4.1 Kondisi kota malang

4.1.1 Wilayah

Wilayah yang diteliti hanya di Kota Malang. Kota Malang memiliki luas wilayah 110,06 km² yang secara geografis terletak $112,06^0-112,07^0$ Bujur Timur dan $7,06^0-8,02^0$ Lintang Selatan dengan batas wilayah sebagai berikut:

Sebelah Utara : Kecamatan Singosari dan Kecamatan Karangploso Kabupaten Malang

Sebelah Timur : Kecamatan Pakis dan Kecamatan tumpang Kabupaten Malang

Sebelah Selatan : Kecamatan Tajinan dan Kecamatan Pakisaji Kabupaten Malang

Sebelah Barat : Kecamatan Wagir dan Kecamatan Dau Kabupaten Malang

Kota Malang terdiri dari 5 Kecamatan yaitu Kedungkandang, Klojen, Blimbing, Lowokwaru, dan Sukun serta 57 kelurahan. Daerah penyelidikan mempunyai elevasi antara 300 - 1.694 m di atas muka air laut dan secara morfologi dikelompokkan menjadi 3 (tiga) satuan morfologi, yaitu satuan morfologi dataran yang menempati bagian tengah dan selatan, satuan morfologi pebukitan bergelombang menempati bagian timur dan utara, dan satuan morfologi pegunungan menempati wilayah bagian barat, utara dan timur.

Luas wilayah setiap kecamatan berbeda-beda, kecamatan Blimbing memiliku luas 17,77 km², Klojen 8,83 km², Kedungkandang 36,89 km², Sukun 20,97 km² dan Lowokwaru 22,60 km². Gambar 4.1 menjelaskan perbandingan luas wilayaj setiap kecamatan di Kota Malang.

Gambar 4.1 Prosentase luas tiap kecamatan

Sumber: BPS Kota Malang (2001)

4.1.2 Penduduk

Jumlah penduduk di kota malang cenderung meningkat dari tahun- ke tahun tabel 4.1 menyatakan jumlah penduduk di setiapkecamatan di kota malang dari tahun 2007 sampai 2015.

Tabel 4.1 jumlah penduduk per kecamatan di kota malang

no	tahun			Kecamatai		<u> </u>	Total
no	tanun	BLIMBING	KLOJEN	KDKD	SUKUN	LOWOKWARU	Total
1	2007	158556	117500	150,262	162094	168570	756982
2	2008	171051	126760	162104	174868	181854	816637
3	2009	170673	126480	161746	174482	181452	814833
4	2010	172333	105907	174477	181531	186013	820261
5	2011	198,684	119,656	201,922	203,315	170,765	894342
6	2012	188,314	110,700	193,779	191,255	161,204	845252
7	2013	187,001	107,729	194,071	193,310	162,591	844702
8	2014	191,631	109,000	199,506	198,241	166,633	865011
9	2015	193,179	109,386	202,252	200,720	168,179	873716

Sumber: Dinas Kependudukan dan Pencatatan sipil (2015)

4.2 Peramlaan jumlah pelanggan LTE 2020

Peramalan jumlah pelanggan bertujuan untuk mengetahui kebutuhan trafik dan kapasitas layanan yang akan diberikan. Peramalan jumlah pelanggan ini meliputi tiga tahap yaitu

peramalan jumlah penduduk, perhitungan penduduk usia produktif dan jumlah pelanggan setelah dilakukan perbandingan dengan data Ericson mobility report.

4.2.1 Peramalan jumlah penduduk tahun 2020

Data penduduk di kota malang selama 9 tahun terakhir yaitu tahun 2011-2015 didapat dari Dinas Kependudukan dan Pencatatan Sipil Kota Malang. Perhitungan jumlah penduduk pada tahun 2020 menggunakan trend eksponensial yang sudah dijelaskan pada BAB II. Trend eksponensial dipilih karena data hasil survey yang didapat berupa deret meningkat cenderung naik. Perhitungan dilakukan disetiap kecamatan karena memiliki kepadatan penduduk dan luas area yang berbeda-beda.

