# SOLUTION#!

/SOLU\$ANTYPE,TRANS\$TRNOPT,FULL\$LUMPM,OFF\$shoulder=0.01\$pin=0.0025

dy=tebal/zndiv\$dz=tebal/zndiv\$miu=0.3\$rpm=2000\$w=rpm*2*pi/60\$gaya=1200\$asoul=(pi*shoulder**2)

apins=2*pi*pin*tpin\$apint=pi*pin**2\$tekanan=gaya/asoul\$tcon=tekanan*miu\$persen=0.95

panas1=(2/3)*pi*tcon*w*(shoulder**3-pin**3)*persen\$panas2=2*pi*w*tcon*(pin**2)*tpin*persen

panas3=(2/3)*pi*w*tcon*(pin**3)*persen\$fl=panas1\$hpin=panas2/apins\$bpin=panas3/apint

bulekb=33\$ambib=2\$buleke=33\$ambie=30\$velo=0.00025\$ensubt=0.05\$ulang=(xndiv-(2*shoulder/de))+1

*GET,waktu1,ACTIVE,,TIME,WALL\$TUNIF,33,\$ASEL,U,LOC,Y,-10E-3,10/1000

SFA,ALL,0,CONV,ambie,buleke\$ALLSEL,ALL\$ASEL,S,LOC,Y,-10/1000

SFA,ALL,0,CONV,ambie,buleke

ALLSEL,ALL\$ASEL,S,LOC,Y,\$ASEL,U,LOC,Z,,-10/1000\$SFA,ALL,0,CONV,25,buleke\$ALLSEL,ALL

ASEL, S, LOC, X, \$SFA, ALL, 0, CONV, ambie, buleke \$ALLSEL, ALL \$ASEL, S, LOC, X, panjang and the statement of the statemen

SFA, ALL, 0, CONV, ambie, buleke \$ASEL, S, LOC, Z, -lebar \$SFA, ALL, 0, CONV, ambie, buleke \$ASEL, S, LOC, Z, -lebar \$SFA, ALL, 0, CONV, ambie, buleke \$ASEL, S, LOC, Z, -lebar \$SFA, ALL, 0, CONV, ambie, buleke \$ASEL, S, LOC, Z, -lebar \$SFA, ALL, 0, CONV, ambie, buleke \$ASEL, S, LOC, Z, -lebar \$SFA, ALL, 0, CONV, ambie, buleke \$ASEL, S, LOC, Z, -lebar \$SFA, ALL, 0, CONV, ambie, buleke \$ASEL, S, LOC, Z, -lebar \$SFA, ALL, 0, CONV, ambie, buleke \$ASEL, S, LOC, Z, -lebar \$SFA, ALL, 0, CONV, ambie, buleke \$ASEL, S, LOC, Z, -lebar \$SFA, ALL, 0, CONV, ambie, buleke \$ASEL, S, LOC, Z, -lebar \$SFA, ALL, 0, CONV, ambie, buleke \$ASEL, S, LOC, Z, -lebar \$SFA, ALL, 0, CONV, ambie, buleke \$ASEL, S, LOC, Z, -lebar \$ASEL, S, LO

ESEL, S, TYPE, 2\$SFE, ALL, 1, CONV, 1, ambie \$SFE, ALL, 1, CONV, 2, 33 \$ALLSEL, ALL

*DO,i,1,ulang

xreferen=shoulder+((i-1)*de)\$yreferen=0\$ESEL,ALL\$CMSEL,S,bottom,ELEM
*GET,total,ELEM,,COUNT

*DO,cn,1,total

 $*GET, nomer, ELEM,, NUM, MIN \\ \$ exelem = centrx (nomer) \\ \$ xelem = exelem \\ -xreferen \\ \$ xelem \\ -xreferen \\ xelem \\ xele$

eyelem=centry(nomer)\$yelem=eyelem-yreferen\$kuadrat=xelem**2+yelem**2

*IF,kuadrat,LE,highconv**2,THEN

SFEDELE,nomer,1,CONV\$SFE,nomer,1,CONV,1,300

SFE,nomer,1,CONV,2,33\$ESEL,U,ELEM,,nomer

*ELSEIF,kuadrat,GT,highconv**2,AND,kuadrat,LE,medconv**2,THEN

*IF,eyelem,GT,1.2E-02,AND,eyelem,LE,1.27E-02,THEN

SFEDELE,nomer,6,CONV\$SFE,nomer,6,CONV,1,150

SFE,nomer,6,CONV,2,33\$ESEL,U,ELEM,,nomer

*ELSEIF, exelem, GT, 8.3E-4, AND, exelem, LE, 8.4E-4, THEN

SFEDELE,nomer,6,CONV\$SFE,nomer,6,CONV,1,150

SFE,nomer,6,CONV,2,33\$ESEL,U,ELEM,,nomer

*ELSE

SFEDELE,nomer,1,CONV\$SFE,nomer,1,CONV,1,150 SFE,nomer,1,CONV,2,33\$ESEL,U,ELEM,,nomer AWIJURE

