KAJIAN PENGGUNAAN MOTOR LISTRIK DC SEBAGAI PENGGERAK SPEEDBOAT

SKRIPSI KONSENTRASI TEKNIK ENERGI ELEKTRIK

Diajukan untuk Memenuhi Persyaratan Memperoleh Gelar Sarjana Teknik

Disusun Oleh:

MUHAMMAD AFNAN HABIBI

NIM. 105060307111037 - 63

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN
UNIVERSITAS BRAWIJAYA
FAKULTAS TEKNIK
JURUSAN TEKNIK ELEKTRO
MALANG
2015

LEMBAR PERSETUJUAN

KAJIAN PENGGUNAAN MOTOR LISTRIK DC SEBAGAI PENGGERAK SPEEDBOAT

SKRIPSI

KONSENTRASI TEKNIK ENERGI ELEKTRIK

Diajukan untuk Memenuhi Persyaratan Memperoleh Gelar Sarjana Teknik

Disusun Oleh:

MUHAMMAD AFNAN HABIBI

NIM. 105060307111037 - 63

Telah diperiksa dan disetujui oleh:

Pembimbing 1

Pembimbing 2

<u>Ir. Soemarwanto, M. T.</u> NIP. 19500715 198003 1 002 <u>Ir. Hery Purnomo, M.T.</u> NIP. 19550708 198212 1 001

LEMBAR PENGESAHAN

KAJIAN PENGGUNAAN MOTOR LISTRIK DC SEBAGAI PENGGERAK SPEEDBOAT

Diajukan untuk Memenuhi Persyaratan

Memperoleh Gelar Sarjana Teknik

SKRIPSI

KONSENTRASI TEKNIK ENERGI ELEKTRIK

Disusun Oleh:

MUHAMMAD AFNAN HABIBI

NIM. 105060307111037-63

Skripsi ini telah diuji dan dinyatakan lulus pada

tanggal 13 Januari 2015

MAJELIS PENGUJI

<u>Ir. Mahfudz Shiddiq, M.T.</u> NIP. 19580609 198703 1 003

<u>Ir. Unggul Wibawa, M.Sc.</u> NIP. 19630106 198802 1 001

<u>Ir. Teguh Utomo, M.T.</u> NIP. 19650913 199103 1 003

Mengetahui, Ketua Jurusan Teknik Elektro

M. Aziz Muslim, S.T., M.T., Ph.D NIP. 19741203 200012 1 001

PENGANTAR

Bismillahirrahmanirrahim.

Alhamdulillah, Laa haula wa laa quwwata illa billahi, tiada kata yang patut terucap selain puji syukur kehadirat Allah SWT. Dengan segala rahmat dan hidayah dari-Nya, penulis dapat menyelesaikan skripsi yang berjudul "Kajian Penggunaan Motor Listrik DC Sebagai Penggerak *Speedboat*". Skripsi ini disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik di Jurusan Teknik Elektro Fakultas Teknik Universitas Brawijaya.

Penulis sangat menyadari bahwa dalam penyusunan skripsi ini membutuhkan banyak bimbingan, bantuan serta dorongan dari berbagai pihak. Dengan penuh rasa hormat, pada kesempatan ini penulis menyampaikan rasa terima kasih kepada:

- Kedua orang tua, Bapak Zainal Abidin dan Ibu Masriatin yang senantiasa mendoakan, memberikan nasihat, serta mengajarkan ilmunya selama ini. Kedua saudara kandung saya Mas Muhammad Rodlin Billah dan Mbak Fauqa Arinil Aulia yang senantiasa memberikan motivasi dan menjadi panutan.
- Guru-guru yang telah meninggal saat keadaan mengajar, Pak Endo, Bu Insiatin, dan Ir. Chairuzzaini. Jasa Beliau tak dapat tergantikan sepanjang waktu, mengubah batu menjadi emas. Semoga ampunan Allah SWT bersama beliau.
- Bapak M. Aziz Muslim, ST., MT, Ph.D sebagai Ketua Jurusan Teknik Elektro Universitas Brawijaya.
- Bapak Hadi Suyono, ST., MT., Ph.D selaku Sekretaris Jurusan Teknik Elektro Universitas Brawijaya.
- Bapak Ir. Soeprapto, MT selaku Dosen Pembimbing Akademik.
- Ibu Dr. Rini Nur Hasanah, ST., M.Sc selaku KKDK Teknik Energi Elektrik.
- Ir. Soemarwanto, MT selaku Kepala Laboratorium Dasar Elektrik Pengukuran sekaligus Dosen Pembimbing I yang telah memberikan seluruh ilmunya dengan membiasakan yang benar, dan bukan membenarkan yang biasa.
- Ir. Hery Purnomo, MT selaku Dosen Pembimbing II atas ilmu, waktu, saran, dan segala bantuannya.
- Mas Dedy Agus Wahyudi, A.Md selaku pranata Laboratorium Dasar Elektrik
 Pengukuran, serta Keluarga Besar asisten DEP seluruh angkatan.
- Bapak Ibu Dosen, karyawan, staf recording dan RBTE atas segala bantuan dan kemudahan.