4.2.1.1. Kecamatan Blimbing

Tabel 4.2 menampilkan data yang dibituhkan dalam perhitungan jumlah penduduk mengunakan trend eksponensial.

Tabel 4.2 Perhitungan jumlah penduduk kecamatan Blimbing

					A A		
	no	tahun	y i	ti	t _i ²	log y _i	ti.log y _i
	1	2007	158556	-4	16	5.200182681	-20.80073072
	2	2008	171051	-3	9	5.233125618	-15.69937685
	3	2009	170673	(E) -2	4	5.232165177	-10.46433035
	4	2010	172333	-1		5.236368448	-5.236368448
	5	2011	198,684	0	0	5.298162895	0
	6	2012	188,314	1	74.5	5.274882608	5.274882608
	7	2013	187,001	2	4	5.271843929	10.54368786
	8	2014	191,631	3	9	5.282465766	15.8473973
	9	2015	193,179	4	16	5.285959914	21.14383965
0		total		0	60	47.31515704	0.60900104

Selanjutnya menghitung variable a dan b seperti persamaan (3) pada BAB II.

$$log P_t = log \alpha + T log \beta$$

$$a = antilog \left[\frac{\sum log Y}{n} \right]$$

$$a = antilog \left[\frac{47}{9} \right]$$

$$a = 180817,17$$

$$b = antilog \left[\frac{\sum t. \log Y}{\sum t^2} \right]$$

$$b = antilog \left[\frac{0,60900104}{60} \right]$$

$$b = 1,0236465$$

Setelah itu nilai hasil perhitungan a dan b dimasukkan dalam persamaan (2) pada BAB II untuk mendapatkan persamaan trend eksponensial

$$P_t = \alpha + \beta^T$$

$$P_t = 180817,17 + 1,0236465^T$$

Untuk meramalkan jumlah penduduk tahun 2020 di kecamatan blimbing maka harus diketahui terlebih dahulu factor T dengan cara

$$T = t_{mendatang} - \bar{t}$$

$$T = 2020 - 2011$$

$$T=9$$

Sehingga untuk mendapatkan jumlah penduduk di tahun 2020 masukkan nilai T ke dalam persamaan eksponensial yang sudah didapat. P_t adalah jumlah penduduk di tahun ke t.

$$P_{2020} = 180817,17 + 1,0236465^9$$

$$P_{2020} = 223146$$

Jadi jumlah penduduk di kecamatan blimbing pada tahun 2020 adalah 223146 jiwa.

4.2.1.2. Kecamatan Klojen

Tabel 4.3 menampilkan data yang dibituhkan dalam perhitungan jumlah penduduk mengunakan trend eksponensial.

Tabel 4.3 Perhitungan jumlah penduduk kecamatan Klojen

no	tahun	y i	t _i	f ti ²	log y _i	ti.log y _i
1	2007	117500	-4	16	5.070037867	-20.28015147
2	2008	126760	-3	9	5.102982231	-15.30894669
3	2009	126480	-2	4	5.10202179	-10.20404358
4	2010	105907	-1	1	5.024924666	-5.024924666
5	2011	119,656	0	0	5.077934481	0
6	2012	110,700	1	1	5.044147621	5.044147621
7	2013	107,729	2	4	5.032332629	10.06466526
8	2014	109,000	3	9	5.037426498	15.11227949
9	2015	109,386	4	16	5.038961741	20.15584697
	total	1033118	0	60	45.53076952	-0.44112707

Selanjutnya menghitung variable a dan b seperti persamaan (3) pada BAB II.