*ENDIF

```
*ELSE
```

```
*IF,eyelem,EQ,4.4E-2,AND,exelem,EQ,7.5E-3,THEN
SFEDELE,nomer,5,CONV$SFE,nomer,5,CONV,1,50
SFE,nomer,5,CONV,2,33$ESEL,U,ELEM,,nomer
*ELSEIF,eyelem,EQ,4.4E-2,THEN
SFEDELE,nomer,2,CONV$SFE,nomer,2,CONV,1,50
SFE,nomer,2,CONV,2,33$ESEL,U,ELEM,,nomer
*ELSEIF,eyelem,GT,1.2E-02,AND,eyelem,LE,1.27E-02,THEN
SFEDELE,nomer,6,CONV$SFE,nomer,6,CONV,1,50
```

SFE,nomer,6,CONV,2,33\$ESEL,U,ELEM,,nomer

*ELSEIF,exelem,GT,1.6E-3,AND,exelem,LE,1.67E-3,THEN

SFEDELE,nomer,6,CONV\$SFE,nomer,6,CONV,1,50

SFE,nomer,6,CONV,2,33\$ESEL,U,ELEM,,nomer

*ELSE

SFEDELE,nomer,1,CONV\$SFE,nomer,1,CONV,1,50

SFE,nomer,1,CONV,2,33\$ESEL,U,ELEM,,nomer

*ENDIF

*ENDIF

*ENDDO

ALLSEL,ALL\$ESEL,S,CENT,X,-shoulder+xreferen,shoulder+xreferen ESEL,R,CENT,Y,-shoulder+yreferen,shoulder+yreferen

ESEL,S,TYPE,,1\$ESEL,R,CENT,Z,,-tebal/zndiv\$*GET,total,ELEM,,COUNT

*DO,z,1,total

*GET,nomer,ELEM,,NUM,MIN\$exelem=centrx(nomer)\$xelem=exelem-xreferen

eyelem=centry(nomer)\$yelem=eyelem-yreferen

kuadrat=xelem**2+yelem**2\$chao=3*fl*sqrt(kuadrat)\$qi=2*pi*shoulder**3\$tang=chao/qi

*IF,kuadrat,LE,shoulder**2,AND,kuadrat,GE,pin**2,THEN

*IF,eyelem,GT,0,THEN

SFE,nomer,6,HFLUX,,tang\$ESEL,U,ELEM,,nomer

*ELSE

SFE,nomer,3,HFLUX,,tang\$ESEL,U,ELEM,,nomer

*ENDIF

*ELSE

ESEL,U,ELEM,,nomer

*ENDIF

*ENDDO

ESEL, ALL \$ ESEL, S, CENT, X, -pin + xreferen, pin + xreferen \$ ESEL, R, CENT, Y, -pin + yreferen, pin + yreferen, pin + xreferen, pin + xreferen \$ ESEL, R, CENT, Y, -pin + yreferen, pin + yreferen, pin + xreferen \$ ESEL, R, CENT, Y, -pin + yreferen, pin + yreferen \$ ESEL, R, CENT, Y, -pin + yreferen, pin + yreferen \$ ESEL, R, CENT, Y, -pin + yreferen, pin + yreferen \$ ESEL, R, CENT, Y, -pin + yreferen \$ ESEL, R, -pin + yreferen \$ ESEL, R, -pin + yreferen \$ ESEL, R, -pin + yreferen \$ ESEL, Pin + yreferen \$