- Seluruh sahabat yang selalu ada di rumah kos Jl. Kertosentono 119, utamanya Dheo, Azwar, Imam, dan Sesa atas kesediaannya dalam membantu dan berbagi keceriaan bersama dalam kondisi susah dan senang. Serta seluruh sahabat yang membanggakan, MAGNET'10, yang memberikan doa, semangat serta dukungan kepada penulis.
- Teman-teman ELECTRICAL POWER ENGINEERING 2010.
- Semua pihak yang telah membantu penulis sampai terselesaikannya Tugas Akhir ini.

Dalam penyusunan skripsi ini, penulis sangat menyadari bahwa skripsi ini belumlah sempurna karena keterbatasaan ilmu dan kendala-kendala lain yang terjadi selama pengerjaan skripsi. Oleh karena itu, penulis mengharap kritik dan saran untuk penyempurnaan tulisan di masa yang akan datang. Penulis berharap, semoga tulisan ini dapat bermanfaat di dunia maupun di akhirat.

iv

Malang, Januari 2015
Penulis

DAFTAR ISI

	AR PERSETUJUAN	
	AR PENGESAHAN	
	NTAR	
	R ISI	
	R GAMBAR	
DAFTA	R TABEL	. viii
RINGK	ASAN	ix
	ARY	
BAB I	STAS BA	1
PENDA	HULUAN	
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Batasan Masalah	2
1.4	Tujuan	
1.5	Manfaat	
1.6	Sistematika Pembahasan	
BAB II.		4
TINJAU	JAN PUSTAKA	4
2.1	Teori Penggerak Kapal	4
2.2	Penelitian Speedboat	
2.3	Prinsip Kerja Motor DC	16
2.3.		
2.3.	2 Parameter Motor DC Shunt	27
2.3.	3 Parameter Dimensi Utama	28
2.3.	4 Parameter Jangkar	30
2.4	Kapasitas Baterai	32
METOD	OOLOGI PENELITIAN	
3.1	Lokasi	
3.2	Pencarian Data	
3.3	Pengambilan Data	
3.4	Perhitungan dan Penentuan Kapasitas Motor DC	36

3.5	Perhitungan dan Penentuan Parameter Motor DC Shunt	37
3.6	Perhitungan Torsi dan Kecepatan Motor DC Shunt	38
3.7	Perhitungan Dan Penentuan Kapasitas Baterai	39
3.8	Kesimpulan Dan Saran	39
BAB IV		40
ANALIS	SIS MOTOR DC SEBAGAI PENGGERAK SPEEDBOAT	40
4.1	Data Speedboat	40
4.2	Perhitungan Kapasitas Motor DC	40
4.3	Perhitungan Parameter Motor DC Shunt	44
4.4	Torsi dan Kecepatan Motor DC Shunt	
4.5	Perhitungan Kapasitas Baterai Beban Speedboat	50
BAB V.		53
PENUT	UP	53
5.1	Kesimpulan	53
5.2	Saran	53
DAFTA	R PUSTAKA	54