$$log P_t = log \alpha + T log \beta$$

$$a = antilog \left[\frac{\sum log Y}{n} \right]$$

$$a = antilog \left[\frac{45,53076953}{9} \right]$$

$$a = 114544,54$$

$$b = antilog \left[\frac{\sum t. log Y}{\sum t^2} \right]$$

$$b = antilog \left[\frac{-0.44112707}{60} \right]$$

$$b = 0.9832136$$

Setelah itu nilai hasil perhitungan a dan b dimasukkan dalam persamaan (2) pada BAB II untuk mendapatkan persamaan trend eksponensial

$$P_t = \alpha + \beta^T$$

$$P_t = 114544,54 + 0,9832136^T$$

Untuk meramalkan jumlah penduduk tahun 2020 di kecamatan Klojen maka harus diketahui terlebih dahulu factor T dengan cara

$$T = t_{mendatang} - \bar{t}$$

$$T = 2020 - 2011$$

$$T=9$$

Sehingga untuk mendapatkan jumlah penduduk di tahun 2020 masukkan nilai T ke dalam persamaan eksponensial yang sudah didapat. P_t adalah jumlah penduduk di tahun ke t.

$$P_{2020} = 114544,54 + 0,9832136^9$$

$$P_{2020} = 98357$$

Jadi jumlah penduduk di kecamatan Klojen pada tahun 2020 adalah 98357 jiwa.

4.2.1.3. Kecamatan Kedungkandang

Tabel 4.4 menampilkan data yang dibituhkan dalam perhitungan jumlah penduduk mengunakan trend eksponensial.

Tabel 4.4 Perhitungan jumlah penduduk kecamatan Kedungkandang

no	tahun	yi	ti	t _i ²	log y _i	ti.log y _i
1	2007	150,262	-4	16	5.176849165	-20.70739666
2	2008	162104	-3	9	5.209793731	-15.62938119
3	2009	161746	-2	4	5.208833291	-10.41766658
4	2010	174477	-1	1	5.241738185	-5.241738185
5	2011	201,922	0	0	5.305183639	0
6	2012	193,779	1	1	5.28730671	5.28730671
7	2013	194,071	2	4	5.287960644	10.57592129

1	8	2014	199,506	3	9	5.299955961	15.89986788
	9	2015	202,252	4	16	5.305892825	21.2235713
		total	1640119	0	60	47.32351415	0.99048456

Selanjutnya menghitung variable a dan b seperti persamaan (3) pada BAB II.

AS BRAWIUA

$$log P_t = log \alpha + T log \beta$$

$$a = antilog \left[\frac{\sum log Y}{n} \right]$$

$$a = antilog \left[\frac{47,32351415}{9} \right]$$

$$a = 181204,19$$

$$b = antilog \left[\frac{\sum t. \log Y}{\sum t^2} \right]$$

$$b = antilog \left[\frac{0.99048456}{60} \right]$$

$$b = 1,0387429$$

Setelah itu nilai hasil perhitungan a dan b dimasukkan dalam persamaan (2) pada BAB II untuk mendapatkan persamaan trend eksponensial

$$P_t = \alpha + \beta^T$$

$$P_t = 181204,19 + 1,0387429^T$$

Untuk meramalkan jumlah penduduk tahun 2020 di kecamatan Kedungkandang maka harus diketahui terlebih dahulu factor T dengan cara

$$T = t_{mendatang} - \bar{t}$$

$$T = 2020 - 2011$$

$$T=9$$

Sehingga untuk mendapatkan jumlah penduduk di tahun 2020 masukkan nilai T ke dalam persamaan eksponensial yang sudah didapat. P_t adalah jumlah penduduk di tahun ke t.

$$P_{2020} = 181204,19 + 1,0387429^9$$

$$P_{2020} = 255118$$

Jadi jumlah penduduk di kecamatan Kedungkandang pada tahun 2020 adalah 255118 jiwa.

4.2.1.4. Kecamatan Sukun

Tabel 4.5 menampilkan data yang dibituhkan dalam perhitungan jumlah penduduk mengunakan trend eksponensial.