BRAWIJA

ESEL,S,TYPE,,1\$ESEL,R,CENT,Z,,-tpin\$*GET,total,ELEM,,COUNT

*DO,p,1,total

*GET,nomer,ELEM,,NUM,MIN\$exelem=centrx(nomer)\$xelem=exelem-xreferen

eyelem=centry(nomer)\$yelem=eyelem-yreferen\$kuadrat=xelem**2+yelem**2

*IF,kuadrat,LE,pin**2,THEN

SFE,nomer,4,HFLUX,,1\$ESEL,U,ELEM,,nomer

*ELSE

ESEL,U,ELEM,,nomer

*ENDIF

*ENDDO

ESEL,ALL\$ESEL,S,SFE,HFLUX,1\$SFEDELE,ALL,4,HFLUX

CM,full,ELEM\$CM,kurangfl,ELEM\$*GET,total,ELEM,,COUNT

*DO,u,1,total

CMSEL,S,kurangfl,ELEM\$*GET,nomer,ELEM,,NUM,MIN\$exelem=centrx(nomer) eyelem=centry(nomer)\$ezelem=centrz(nomer)\$ESEL,S,CENT,X,exelem-de ESEL,R,CENT,Y,eyelem\$ESEL,R,CENT,Z,ezelem\$*GET,kiri,ELEM,,NUM,MIN\$ESEL,ALL ESEL,S,CENT,X,exelem+de\$ESEL,R,CENT,Y,eyelem\$ESEL,R,CENT,Z,ezelem *GET,kanan,ELEM,,NUM,MIN\$ESEL,ALL\$ESEL,S,CENT,X,exelem ESEL,R,CENT,Y,eyelem-dy\$ESEL,R,CENT,Z,ezelem\$*GET,bawah,ELEM,,NUM,MIN ESEL,ALL\$ESEL,S,CENT,X,exelem\$ESEL,R,CENT,Y,eyelem+dy\$ESEL,R,CENT,Z,ezelem *GET,atas,ELEM,,NUM,MIN\$ESEL,ALL\$ESEL,S,CENT,X,exelem\$ESEL,R,CENT,Y,eyelem ESEL,R,CENT,Z,ezelem-dz\$*GET,dalam,ELEM,,NUM,MIN\$ESEL,ALL ESEL,S,CENT,X,exelem\$ESEL,R,CENT,Y,eyelem\$ESEL,R,CENT,Z,ezelem+dz *GET,luar,ELEM,,NUM,MIN\$ESEL,ALL\$CMSEL,S,full,ELEM\$*GET,akiri,ELEM,kiri,ESEL *GET,akanan,ELEM,kanan,ESEL\$*GET,abawah,ELEM,bawah,ESEL

*GET,aatas,ELEM,atas,ESEL\$*GET,adalam,ELEM,dalam,ESEL\$*GET,aluar,ELEM,luar,ESEL *IF,eyelem,GT,0,THEN

AS BRAWIU

*IF,akiri,NE,1,THEN

SFE,nomer,2,HFLUX,,hpin

*ELSE

*ENDIF

*IF,akanan,NE,1,THEN

SFE,nomer,4,HFLUX,,hpin

*ELSE

*ENDIF

*IF,abawah,NE,1,THEN

SFE,nomer,3,HFLUX,,hpin

*ELSE

*ENDIF

*IF,aatas,NE,1,THEN

SFE,nomer,5,HFLUX,,hpin

*ELSE

*ENDIF

*IF,adalam,NE,1,THEN

SFE,nomer,1,HFLUX,,bpin

*ELSE

*ENDIF

*ELSE

*IF,akiri,NE,1,THEN

SFE,nomer,4,HFLUX,,hpin

*ELSE

*ENDIF

*IF,akanan,NE,1,THEN

SFE,nomer,2,HFLUX,,hpin

*ELSE

*ENDIF

*IF.abawah.NE.1.THEN

SFE,nomer,6,HFLUX,,hpin

*ELSE

*ENDIF

*IF,aatas,NE,1,THEN

SFE,nomer,1,HFLUX,,hpin

*ELSE

*ENDIF

*IF,adalam,NE,1,THEN

SFE,nomer,5,HFLUX,,bpin RSITAS BRAW

*ELSE

*ENDIF

*ENDIF

ESEL, ALL\$CMSEL, S, kurangfl, ELEM\$ESEL, U, ELEM, , nomer\$CM, kurangfl, ELEM

*ENDDO

ESEL,ALL\$ESEL,S,SFE,HFLUX,,99999999999999999999999999994MPCHG,2,ALL\$ESEL,ALL\$angka=angka+1 dt=de/velo\$TIME,angka*dt\$AUTOTS,0\$DELTIM,ensubt,0,0\$KBC,1\$OUTRES,ERASE OUTRES,ALL,LAST\$SOLVE\$SFEDELE,ALL,1,HFLUX\$SFEDELE,ALL,2,HFLUX SFEDELE, ALL, 3, HFLUX \$\$ SFEDELE, ALL, 4, HFLUX \$\$ SFEDELE, ALL, 5, HFLUX SFEDELE, ALL, 6, HFLUX \$ ESEL, ALL \$ MPCHG, 1, ALL \$ ESEL, ALL

*ENDDO

ESEL,ALL\$CMSEL,S,bottom,ELEM\$SFEDELE,ALL,1,CONV\$SFEDELE,ALL,2,CONV SFEDELE, ALL, 3, CONV\$SFEDELE, ALL, 6, CONV\$ESEL, R, CENT, Y, 10E-3\$SFE, ALL, 1, CONV, 1, ambib SFE,ALL,1,CONV,2,33\$ASEL,S,LOC,Z,-10E-3\$ASEL,U,LOC,Y,-10E-3,10E-3 SFA,ALL,0,CONV,2,buleke\$ALLSEL,ALL\$ASEL,S,LOC,Y,\$ASEL,U,LOC,Z,,-10/1000 SFADELE,ALL,0,CONV\$SFA,ALL,0,CONV,2,buleke\$ALLSEL,ALL\$angka=angka+1\$TIME,1700 AUTOTS,0\$DELTIM,ensubt,0,0\$KBC,1\$OUTRES,ERASE\$OUTRES,ALL,200\$SOLVE\$ESEL,ALL excl=0\$*GET,waktu2,ACTIVE,,TIME,WALL\$waktu=(waktu2-waktu1)*3600\$\$AVE\$/REPLOT !#POSTPROCESSOR#!