DAFTAR GAMBAR

Gambar 2. 1 Konsep umum dari konversi energi	
Gambar 2. 2 Komponen-komponen perkiraan daya kapal	
Gambar 2. 3 Karakteristik propulsor	
Gambar 2. 4 Perbandingan dari perbedaan formula gesek	8
Gambar 2. 5 Pengaruh kedalaman air pada tahanan	9
Gambar 2. 6 Koefisien udara pada struktur kapal feri cepat	9
Gambar 2. 7 Fraksi laju air untuk kapal single-screw	
Gambar 2. 8 K _T -K _Q untuk propeller wageningen B4.70 (courtesy of marin)	12
Gambar 2. 9 Skematik mesin DC untuk 2 kutub	17
Gambar 2. 10 Mesin dc. (a) Penguat terpisah. (b) Seri. (c) Shunt. (d) Kompon	
Gambar 2. 11 Karakteristik torsi-kecepatan dari motor dc yang berbeda	20
Gambar 2. 12 Rangkaian ekivalen motor dc shunt	21
Gambar 2. 13 Rugi daya pada mesin dc	
Gambar 2. 14 Motor dc penguat terpisah	23
Gambar 2. 15 Pengaturan tegangan jangkar motor dc. (a) Variasi kecepatan. (b) Penga	aturan
kecepatan. (c) Operasi dibawah torsi konstan. (d) Operasi Ra=0	24
Gambar 2. 16 Pengaturan medan	25
Gambar 2. 17 Pengaturan tahanan jangkar	27
Gambar 2. 18 Jumlah kutub pada mesin dc	28
Gambar 2. 19 Nilai spesifik untuk pembebanan magnetik	
Gambar 2. 20 Nilai Spesifik dari pembebanan elektrik	29
Gambar 2. 21 Nilai jatuh tegangan dalam dan arus medan	31
Gambar 2. 21 Nilai jatuh tegangan dalam dan arus medan	32
Gambar 2. 23 Insolasi matahari untuk daerah Jakarta	34
Gambar 3. 1 Diagram alir metode pengerjaan penelitian	35
Gambar 3. 2 Diagram perhitungan kapasitas motor dc	37
Gambar 3. 3 Diagram perhitungan parameter motor de shunt	38
Gambar 3. 4 Diagram perhitungan torsi-kecepatan motor dc shunt	
Gambar 4. 1 Karakteristik putaran-torsi motor de shunt	49
Gambar 4. 2 Skema speedboat	51
Gambar 4. 3 Skema rangkaian elektrik pada speedboat	

DAFTAR TABEL

Tabel 2. 1 Massa jenis air payau, air garam, dan udara	7
Tabel 2. 2 Viskositas air payau, air garam, dan udara	8
Tabel 2. 3 Perkiraan koefisien udara berdasarkan area depan	10
Tabel 2. 4 Skala Beaufort	10
Tabel 2. 5 Koefisien K _T dan K _Q , persamaan (2.20, 2.23), B470	13
Tabel 2. 6 Nilai faktor korelasi kapal SCF(1+x)	14
Tabel 2. 7 Tabel Konversi	14
Tabel 2. 8 Spesifikasi mesin	15
Tabel 4. 1 Hasil perhitungan arus, kecepatan putar, dan putaran motor dc <i>shunt</i>	48

viii

RINGKASAN

Muhammad Afnan Habibi, Jurusan Teknik Elektro Fakultas Teknik Universitas Brawijaya, Januari 2015, Kajian Penggunaan Motor Listrik DC sebagai Penggerak *Speedboat*, Dosen Pembimbing: Ir. Soemarwanto, M.T., Ir. Hery Purnomo, M.T.

Transportasi laut dibagi menjadi transportasi penumpang dan transportasi barang. Transportasi laut dapat juga dibagi berdasarkan daya jelajahnya, yaitu: Angkutan Sungai Danau dan Penyeberangan (ASDP), transportasi laut antar pulau, dan transportasi laut antar negara. Perahu adalah salah satu jenis transportasi laut. Penggerak perahu bermacam-macam. Mulai penggerak tenaga manusia yakni dayung, penggerak tenaga angin yakni layar, penggerak tenaga bahan bakar yakni motor diesel, dan penggerak tenaga listrik yakni motor listrik.

Tujuan dari penelitian ini adalah melakukan pengkajian penggunaan motor listrik DC sebagai penggerak *speedboat* dengan membuat simulasi sehingga dapat menentukan motor listrik yang sesuai dengan kebutuhan dan karakteristik dari *speedboat*. Metode yang digunakan dalam penelitian ini adalah pengumpulan data *speedboat*, motor dc *shunt*, baterai dan modul surya. Kemudian data-data tersebut diproses dengan pendekatan matematis sehingga diketahui daya dan parameter dari motor, kapasitas baterai dan modul surya yang dibutuhkan.

Data *speedboat* yang digunakan sebagai objek dalam penelitian ini adalah: *displacement* ∇ = 0,969 ton; volume V= 0,946 m³; kecepatan kapal ν_s = 7 knot; panjang garis air L_{wl} = 7,89 m; area garis air S = 4,599 m²; luas daerah melintang A_P = 0,158 m²; konstanta blok C_b = 0,567; dan kedalaman kapal terbenam air h = 0,3 m. Data utama motor dc *shunt* adalah: karakteristik motor dc *shunt*, daya P_m=2200 W; tegangan terminal V_t=24 V; dan putaran n= 1800 rpm. Serta data kapasitas baterai dan modul surya.

Data *speedboat* diproses dengan perhitungan matematis, sehingga menghasilkan kapasitas daya minimal yang digunakan *speedboat* untuk bergerak dengan kecepatan v_s . Kemudian ditentukan kapasitas motor de *shunt* yang lebih tinggi dari daya minimal dan menghitung parameter-parameter motor yang dibutuhkan dari data motor yang telah didapat sebelumnya. Terakhir, menghitung kapasitas baterai dan modul surya dari data baterai dan modul surya yang telah diperoleh.