Tabel 4.5 Perhitungan jumlah penduduk kecamatan Sukun

no	tahun	y i	ti	ti ²	log y _i	ti.log y _i
1	2007	162094	-4	16	5.209766939	-20.83906776
2	2008	174868	-3	9	5.242710343	-15.72813103
3	2009	174482	-2	4	5.241749902	-10.4834998
4	2010	181531	-1	1	5.2589508	-5.2589508
5	2011	203,315	0	0	5.308169421	0
6	2012	191,255	1	1	5.281612798	5.281612798
7	2013	193,310	2	4	5.286254321	10.57250864
8	2014	198,241	3	9	5.29719348	15.89158044
9	2015	200,720	4	16	5.302590648	21.21036259
	total	1679816	0	60	47.42899865	0.64641508

Selanjutnya menghitung variable a dan b seperti persamaan (3) pada BAB II.

$$log P_t = log \alpha + T log \beta$$

$$a = antilog \left[\frac{\sum log Y}{n} \right]$$

$$a = antilog \left[\frac{47,42899865}{9} \right]$$

$$a = 186161,02$$

$$b = antilog \left[\frac{\sum t. log Y}{\sum t^2} \right]$$

$$b = antilog \left[\frac{0,64641508}{60} \right]$$

$$b = 1,0251174$$

Setelah itu nilai hasil perhitungan a dan b dimasukkan dalam persamaan (2) pada BAB II untuk mendapatkan persamaan trend eksponensial

$$P_t = \alpha + \beta^T$$

$$P_t = 186161,02 + 1,0251174^T$$

Untuk meramalkan jumlah penduduk tahun 2020 di kecamatan Sukun maka harus diketahui terlebih dahulu factor T dengan cara

$$T = t_{mendatang} - \bar{t}$$

$$T = 2020 - 2011$$

$$T=9$$

Sehingga untuk mendapatkan jumlah penduduk di tahun 2020 masukkan nilai T ke dalam persamaan eksponensial yang sudah didapat. P_t adalah jumlah penduduk di tahun ke t.

$$P_{2020} = 186161,02 + 1,0251174^{9}$$

$$P_{2020} = 232729$$

Jadi jumlah penduduk di kecamatan Sukun pada tahun 2020 adalah 232729 jiwa.

4.2.1.5. Kecamatan Lowokwaru

Tabel 4.6 menampilkan data yang dibituhkan dalam perhitungan jumlah penduduk mengunakan trend eksponensial.

Tabel 4.6 Perhitungan jumlah penduduk kecamatan Lowokwaru

no	tahun	y i	ti	t _i ²	log y _i	ti.log y _i
1	2007	168570	-4	16	5.226780287	-20.90712115
2	2008	181854	-3	9	5.259722858	-15.77916857
3	2009	181452	-2	4	5.258762417	-10.51752483
4	2010	186013	-1	1	5.269543297	-5.269543297
5	2011	170,765	₹01	0	5.232398862	0
6	2012	161,204	1	1	5.207375814	5.207375814
7	2013	162,591	2	4	5.211096502	10.422193
8	2014	166,633	3	9/	5.221761013	15.66528304
9	2015	168,179	4	16	5.225771766	20.90308706
	total	1547261	0 91	60	47.11321282	-0.27541893

Selanjutnya menghitung variable a dan b seperti persamaan (3) pada BAB II.