/POST1\$dile=0.25\$feram=97\$PLNSOL,TEMP.,0\$PLNS,TEMP,\$ANTIME,feram,dile.,1,1,1,angka

Lampiran 2. Data Hasil Simulasi

Waktu (s)	Channel 7	Channel 8	Channel 9	Channel 10	Channel 11
20.2	33	33	33	33	33
40.401	33	33	33	-33	33
60.601	33	33	33	33	33
80.801	33	33	33	33	33
101.001	33	33	33	33	33
121.201	33	33	33	33	33
141.4	33.95915	33.61223	33.20289	33.13898	33.03459
161.6	43.11413	42.04858	38.01968	37.65369	35.32686
181.801	55.03951	53.34351	46.14089	45.57544	40.73108
202.001	74.66989	71.91809	59.5063	58.48682	49.80814
222.201	95.44594	91.98004	75.9657	74.62667	62.56331
242.401	115.1955	110.8491	92.89884	91.18122	76.95343
262.6	133.871	128.4109	109.6382	107.4579	91.97537
282.8	151.6944	144.8366	126.0314	123.2791	107.1569
303.001	168.8546	160.2565	142.0617	138.6004	122.2606
323.201	185.4706	174.7317	157.7415	9 153.3975	137.1722
343.401	201.5964	188.2749	173.1047	167.659	151.8405
363.601	217.1722	200.8584	188.1896	181.3709	166.2544
383.801	231.9453	212.4311	203.0304	194.5112	180.428
404	245.3996	222.9335	217.6458	207.0432	194.3884
424.2	256.8521	232.3202	232.0276	218.9166	208.1732
444.401	265.7331	240.5745	246.0823	230.064	221.8187
464.601	271.8717	247.7202	259.5413	240.406	235.3523
484.801	275.6314	253.8274	271.8916	249.8647	248.7907
505.001	277.7278	259.0022	282.4473	258.3752	262.1228
525.2	278.9217	263.3733	290.6226	265.901	275.2579
545.4	279.7592	267.0772	296.2185	272.4487	287.9437
565.601	280.5237	270.2434	299.5612	278.0691	299.6848
585.801	281.3267	272.9861	301.3347	282.852	309.8062
606.001	282.2007	275.4021	302.2834	286.9155	317.7175
626.201	283.1562	277.5698	302.9476	290.3879	323.1951
646.401	284.1945	279.5524	303.6076	293.394	326.5312
666.6	285.3109	281.4001	304.372	296.0451	328.3811
686.801	286.5012	283.1542	305.2712	298.4357	329.4746
707.001	287.7614	284.8469	306.3134	300.6405	330.3467
727.201	289.0933	286.5081	307.5063	302.7263	331.2966
747.401	290.5154	288.1785	308.8745	304.7706	332.4793
767.601	292.0544	289.9026	310.4448	306.8445	333.968
787.8	293.7444	291.7276	312.2517	309.0175	335.8211
808	297.4505	296.0776	313.8701	311.8595	332.8476
828.201	296.8056	295.6725	310.6478	308.9952	326.7067
848.401	296.7197	296.2191	306.7196	306.1716	316.5061

868.601	291.7989	291.511	298.0652	297.7711	303.8483
888.801	285.377	285.1507	289.2922	289.0637	292.8056
909.001	278.541	278.338	280.9893	280.7852	283.1237
929.2	271.6058	271.4137	273.1382	272.9455	274.4179
949.401	264.6963	264.511	265.6563	265.4706	266.4035
969.601	257.8792	257.6992	258.4812	258.301	258.8966
989.801	251.1901	251.0149	251.5679	251.3925	251.7767
1010	244.6502	244.4796	244.8876	244.7168	244.9684
1030.2	238.2699	238.1038	238.4191	238.2529	238.4209
1050.4	232.0551	231.8933	232.149	231.9871	232.1024
1070.6	226.0072	225.8497	226.0663	225.9087	225.9907
1090.8	220.1258	219.9724	220.163	220.0097	220.0703
1111	214.409	214.2597	214.4325	214.2832	214.3303
1131.2	208.854	208.7088	208.8689	208.7236	208.7618
1151.4	203.4578	203.3165	203.4672	203.3259	203.3583
1171.6	198.2169	198.0794	198.2228	198.0853	198.1139
1191.8	193.1276	192.9939	193.1314	192.9976	193.0235
1212	188.1864	188.0563	188.1888	188.0587	188.0827
1232.2	183.3894	183.263	183.3909	183.2645	183.287
1252.4	178.7331	178.6102	178.7341	178.6111	178.6326
1272.6	174.2138	174.0942	174.2144	174.0948	174.1154
1292.8	169.8278	169.7116	169.8282	169.712	169.7318
1313	165.5717	165.4587	165.5719	165.459	165.4781
1333.2	161.4419	161.3322	161.4421	161.3324	161.3508
1353.4	157.4352	157.3286	157.4353	157.3287	157.3466
1373.6	153.5481	153.4445	153.5481	153.4446	153.4619
1393.8	149.7774	149.6768	149.7774	149.6768	149.6937
1414	146.1199	146.0221	146.1199	146.0222	146.0385
1434.2	142.5725	142.4775	142.5725	142.4776	142.4934
1454.4	139.1321	139.0399	139.1321	139.0399	139.0553
1474.6	135.7957	135.7063	135.7957	135.7063	135.7212
1494.8	132.5605	132.4737	132.5606	132.4737	132.4882
1515	129.4236	129.3393	129.4237	129.3393	129.3534
1535.2	126.3823	126.3004	126.3823	126.3004	126.3141
1555.4	123.4337	123.3542	123.4337	123.3542	123.3675
1575.6	120.5753	120.4982	120.5753	120.4982	120.511
1595.8	117.8044	117.7296	117.8044	117.7296	117.7421
1616	115.1187	115.0461	115.1187	115.0461	115.0582
1636.2	112.5155	112.4451	112.5155	112.4451	112.4568
1656.4	109.9925	109.9242	109.9925	109.9242	109.9356
1676.6	107.5475	107.4812	107.5475	107.4812	107.4922
1696.8	105.178	105.1137	105.178	105.1137	105.1244
1717	102.8819	102.8196	102.8819	102.8196	102.83
1737.2	102.8978	102.8355	102.8978	102.8355	102.8459