Dari hasil simulasi, kapasitas motor dc *shunt* yang diperlukan untuk menggerakkan *speedboat*: daya nominal $P_m = 2200$ W; putaran nominal = 1800 rpm tegangan $V_t = 24$ V; diameter D = 0.1217 m; panjang L = 0.1338 m; arus medan $I_f = 0.2488$ A; tegangan jatuh jangkar $V_{Ra} = 0.5040$ V; arus beban penuh $I_a = 130,7036$ A; resistansi jangkar $R_a = 0.0039$ Ω ; efisiensi motor = 0.9771; torsi motor $T_a = 16,292$ Nm.

Kapasitas akumulator yang diperlukan selama satu jam adalah 246,8 Ah. Energi baterai dalam satu jam adalah 5923,1 W jam. Sehingga membutuhkan empat buah baterai 24 V 65 Ah terhubung paralel dan tiga buah modul surya 200 Wp.

Kata Kunci: Motor DC Shunt, Baterai, Speedboat, Kapasitas Daya, Energi.

SUMMARY

Muhammad Afnan Habibi, Electrical Engineering Department, Engineering Faculty, Brawijaya University, January 2015, A Study of DC Electric Motor Usage for Speedboat Propulsion, Advisor Lecturers: Ir. Soemarwanto, M.T., Ir. Hery Purnomo, M.T.

Sea transportation was divided to passenger transportation and goods transportation. Sea transportation able to divide according to its exploration capability, it is Angkutan Sungai Danau dan Penyebrangan (ASDP) for river and lake, Interisland sea transportation, and International sea transportation. Boat is one of the kind of sea transportation. There are many propeller to move a boat. It is paddle for human energy propeller, a sail for wind energy propeller, Diesel motor for fuel energy propeller, and electric motor for electric energy propeller.

The goal of this research is doing a study of dc electric motor usage for speedboat propulsion by creating a simulation so that able to choose electric motor which proper to the needs and speedboat's characteristics. The methode that used in this research was collecting speedboat data, shunt dc motor data, battery data and solar cell data. Then these data was processed by an mathematical approachment so the power and the parameters of motor, battery, and solar cell can be obtained. Data of speedboat which been used for the object of this research was: displacement V=0.969 ton; volume V=0.946 m³; velocity $v_s=7$ knot; water line lenght $L_{wl}=7.89$ m; water line area S=4.599 m²; acrossed area $A_P=0.158$ m²; block constant $C_b=0.567$; water depth h=0.3 m. The main data of shunt dc motor was: characteristics of shunt dc motor; power $P_m=2200$ W; terminal voltage $V_t=24$ V; and rotation n=1800 rpm. Then data of battery capacity and solar cell.

Speedboat's data processed by computing mathematical computation. So it yields minimum power capacity which was used by speedboat to move with velocity v_s . Then assumed capacity of shunt dc motor which was higher than the minimum power and computing the motor parameters which needed from motor's data which was obtained before. The last, computing battery and solar cell capacitities from battery's and solar cell's data which was obtained.

From the result of simulation, motor dc shunt which needed to move the speedboat is: motor's power $P_m=2200$ W; rotation n=1800 rpm; voltage $V_t=24$ V; diameter D=0.1217 m; lenght L=0.1338 m; field current $I_f=0.2488$ A; voltage drop $V_{Ra}=0.5040$ V; full load current $I_a=130.7036$ A; armature resistance $R_a=0.0039$ Ω ; efficiency =0.9771; torque $T_a=16.292$ Nm.

Accumulator capacity which needed for one hour is 246,8 Ah. Battery energy in one hour is 5923,1 Wh. So it needed four batteries 24 V 65 Ah parallel connected and three solar cells 200 Wp.

Key words: Shunt dc motor, battery, speedboat, electric power, energy.

BABI

PENDAHULUAN

1.1 **Latar Belakang**

Indonesia merupakan negara kepulauan yang diapit oleh Samudra Hindia dan Samudra Pasifik. Oleh karena itu, Indonesia membutuhkan alat transportasi laut sebagai penghubung antar pulau. Alat transportasi laut telah berkembang mulai dari rakit, sampan, perahu, dan kapal. Speedboat merupakan salah satu alat transportasi laut yang merupakan modifikasi dari perahu, baik dari ukuran, berat, kecepatan, konstruksi badan, dan sistem penggerak.

Transportasi laut dibagi menjadi transportasi penumpang dan transportasi barang. Transportasi laut dapat juga dibagi berdasarkan daya jelajahnya, yaitu: Angkutan Sungai Danau dan Penyeberangan (ASDP), transportasi laut antar pulau, dan transportasi laut negara. ASDP dapat menggunakan kapal Roro (Roll On Roll Off) ataupun antar penggunakan speedboat.