$$log P_t = log \alpha + T log \beta$$

$$a = antilog \left[\frac{\sum log Y}{n} \right]$$

$$a = antilog \left[\frac{47,11321282}{9} \right]$$

$$a = 171712,31$$

$$b = antilog \left[\frac{\sum t. \ log Y}{\sum t^2} \right]$$

$$b = antilog\left[\frac{-0,27541893}{60}\right]$$

$$b = 0,9894861$$

Setelah itu nilai hasil perhitungan a dan b dimasukkan dalam persamaan (2) pada BAB II untuk mendapatkan persamaan trend eksponensial

$$P_t = \alpha + \beta^T$$

$$P_t = 171712,31 + 0,9894861^T$$

BRAWIJAY

Untuk meramalkan jumlah penduduk tahun 2020 di kecamatan Lowokwaru maka harus diketahui terlebih dahulu factor T dengan cara

$$T = t_{mendatang} - \bar{t}$$

$$T = 2020 - 2011$$

$$T=9$$

Sehingga untuk mendapatkan jumlah penduduk di tahun 2020 masukkan nilai T ke dalam persamaan eksponensial yang sudah didapat. P_t adalah jumlah penduduk di tahun ke t.

$$P_{2020} = 171712,31 + 0,9894861^9$$

$$P_{2020} = 156131$$

Jadi jumlah penduduk di kecamatan Lowokwaru pada tahun 2020 adalah 156131 jiwa.

4.2.2 Perhitungan Penduduk Usia Produktif

Usia produktif yang berlaku di Indonesia adalah usia dalam batas 15 tahun-64 tahun (BPS, 2014). Data pada Tabel 4.7 adalah jumlah penduduk berdasarkan kelompok usia dari tahun 2011-2015.

Tabel 4.7 jumlah penduduk berdasarkan kelompok usia

	Persen usia produktif	72.01%	66.87%	66.26%	70.84%	70.82%
Tot	al Usia Produktif	590,669	565,215	559,733	612,778	618,801
	Total	820,243	845,252	844,702	865,011	873,716
14	> 65 TH	45,406	79,933	80,376	56,795	59,478
13	60 - 64 TH	23,098	31,361	32,798	32,089	32,900
12	55 - 59 TH	33,374	49,645	50,701	44,176	45,501
11	50 - 54 TH	44,737	57,430	57,269	52,619	53,769
10	45 - 49 TH	51,291	65,692	66,224	61,888	62,541
9	40 - 44 TH	57,694	70,841	69,363	67,718	67,964
8	35 - 39 TH	60,974	81,009	81,335	73,804	75,522
7	30 - 34 TH	65,882	79,875	74,553	82,417	81,918
6	25 - 29 TH	76,544	103,118	100,996	69,823	69,101
5	20 - 24 TH	97,775	13,261	13,360	63,368	63,875
4	15 - 19 TH	79,300	12,983	13,134	64,876	65,710
3	10 - 14 TH	60,405	79,329	81,055	69,689	69,346
2	5 - 9 TH	62,412	64,103	65,240	66,331	67,129
1	0 - 4 TH	61,351	56,672	58,298	59,418	58,962
No	USId	2011	2012	2013	2014	2015
NIO	Usia	(A)	可見了	Jumlah	\sim	

Sumber: Dinas Kependudukan dan Pencatatan Sipil (2015)

Total dan persen usia produktif pada tabel 4.7 didapatkan dari hasil perhitungan. Total usia produktif didapat dengan menjumlahkan penduduk usia antara 15-64 tahun. Dan persen usia produktif didapat dengan membandingkan total usia produktif dengan total penduduk. Untuk memepermudah definisi tersebut dapat dituliskan dalam Persamaan (4-1).

$$\% usia \ produktif = \frac{Total \ usia \ Produktif}{Total \ penduduk} x 100\%$$
 (4-1)

Rata-rata persen usia produktif adalah

$$rata - rata \% \ usia \ produktif = \frac{^{72,01+66,87+66,26+70,84+70,82}}{5}$$

rata - rata % usia produktif = 69,36%

Sehingga dari hasil rata-rata usia produktif dapat disimpulkan bahwa besarnya usia produktif di kota malang adalah 69,36%. Tabel 4.8 menyatakan jumlah usia produktif di kota malang pada tahun 2020 dengan factor pengali usia produktif 69,36%.