BRAWIJAYA

Waktu (c)	Channel 12	Channel 13	Channel 14	Channel 15	Channel 16
20.2	22	22	22	22	22
40.401	22	22	22	22	22
60 601	22	22	22	22	22
00.001	22	22	22	22	22
101 001	22	22	22	22	22
121 201	22	22	22	22	22
121.201	22 025 91	22 00476	22 00200	22 00052	22 00049
141.4	25.02361	33.00470	22 0705	22 44942	33.00046
101.0	40 52226	34.01479	27 46046	25.44043	25 94112
202.001	40.55550	37.54051	37.40940	35.87145	40 72049
202.001	49.42237	43.9292		40.79331	40.72048
222.201	62.01806	53.89563	53.05597	49.04223	48.9078
242.401	76.22653	66.26025	65.91378	60.09187	59.87807
262.6	91.03514	79.91276	79.44331	72.84706	72.54119
282.8	105.9663	94.15435	93.54672	86.47332	86.06697
303.001	120.772	108.5735	107.8116	100.4546	99.94099
323.201	135.3246	122.9419	122.005	114.4829	113.855
343.401	149.5554	137.1433	136.0052	128.4011	127.6499
363.601	163.4303	151.1194	149.7456	142.1211	141.2349
383.801	176.9346	164.8536	163.1986	155.6063	154.569
404	190.06	178.3529	176.3576	168.8501	167.6402
424.2	202.8003	191.6423	189.2298	181.8677	180.4565
444.401	215.1413	204.7538	201.8247	194.6834	193.0328
464.601	227.0558	217.7224	214.1495	207.3262	205.3865
484.801	238.5044	230.5881	226.2092	219.8311	217.5377
505.001	249.4294	243.389	237.9998	232.2338	229.5031
525.2	259.7558	256.1583	249.5051	244.5693	241.2943
545.4	269.4003	268.9225	260.6978	256.8755	252.9193
565.601	278.2782	281.6932	271.5331	269.1879	264.3772
585.801	286.3182	294.458	281.9474	281.5383	275.6559
606.001	293.4806	307.136	291.8636	293.9572	286.734
626.201	299.7658	319.4886	301.1933	306.4636	297.5748
646.401	305.2195	331.0465	309.8486	319.0634	308.1253
666.6	309.9251	341.1568	317.7543	331.7451	318.3121
686.801	313.9938	349.2336	324.8668	344.4381	328.0487
707.001	317.544	355.0322	331.1769	356.9272	337.2292
727.201	320.7075	358.8595	336.751	368.88	345.8004
747.401	323.6353	361.4058	341.7288	379.7837	353.7561
767.601	326.4564	363.4432	346.2572	389.1535	361.0796
787.8	329.2915	365.5655	350.5065	396.8135	367.8177
808	329.1868	353.9051	346.0085	374.1777	358.8383
828.201	323.6572	345.0576	338.2682	364.9364	350.1481
848.401	315.9087	324.691	324.0428	329.9275	329.2498
868.601	303.5498	308.3999	308.0944	311.0892	310.7816
888.801	292,5752	295,4692	295.2361	296,9172	296,6835