Penggerak perahu bermacam-macam. Mulai penggerak tenaga manusia yakni dayung, penggerak tenaga angin yakni layar, penggerak tenaga bahan bakar yakni motor diesel, dan penggerak tenaga listrik yakni motor listrik. Meskipun telah mencapai perkembangan yang cukup, tetapi masih banyak perahu-perahu di Indonesia yang belum menggunakan motor listrik sebagai penggerak. Seperti perahu dan kapal, Kapal-kapal Indonesia umumnya menggunakan motor diesel sebagai penggerak. Motor diesel tersebut didapat dari mobil truck yang sudah tidak beroperasi. Kapal-kapal yang bertenaga listrik hanya digunakan untuk keperluan tertentu saja, misalnya kapal SAR (Search and Resque), kapal pesiar, kapal selam, dan kapal perang.

Motor diesel tidak hanya mengkonsumsi bahan bakar, tetapi juga menyebabkan polusi udara sebagai akibat dari emisi gas buang dari motor. Efisiensi motor diesel terbilang rendah. Selain itu, motor diesel juga menimbulkan getaran-getaran dan suara bising. Oleh sebab itu, hanya tersisa sedikit energi yang terkonversi menjadi energi gerak. Berbeda halnya dengan motor listrik, rugi-rugi energi yang paling utama pada motor listrik adalah energi panas.

"Lima tahun lagi, mobil listrik diperkirakan akan kompetitif seperti kendaraan bermotor bensin atau diesel." Demikian dikatakan oleh Menteri Energi Amerika Serikat Prof. Dr. Steven Chu. Oleh karena itu, motor listrik adalah salah satu alternatif penggerak kapal. Motor listrik DC membutuhkan sumber listrik untuk bekerja. Diperkirakan sumber listrik arus searah telah mengalami perkembangan yang pesat sehingga kapasitasnya bertambah dan harganya semakin murah. Pengoperasian motor listrik juga bukan menjadi masalah yang rumit. Bahkan ada keunggulan dari motor listrik DC yang motor diesel tidak dapat melakukan keunggulan ini, yakni putaran motor listrik dapat diatur sedemikian sehingga motor tersebut bergerak sesuai dengan yang diinginkan. Bisa jadi pengaturan kecepatan dan torsi motor menggunakan roda gigi (gear box). Oleh karena itu, sehubungan dengan banyaknya keunggulan dari penggunaan motor listrik tersebut, maka akan diadakan penelitian tentang penggunaan motor listrik DC sebagai penggerak *speedboat*.

1.2 Rumusan Masalah

Sehubungan dengan latar belakang yang telah dipaparkan, maka dapat diambil rumusan masalah sebagai berikut:

- 1. Seberapa kapasitas motor DC yang diperlukan untuk menggerakkan speedboat.
- 2. Bagaimana pengaruh torsi terhadap arus dan putaran dari motor DC.
- 3. Seberapa kapasitas akumulator yang diperlukan untuk memberikan suplai daya ke motor DC.

1.3 Batasan Masalah

Agar penelitian ini sesuai dengan rumusan masalah, maka ditentukan batasan masalah sebagai berikut:

- 1. Motor listrik yang digunakan sebagai penggerak *speedboat* adalah motor DC *shunt* yang dicatu oleh baterai.
- 2. Baterai yaitu dapat menyimpan ulang energi listrik (rechargeable).
- 3. Pengujian motor DC *shunt* disimulasikan dengan software MATLAB.
- 4. Tidak membahas simulasi transien motor DC.

1.4 Tujuan

Tujuan dari penelitian ini adalah melakukan pengkajian penggunaan motor listrik DC sebagai penggerak *speedboat* dengan membuat simulasi sehingga dapat menentukan motor listrik yang sesuai dengan kebutuhan dan karakteristik dari *speedboat*.

1.5 Manfaat

Manfaat yang dapat diambil dari penelitian ini adalah untuk meningkatkan penggunaan motor listrik sebagai penggerak *speedboat* yang tidak menggunakan bahan bakar.