Tabel 4.8 Jumlah usia produktif tahun 2020

No	Kasamatan	Ju	mlah
No	Kecamatan	Total	Usia Produktif
1	BLIMBING	219646	152351
2	KLOJEN	97032	67303
3	KEDUNGKANDANG	251010	174105
4	SUKUN	229815	159404
5	LOWOKWARU	157622	209329
	TOTAL	955125	662492

Sumber: Hasil Perhitungan (2015)

4.2.3 Perhitungan Pengguna 4G tahun 2020

Berdasarkan survey penetrasi pengguna internet di Jawa Timur mencapai 32,29% dan 85% diantaranya menggunakan telepon seluler untuk mengakses internet (APJII,2014). Ericson Mobility report juga merilis prediksi penguna 4G/LTE di Indonesia pada 2020 adalah 40% dari jumlah pengguna internet. Prosentase tersebut menjadi landasan dalam penelitian ini untuk mendapatkan jumlah pelanggan 4G/LTE pada tahun 2020 di Kota Malang. Tabel 4.9 menjelaskan jumlah pengguna setelah dikalikan dengan factor tersebut.

Tabel 4.9 Jumlah Pengguna 4G/LTE tahun 2020

No	Kecamatan	Jumlah Usia	F	aktor Pengali	
NO	Recalliatali	Produktif	32,29%	85%	40%
1	BLIMBING	152351	49194	41815	16726
2	KLOJEN	67303	21732	18472	7389

3	KEDUNGKANDANG	174105	56219	47786	19114
4	SUKUN	159404	51471	43751	17500
5	LOWOKWARU	109329	35302	30007	12003
	TOTAL	662492	213919	181831	72732

Sumber: Hasil Perhitungan (2015)

Berdasarkan hasil perhitungan jumlah pengguna 4G/LTE pada tahun 2020 di Kota Malang mencapai 72.732 jiwa.

4.3 Perhitungan Jumlah Cell

Sesuai standart perangkat kapasitas yang dapat dilayani terdapat pada tabel 4.10. untuk kolom *bandwidth* menyatakan besarnya *bandwidth* yang dialokasikan untuk jaringan 4G/LTE. Sedangkan kolom *Number of RRC Connected user per cell* menyatakan banyaknya pelanggan yang dapat dilayani dalam satu *cell* untuk alokasi bendwidth tertentu. (Huawei technologies, 2014). Bandwidth yang dialokasikan untuk 4G/LTE di Indonesia adalah 10 MHZ (KOMINFO,2012).

Tabel 4.10 Jumlah pelanggan yang dapat dilayani untuk setiap alokasi bandwidth

Bandwidth	Number of RRC Connected user per cell
1,4 MHz	168
3 MHz	360
5 MHz	600
10 MHz/15 MHz/20 MHz	1200

Sumber: Huawei Technologies (2014)

Tabel 4.11 Jumlah cell dan eNodeB yang dibutuhkan

	No	Kecamatan	Jumlah Pengguna 4G/LTE	Jumlah Cell	Jumlah eNodeB
	1	BLIMBING	16726	14	5
	2	KLOJEN	7389	6	2
	3	KEDUNGKANDANG	19114	16	5
	4	SUKUN	17500	15	5
	5	LOWOKWARU	12003	10	3
1		TOTAL	72732	61	20

Sumber: Hasil Perhitungan (2015)

4.4 Perhitungan Jumlah eNodeB

Maksimum aktif user yang dapat dilayani oleh sebuah eNodeB (typeDBS3900) adalah sebanyak 10.800 user. Maksimum konfigurasi eNodeB terdiri dari 3 buah LBBP. Dalam

perencanaan ini menggunakan konfigurasi minimum hanya menggunakan sebuah LBBP maksimum hanya dapat melayani 3600 user.