000 001		224.6662	224 4522	005 0045	205
909.001	282.9181	284.6663	284.4598	285.3915	285.
929.2	274.2238	275.2707	2/5.0/6/	275.5554	275.:
949.401	266.2164	266.8285	266.642	266.8426	266.0
969.601	258./15	259.0566	258.876	258.9056	258.
989.801	251.6001	251.7735	251.5981	251.5231	251.3
1010	244.7964	244.8655	244.6948	244.5568	244.3
1030.2	238.2535	238.2581	238.0921	237.9169	237.7
1050.4	231.9394	231.9046	231.743	231.5469	231.3
1070.6	225.832	225.7735	225.6161	225.4092	225.2
1090.8	219.9159	219.8434	219.6903	219.4787	219.3
1111	214.1799	214.0996	213.9506	213.7384	213.5
1131.2	208.6155	208.5313	208.3863	208.1757	208.
1151.4	203.216	203.1301	202.989	202.7817	202.6
1171.6	197.9754	197.8894	197.7522	197.5489	197.4
1191.8	192.8889	192.8037	192.6702	192.4714	192.3
1212	187.9517	187.8679	187.7381	187.5441	187.4
1232.2	183.1597	183.0776	182.9513	182.7623	182.6
1252.4	178.5087	178.4285	178.3058	178.1218	177.9
1272.6	173.995	173.9168	173.7975	173.6184	173.4
1292.8	169.6148	169.5385	169.4226	169.2485	169.3
1313	165.3644	165.2902	165.1775	165.0082	164.8
1333.2	161.2403	161.1682	161.0587	160.8941	160.7
1353.4	157.2392	157.1691	157.0627	156.9027	156.
1373.6	153.3576	153.2895	153.1861	153.0307	152.9
1393.8	149.5923	149.5261	149.4257	149.2747	149.3
1414	145.9401	145.8758	145.7782	145.6316	145.5
1434.2	142.3979	142.3354	142.2406	142.0983	142.0
1454.4	138.9625	138.9018	138.8098	138.6716	138.5
1474.6	135.6311	135.5722	135.4829	135.3486	135.2
1494.8	132.4007	132.3435	132.2568	132.1264	132.0
1515	129.2685	129.2129	129.1288	129.0022	128.9
1535.2	126.2316	126.1777	126.096	125.9732	125.8
1555.4	123.2875	123.2352	123.1559	123.0367	122.9
1575.6	120.4334	120.3826	120.3057	120.19	120.1
1595.8	117.6668	117.6175	117.5428	117.4306	117.3
1616	114.9851	114.9373	114.8648	114.7559	114.6
1636.2	112.3859	112.3395	112.2692	112.1635	112 (
1656.4	109.8668	109.8218	109.7536	109.6511	109
1676.6	107.4255	107.3818	107.3157	107.2162	107
1696.8	105.0597	105.0173	104.9532	104.8567	104
1717	102,7672	102,7261	102.6639	102,5703	102 5
	102.7072	102.7201	102.0035	102.3703	102.5

Waktu (s)	Channel 17	Channel 18	Channel 19	Channel 20	Channel 21
20.2	22	22	22	22	22
40.401	22	22	22	22	22
40.401	22	22	22	22	22
90.001	22	22	22	22	22
101.001	22	22	22	22	22
121 201	22	22	22	22	22
1/1 /	50 17729	12 05146	44 57002	20 2011	26 77014
141.4	01 0770	43.03140	67 25709	50.5011	52 44205
101.0	126 0222	07.17443	07.23708	70 67616	70 5602
202.001	161 4660	120 0720	121 0446	112 1206	70.3092
202.001	101.4009	120.0720	151.9440	127 7012	90.02150
222.201	102.0340	171 6041	193,9510	157.7915	147 2062
242.401	206 5576	171.0041	162.4655	174 0011	147.3002
202.0	200.5570	105.4549	200.4475	174.0011	197 2075
202.0	215.5562	190.5067	214.2124	200 1072	187.2075
303.001	218.4922	205.0588	224.2200	200.1072	204.000
323.201	222.0302	212.2385	231.1438	209.0094	220.1958
262 601	220.1047	210.2307	235.641	217.0594	255.5095
303.001	229.3093	223.3289	239.1569	224.3518	243.0043
383.801	232.1759	227.7131	241.6919	229.9832	251.0414
404	234.8232	231.5332	243.8152	234.7540	255.9711
424.2	237.2843	234.8965	245.7316	238.8335	259.0703
444.401	239.5795	237.8841	247.538	242.3556	261.0561
464.601	241.7234	240.5586	249.2727	245.4285	262.4584
484.801	243.729	242.9706	250.9482	248.1382	263.6052
505.001	245.0085	245.1013	252.5075	250.5525	204.075
525.2	247.3735	247.1051	254.131	252.7250	205.7473
545.4	249.0373	249.0117	255.0405	254.7019	200.8488
505.001	250.0123	250.7209	257.0992	250.518	267.9828
585.801	252.1115	252.5554	250.512	256.2045	209.1455
606.001	253.547	255.8517	259.8859	259.7879	270.3317
626.201	254.9521	255.5002	261.2267	201.2915	271.5560
646.401	250.2769	250.0957	262.5492	262.7349	272.7055
696 901	257.5991	258.0534	203.8504	204.1300	274.0131
707.001	256.9045	259.5676	265.1602	205.5129	275.2654
707.001	260.2058	260.7115	200.4090	200.8779	270.5805
727.201	261.5136	262.0368	267.7943	268.2453	277.923
747.401	202.8407	203.3//4	209.1484	209.0318	279.3106
107.0UI	204.2058	204./53	270.5529	271.0606	280.773
/8/.8	205.0335	266.1884	272.0344	272.5596	282.3395
808	269.4591	269.8207	275.8206	276.1653	285.8646
828.201	2/2.5192	2/2.7687	2/8.1547	2/8.3931	286.8706
848.401	276.0534	276.0625	280.8655	280.8/13	288.0799
868.601	277.2917	2//.1/18	280.8206	280.7001	285.8475
888.801	275.6918	275.525	2/8.1291	2/7.9615	281.4494