1.6 Sistematika Pembahasan

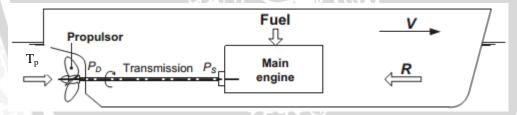
Sistematika pembahasan dalam penelitian ini disusun sebagai berikut:

- **BAB I:** Membahas tentang latar belakang, rumusan masalah, batasan masalah, tujuan, manfaat, dan sistematika pembahasan.
- BAB II: Berisi tentang tinjauan pustaka yang digunakan sebagai dasar penelitian yang akan dilakukan, meliputi: Prinsip kerja dan karakteristik motor diesel sebagai penggerak *speedboat*. Data penelitian motor listrik sebagai penggerak *speedboat*. Prisnsip kerja dan karakteristik motor DC *shunt*. Pengendalian dan penggunaan motor DC beserta kapasitas motor DC. Karakteristik baterai sebagai penyuplai motor DC.
- **BAB III:** Memberikan penjelasan tentang metode yang digunakan dalam penelitian ini yang terdiri dari metode studi literatur, pengambilan data, perhitungan data, analisa data dan simulasi data, serta pengambilan kesimpulan.
- **BAB IV:** Perhitungan kapasitas motor DC *shunt* sebagai penggerak *speedboat*.

 Pengaruh torsi terhadap kecepatan motor listrik DC *shunt*.

 Perhitungan kapasitas baterai.
- **BAB V:** Berisi kesimpulan yang diperoleh dari hasil analisis dan saran.

BAB II


TINJAUAN PUSTAKA

2.1 Teori Penggerak Kapal

Perhitungan daya penggerak kapal adalah dasar untuk proses merancang dan menggunakan sebuah kapal. Pengetahuan tentang daya penggerak menentukan ukuran dan masa dari mesin penggerak dari biaya penggunaan bahan bakar dan biaya operasi. Perhitungan daya didasari fungsi eksperimen, metode numeric dan analisis teori tentang permasalahan daya. Kebutuhan haluan kapal menentukan kesesuaian antara daya terpasang dengan badan kapal. Kepahaman tentang tahanan kapal dan penggerak didasarkan dari sifat dasar dari aliran fluida.

Konsep dari sistem daya dapat dilihat dengan mengkonversi energi bahan bakar menjadi gaya dorong melawan tahanan kapal pada kecepatan yang dibutuhkan. Konsep umum dari konversi energi seperti terlihat pada Gambar 2.1, tergantung pada: (Molland, 2011: 3)

- Jenis, kesesuaian dan kualitas bahan bakar.
- Efisiensi mesin dalam mengkonversi energi bahan bakar menjadi energi putar.
- Efisiensi penggerak (propulsor) dalam mengkonversi daya putaran ke daya dorong.

Gambar 2. 1 Konsep umum dari konversi energi

Sumber: Molland, 2011: 3.

Keterangan: T_p: Gaya dorong

R: Tahanan kapal

V: Kecepatan

Setiap penggerak kapal mempunyai kapasitas daya yang berbeda. Kapasitas daya tersebut dihitung sesuai dengan kebutuhan dan fungsi kapal. Untuk memperkirakan seberapa besar daya yang digunakan oleh penggerak, diperlukan penentuan kecepatan kapal, koefisien-koefisien, margin, faktor korelasi kapal dan berbagai macam efisiensi

seperti Gambar 2.2. Sehingga pada akhirnya akan diketahui seberapa besar kapasitas motor yang akan digunakan sebagai penggerak kapal.

Gambar 2. 2 Komponen-komponen perkiraan daya kapal

Sumber: Molland, 2011: 10.

Pembahasan berikut ini memfokuskan pada performa kapal dan penggerak, bagaimana tahanan R dan Gaya dorong T_p dapat diperkirakan. Komponen utama daya dapat disebut sebagai daya efektif PE untuk mendorong badan kapal pada air tenang adalah: (Molland, 2011: 3)

$$P_E = R_T x V_S \tag{2.1}$$

Dengan R_T: Tahanan total (kN)

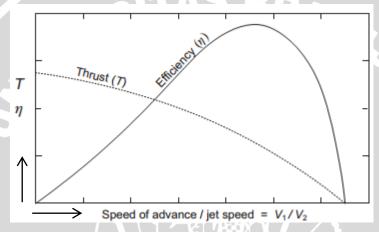
V_S: Kecepatan kapal (m/s)

P_E: Daya efektif (kW)

Efisiensi penggerak η akan menunjukkan daya terkirim PD.

$$P_D = P_E/\eta_D \tag{2.2}$$

Dengan P_D: Daya terkirim (kW)


η_D: efisiensi penggerak

Semua penggerak bekerja pada prinsip memberikan momentum kepada fluida. Kecepatan fluida yang bergerak melalui propulsor bertambah dari v_1 ke v_2 . Gaya dorong T_p yang dihasilkan adalah:

$$T = \dot{\mathbf{m}}(v_2 - v_1)$$

Dengan in: massa per unit waktu

Penggerak kapal yang menggunakan motor diesel, membutuhkan Gaya dorong T_p yang tinggi untuk menggerakkan kapal dari keadaan diam. Kemudian T berkurang sedikit saat terjadi penambahan kecepatan v_1 yang sedikit. Sehingga saat kecepatan maksimum $v_1=v_2$, Gaya dorong T_p yang dibutuhkan adalah nol. Gambar 2.3 menunjukkan karakteristik Gaya dorong T_p dan efisiensi penggerak kapal terhadap rasio kecepatan v_1/v_2 .