Dalam tabel 4.11 sudah dilakukan perhitungan jumlah cell pada setiap kecamatan. Konfigurasi antenna yang digunakan adalah antenna sektoral 120 maka, sebuah eNodeB mampu melayani 3 *cell*. Sebagai contoh perhitungan EnodeB dalam tabel 4.11 dijelaskan bahwa kecamatan Blimbing membutuhkan 14 cell. Karena satu eNodeB mampu melayani 3 cell jadi, di Kecamatan blimbing membutuhkan,

$$jumlah \ eNodeB = \frac{jumlah \ cel}{3}$$

$$jumlah \ eNodeB = \frac{14}{3}$$

$$jumlah \ eNodeB = 4,6667$$

Hasil dibulatkan, sehingga jumlah eNodeB yang dibutuhkan di kecamatan Blimbing adalah 5 buah.

4.5 Coverage Area

Perhitungan Coverage Area bertujuan untuk mengetahui luas wilayah pelayanan untuk sebuah eNodeB. Perhitungan coverage area ini meliputi tiga tahap yaitu perhitungan link budget dan path loss, perhitungan radius cell, dan perhitungan coverage area.

4.5.1. Link budget dan Path Loss

Perhitungan Link budget dan path loss ini dilakukan pada sisi Uplink dan Downlink. Dimana sisi Uplink saat User menjadi Transmitter dan eNodeB menjadi Receiver, sedangkan sisi Downlink sebaliknya User menjadi receiver dan eNodeB menjadi transmitter. Data rate Uplink pada link budget ini adalah 64 (kbps) dimana ini adalah data rate tercepat pada WCDMA dan data rate untuk Downlink adalah 1024 (kbps) dimana iniadalah data rate tercepat untuk jaringan LTE.

Tabel 4.12 Uplink link budget

Transmitter – User	
Max tx power (dBm)	23.0
Tx antenna gain (dBi)	0.0
Body loss (dB)	0.0
EIRP	23.0

Receiver - eNodeB	STALK BRASAW
eNodeB noise figure (dB)	2.0
Thermal noise (dB)	-118.4
Receiver noise (dBm)	-116.4
SINR	-7.0
Receiver sensitivity	-123.4
Interference margin (dB)	1.0
Rx Antenna gain (dBi)	18.0
AULY/ agiT	AS BRALL

Sumber: Holma Harry, 2009

Tabel 4.13 Downlink link budget

Transmitter – eNodeB	
Max tx power (dBm)	46.0
Tx antenna gain (dBi)	18.0
Body loss (dB)	2.0
EIRP	62.0
Receiver - User	
User noise figure (dB)	7.0
Thermal noise (dB)	-104.5
Receiver noise floor (dBm)	-97.5
SINR	-9.0
Receiver sensitivity	-106.5
Interference margin (dB)	4.0
Control channel overhead (%)	20.0
TALKUA UKATIKA	THE THE SE

Untuk menentukan coverage area, langkah-langkah yang dapat dilakukan adalah sebagai berikut:

A. Menentukan SINR

Untuk menentukan SINR dibutuhkan nilai Thermal Noise yang besarnya dapat dinyatakan dalam persamaan berikut : RAWINA

$$N_T = 10 \log_{10}(kT\Delta f)$$

Dimana:

 $k = \text{Konstanta Boltzmann } 1,38 \times 10^{-23} \text{ J/K}$

T = 300 K

 Δf = Bandwidth 5 kHz

Sehingga,

$$N_T = 10 \log_{10}(1.38 \, x \, 10^{-23} x \, 300 \, x \, 5)$$

$$N_T = -104.28 \ dBm = 3,72 \ x \ 10^{-24}$$

Besarna SINR dapat dihitung berdasarkan persamaan

$$SINR = \frac{MHAGain \ x \ TxPower}{N_T + Interference}$$

Dimana,

MHA gain dan TxPower dapat diketahui di tabel

Diasumsikan interference sebaesar 4 dB

$$SINR (UL) = \frac{2 \times 24}{-0.10428 + (4)}$$

$$SINR (UL) = -8 dB$$

$$SINR(UL) = \frac{2 \times 24}{-0.10428 + (4)}$$

$$SINR(UL) = 13,98 dB$$

B. Menentukan Path Loss

Persamaan dasar untuk menentukan besarnya Path loss adalah

$$L = P_t + G_t - L_b - SINR + P_r - L_r - N_r$$

Menggunakan parameter yang sudah ditentukan pada tabel

$$L_{UL} = 144,28 \ dB$$

$$L_{DL} = 149,8 dB$$

C. Menentukan Cell Radius

Pada perencanaan ini dimana jaringan 4G berada pada frekuensi operasi 1800 MHz maka digunakan rumus cell radius okumura-hatta karena memiliki range frekuensi yang lebar dan sprsifikasinya memenuhi range frekuensi operasi 4G. karena kota malang dikategorikan sebagai daerah suburban sehingga akan digunakan rumus cell radius untuk daerah suburban.

Downlink

$$L_{urban} = C_1 + C_2 \log(f) - 13,82 \log(h_{BTS}) - a(h_{ms}) + [44,9 - 6,55 \log(h_{BTS})] \log(r) - 2 \left[\log\left(\frac{f}{28}\right)\right]^2 - 5,4$$

Dimana:

$$h_{BTS} = 30 \ m$$

$$h_{ms} = 1.5 m$$

$$a(h_{ms}) = [11\log(f) - 0.7] \times h_{ms} - [1.56\log(f) - 0.8]$$

$$a(h_{ms}) = [11 \log(1800) - 0.7] \times 1.5 - [1.56 \log(1800) - 0.8]$$

$$a(h_{ms}) = 52,66199 - 4,27822$$

$$a(h_{ms}) = 48,38376$$

Sehingga,

$$144,28 = 46,3 + 33,9 \log(1800) - 13,82 \log(30) - 48,38376 +$$

$$[44,9 - 6,55 \log(30)] \log(r) - 2 \left[\log\left(\frac{1800}{28}\right)\right]^2 - 5,4$$

$$144,28 = 46,3 + 110,3537 - 20,41381 - 48,38376 +$$

$$[35,2248]\log(r) - 6,5385 - 5,4$$

$$144,8 = 75,9176 + [35,2248] \log(r)$$

$$[35,2248]\log(r) = 68,8824$$

$$\log(r) = \frac{21,0236}{35,2248}$$

$$\log(r) = 1$$

 $r = 3.95$
 $144.28 = 46.3 + 109.5985 - 20.41381 - 1.045 + [35.2248] \log(r) - 6.3784 - 5.4$ 103.2201
 $149.8 = 46.3 + 110.230 - 20.41381 - 1.045 + [35.2248] \log(r) - 6.5122 - 5.4$ 103.717

SBRAWIUA

D. Menentukan Coverage Area

Pada perencanaan ini dimana jaringan 4G berada pada frekuensi operasi 1800 MHz maka digunakan rumus cell radius okumura-hatta karena memiliki range frekuensi yang lebar dan sprsifikasinya memenuhi range frekuensi operasi 4G. karena kota malang dikategorikan sebagai daerah suburban sehingga akan digunakan rumus cell radius untuk daerah suburban.

Untuk GSM1800 (DCS) alokasi frekuensi uplink-nya dari 1710 MHz-1785 MHz sedangkan downlink dari 1805 MHz sampai 1880 MHz

4.6 Pemilihan Lokasi eNodeB

- 4.7 Pada Kota Bogor, dibutuhkan 29 eNodeB/site untuk dapat mencakup keseluruhan wilayah yang mempunyi luas 118.25 km²
- **4.8** 2. PCI memiliki fungsi untuk memberikan identitas yang berupa angka pada setiap site sehingga meminimalisir kemungkinan interferensi antar site.