909.001	272.0478	271.8668	273.7517	273.57	275.9505
929.2	267.1456	266.9624	268.381	268.1972	269.8698
949.401	261.5218	261.3406	262.4598	262.2781	263.5016
969.601	255.5195	255.3418	256.2674	256.0893	257.027
989.801	249.3501	249.1764	249.975	249.801	250.5553
1010	243.1453	242.9759	243.6891	243.5194	244.1545
1030.2	236.9844	236.8193	237.4734	237.3079	237.8639
1050.4	230.9163	230.7554	231.3669	231.2057	231.708
1070.6	224.9695	224.8128	225.3922	225.2352	225.6995
1090.8	219.1602	219.0077	219.5616	219.4088	219.8453
1111	213.4972	213.3487	213.8816	213.7328	214.148
1131.2	207.9845	207.8399	208.3545	208.2097	208.6076
1151.4	202.6229	202.4823	202.9804	202.8395	203.2228
1171.6	197.4116	197.2748	197.7579	197.6208	197.9912
1191.8	192.3488	192.2157	192.6846	192.5513	192.91
1212	187.4317	187.3023	187.7577	187.628	187.976
1232.2	182.6574	182.5315	182.9739	182.8478	183.1856
1252.4	178.0225	177.9001	178.33	178.2074	178.5354
1272.6	173.5236	173.4047	173.8224	173.7032	174.0218
1292.8	169.1574	169.0418	169.4477	169.3319	169.6414
1313	164.9204	164.8081	165.2025	165.0899	165.3906
1333.2	160.8093	160.7001	161.0833	160.9739	161.2661
1353.4	156.8206	156.7145	157.0868	156.9805	157.2644
1373.6	152.951	152.848	153.2097	153.1064	153.3822
1393.8	149.1975	149.0974	149.4487	149.3484	149.6162
1414	145.5566	145.4594	145.8007	145.7032	145.9634
1434.2	142.0255	141.9311	142.2625	142.1679	142.4205
1454.4	138.6009	138.5093	138.8311	138.7392	138.9845
1474.6	135.28	135.191	135.5035	135.4143	135.6524
1494.8	132.0599	131.9735	132.2768	132.1902	132.4214
1515	128.9376	128.8537	129.1482	129.0641	129.2886
1535.2	125.9105	125.8291	126.1149	126.0333	126.2512
1555.4	122.9758	122.8968	123.1742	123.095	123.3065
1575.6	120.1309	120.0542	120.3234	120.2466	120.4518
1595.8	117.3733	117.2988	117.5601	117.4855	117.6846
1616	114.7003	114.6281	114.8815	114.8092	115.0024
1636.2	112.1096	112.0395	112.2854	112.2152	112.4027
1656.4	109.5988	109.5308	109.7694	109.7013	109.8831
1676.6	107.1655	107.0996	107.331	107.2649	107.4413
1696.8	104.8075	104.7436	104.968	104.9039	105.075
1717	102.5226	102.4606	102.6783	102.6161	102.7821
1737.2	102.5384	102.4764	102.6941	102.6319	102.7979