Gambar 2. 3 Karakteristik propulsor

Sumber: Molland, 2011: 247.

Mesin diesel paling sering digunakan sebagai penggerak kapal dagang. Efisiensi mesin telah dikembangkan selama 20 tahun silam. Mesin diesel dapat dibagi berdasarkan kecepatan putarnya. Kecepatan rendah (90-130 rpm), kecepatan sedang (400-600 rpm), dan kecepatan tinggi (1000-1800 rpm). Dimensi kapal ditentukan dengan panjang, lebar, tinggi. Sedangkan *displacement* dapat ditentukan sesuai besar konstanta blok: (Molland, 2011: 313)

 $\nabla = LBT_KC_B$

Dengan

abla: displacement

L: Panjang kapal (m)

B: Lebar kapal (m)

T_k: Tinggi kapal (m)

C_B: Konstanta blok

Besar tahanan kapal dapat diketahui melalui nomor Froude Fr dan Reynold Re. Tahanan total terdiri dari penjumlahan antara tahanan gesek, tahanan residu, tahanan udara: (MAN Diesel&Turbo, 2011: 11)

$$R_T = R_F + R_R + R_U \tag{2.3}$$

Dengan R_F: Tahanan gesek (kN)

R_R: Tahanan residu (kN)

R_U: Tahanan udara (kN)

Ketika kapal bergerak pada kecepatan tertentu, maka baik air atau udara memberikan tekanan P sesuai dengan hukum Bernoulli ½pVs². Gaya yang bekerja adalah perkalian tekanan P dengan luas S. Gaya R_F ditentukan dari perkalian antara gaya gesek dengan konstanta gesek C_F: (Karlssen, 2012: 8)

$$R_F = \frac{1}{2} C_F \rho_w S V_S^2 \tag{2.4}$$

Dengan V_s: kecepatan kapal (m/s)

S: Luas lambung kapal di bawah permukaan air (m²)

C_F: Konstanta gesek

 ρ_w : Massa jenis air (ton/m³)

Konstanta gesek dapat ditentukan dari nomor Reynold: (Karlssen, 2012: 8)

$$C_F = \frac{R_F}{\frac{1}{2}\rho_W S V_S^2} = f(R_n)$$

$$R_n = V_S L/v$$
(2.5)
(2.6)

Dengan v: Viskositas air (m^2/s)

(Molland, 2011: 39)

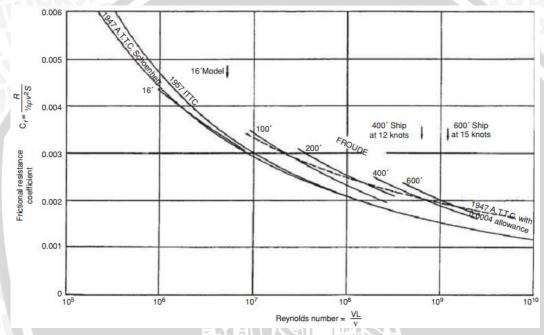
V_S: Kecepatan kapal

L: Panjang kapal

Massa jenis air dan udara dapat dilihat di Tabel 2.1. Sedangkan viskositas air dan udara dapat dilihat di Tabel 2.2.

Tabel 2. 1 Massa jenis air payau, air garam, dan udara

Temperature, °C		10	15	20
Density kg/m ³	FW	1000	1000	998
	SW	1025	1025	1025
[Pressure = 1 atm]	Air	1.26	1.23	1.21


Sumber: Molland, 2011: 474.

Tabel 2. 2 Viskositas air payau, air garam, dan udara

Temperature, °C		10	15	20
Kinematic viscosity m ² /s	10 ⁻⁶	1.30	1.14	1.00
	10 ⁻⁶	1.35	1.19	1.05
[Pressure = 1 atm]	10^{-6}	1.42	1.46	1.50

Sumber: Molland, 2011: 475.

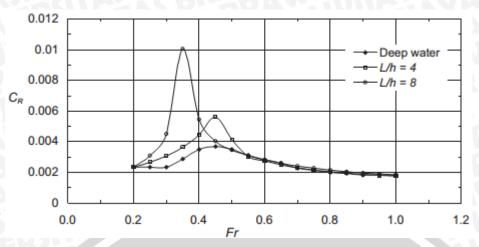
Terdapat beberapa standar untuk menentukan konstanta gesek melalui nomot reynold. Standar yang biasa digunakan adalah ITTC 1957. C_F fungsi dari nomor Reynold dapat dilihat pada Gambar 2.4.