Waktu (s)	Channel 22	Channel 23	Channel 24	Channel 25	Channel 26
20.2	33	33	33	33	33
40.401	33	33	33	33	33
60.601	33	33	33	33	33
80.801	33	33	33	-33	33
101.001	33	33	33	33	33
121.201	33	33	33	33	- 33
141.4	35.10679	33.98692	33.62417	33.20863	33.1421
161.6	49.31	43.29154	42.25106	38.10131	37.76042
181.801	65.24898	55.415	53.82665	46.34323	45.87428
202.001	91.29674	75.36388	72.85135	59.91026	59.09569
222.201	115.3874	96.47194	93.41705	76.60914	75.62494
242.401	136.277	116.5462	112.7551	93.79006	92.57641
262.6	154.6034	135.5385	130.7413	110.774	109.2337
282.8	170.8634	153.676	147.5504	127.4097	125.4174
303.001	185.3583	171.1534	163.3203	143.6836	141.0843
323.201	198.2436	188.0829	178.1178	159.6129	156.2131
343.401	209.6096	204.4833	191.9576	175.2366	170.7944
363.601	219.5257	220.2411	204.8135	190.5973	184.8147
383.801	228.073	235.0767	216.6344	205.7316	198.2514
404	235.359	248.5155	227.3607	220.6487	211.0663
424.2	241.5197	259.9487	236.9468	235.303	223.2073
444.401	246.7079	268.8844	245.3742	249.5434	234.6049
464.601	251.08	275.2091	252.6656	263.0705	245.1776
484.801	254.7846	279.2114	258.8898	275.4067	254.8459
505.001	257.9529	281.5196	264.1527	285.9371	263.5429
525.2	260.6952	282.822	268.5838	294.1551	271.2301
545.4	263.1025	283.6352	272.3225	299.922	277.9125
565.601	265.2475	284.2806	275.5019	303.4927	283.6396
585.801	267.1882	284.9325	278.2411	305.465	288.5012
606.001	268.9718	285.6673	280.6419	306.5099	292.617
626.201	270.6363	286.5075	282.7875	307.137	296.1179
646.401	272.2134	287.4531	284.745	307.6663	299.1331
666.6	273.7292	288.4968	286.5676	308.2711	301.7788
686.801	275.2065	289.6307	288.2985	309.0262	304.1546
707.001	276.6641	290.8481	289.9715	309.9521	306.3402
727.201	278.1197	292.148	291.617	311.0541	308.4052
747.401	279.597	293.5459	293.2738	312.3505	310.425
767.601	281.1255	295.065	294.983	313.8608	312.4659
787.8	282.7388	296.7363	296.7885	315.6131	314.5926
808	286.1352	299.3868	299.4856	316.0276	315.5949
828.201	287.0535	298.3888	298.4365	312.4036	312.0118
848.401	288.0685	297.1404	297.125	307.1771	307.1465
868.601	285.7202	291.8389	291.7162	298.11	297.9878

888.801	281.2763	285.2901	285.1191	289.2049	289.033
909.001	275.7646	278.4141	278.2297	280.8614	280.6762
929.2	269.6827	271.4679	271.2822	272.9997	272.8133
949.401	263.3172	264.5572	264.3741	265.5167	265.3333
969.601	256.8466	257.742	257.563	258.3437	258.1644
989.801	250.3793	251.0558	250.8811	251.4334	251.2585
1010	243.9829	244.5193	244.3489	244.7565	244.586
1030.2	237.6968	238.1423	237.9764	238.2914	238.1254
1050.4	231.5452	231.9307	231.7691	232.0246	231.8629
1070.6	225.5411	225.8861	225.7288	225.9452	225.7879
1090.8	219.6911	220.0079	219.8548	220.0452	219.892
1111	213.9978	214.2942	214.1452	214.3177	214.1686
1131.2	208.4615	208.7424	208.5973	208.7572	208.6121
1151.4	203.0806	203.3492	203.208	203.3586	203.2174
1171.6	197.8529	198.1112	197.9739	198.1171	197.9798
1191.8	192.7755	193.0248	192.8913	193.0286	192.895
1212	187.8451	188.0864	187.9565	188.0888	187.9589
1232.2	183.0583	183.2922	183.1659	183.2937	183.1674
1252.4	178.4117	178.6386	178.5158	178.6395	178.5167
1272.6	173.9016	174.1219	174.0025	174.1225	174.0031
1292.8	169.5245	169.7385	169.6224	169.7389	169.6228
1313	165.277	165.4849	165.3721	165.4851	165.3723
1333.2	161.1557	161.3576	161.248	161.3577	161.2481
1353.4	157.1571	157.3532	157.2467	157.3533	157.2468
1373.6	153.278	153.4684	153.365	153.4685	153.365
1393.8	149.515	149.7	149.5995	149.7001	149.5996
1414	145.8651	146.0447	145.9471	146.0448	145.9471
1434.2	142.325	142.4995	142.4047	142.4995	142.4047
1454.4	138.8918	139.0612	138.9691	139.0612	138.9692
1474.6	135.5624	135.7269	135.6375	135.7269	135.6376
1494.8	132.334	132.4937	132.407	132.4938	132.407
1515	129.2037	129.3588	129.2746	129.3588	129.2746
1535.2	126.1688	126.3193	126.2375	126.3193	126.2375
1555.4	123.2265	123.3726	123.2932	123.3726	123.2932
1575.6	120.3742	120.516	120.439	120.516	120.439
1595.8	117.6093	117.7469	117.6722	117.7469	117.6722
1616	114.9294	115.0628	114.9903	115.0628	114.9903
1636.2	112.3318	112.4613	112.391	112.4613	112.391
1656.4	109.8144	109.94	109.8717	109.94	109.8717
1676.6	107.3746	107.4965	107.4303	107.4965	107.4303
1696.8	105.0104	105.1286	105.0643	105.1286	105.0643
1717	102.7193	102.834	102.7717	102.834	102.7717
1737.2	102.7352	102.8499	102.7876	102.8499	102.7876