Gambar 2. 4 Perbandingan dari perbedaan formula gesek

Sumber: Molland, 2011: 75.

Tahanan residual air R_R adalah: (Karlssen, 2012: 8)

$$R_R = \frac{1}{2} C_R \rho_w S V_S^2 \tag{2.7}$$


Konstanta residu C_R dapat ditentukan sesuai dengan nomor Froude: (Karlssen, 2012: 9)

$$C_R = \frac{R_R}{\frac{1}{2}\rho_w S V_S^2} = f(F_n)$$
 (2.8)

$$F_n = \frac{v_s}{\overline{gL}} \tag{2.9}$$

Dengan g: Percepatan gravitasi = 9.81 m/s^2 .

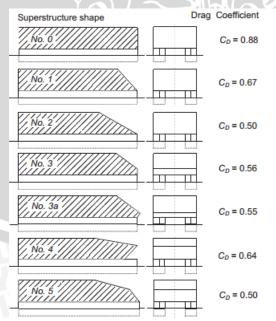
Konstanta residu C_R dipengaruhi oleh perbandingan panjang kapal L dengan kedalaman air h seperti terlihat Gambar 2.5.

Gambar 2. 5 Pengaruh kedalaman air pada tahanan

Sumber: Molland, 2011: 100.

Tahanan udara R_Udapat adalah: (Karlssen, 2012: 9)

$$R_U = \frac{1}{2} C_D \rho_A A_P V_W^2$$


Dengan ρ_A : Massa jenis udara (ton/m³)

C_D: Konstanta udara (0,9).

A_P: Luas badan kapal melawan udara (m²)

V_w: Kecepatan udara (m/s)

Ada perkiraan lain untuk menentukan konstanta udara, yaitu berdasarkan luas bagian yang terkena udara seperti terlihat pada Tabel 2.3 atau Gambar 2.6.

The aerodynamic drag coefficient CD is based on the total transverse frontal area of superstructure and hulls

Gambar 2. 6 Koefisien udara pada struktur kapal feri cepat

Sumber: Molland, 2011: 49.

Tabel 2. 3 Perkiraan koefisien udara berdasarkan area depan

Item	C_D
Square plates	1.1
Two-dimensional plate	1.9
Square box	0.9
Sphere	0.5
Ellipsoid, end on ($Re \ 2 \times 10^5$)	0.16

Sumber: Molland, 2011: 46.

Total fraksi laju air w_T adalah sebagai berikut: (Molland, 2011: 144)

$$w_T = \frac{(V_S - V_{ad})}{V_S} \tag{2.11}$$

Dengan V_S: Kecepatan kapal

V_{ad}: Kecepatan air setelah melewati lambung kapal (m/s).

Biasanya total fraksi laju air w_T adalah 0.20-0.40 dengan potensial laju air 0.08-0.12, gesekan laju air 0.09-0.23, gelombang laju air 0.03-0.05. (Molland, 2011: 146)

Suhu mempengaruhi pergerakan udara. Daerah tertentu mempunyai kecepatan udara tertentu, sehingga mempengaruhi besarnya konstanta udara. Kecepatan udara dapat dilihat menggunakan skala Beaufort pada Tabel 2.4.

Tabel 2. 4 Skala Beaufort

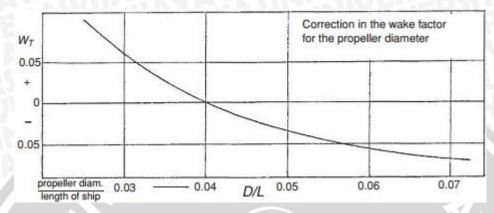
Donnefort		Limits	A	
Beaufort number BN	Description	knots	m/s	Approximate wave height (m)
0	Calm	1	0.3	_
1	Light air	1-3	0.3-1.5	_
2	Light breeze	4-6	1.6-3.3	0.7
3	Gentle breeze	7-10	3.4-5.4	1.2
4	Moderate breeze	11-16	5.5-7.9	2.0
5	Fresh breeze	17-21	8.0-10.7	3.1
6	Strong breeze	22-27	10.8-13.8	4.0
7	Near gale	28-33	13.9-17.1	5.5
8	Gale	34-40	17.2-20.7	7.1
9	Strong gale	41-47	20.8-24.4	9.1
10	Storm	48-55	24.5-28.4	11.3
11	Violent storm	56-63	28.5-32.6	13.2
12	Hurricane	64 and over	32.7 and over	-

Sumber: Molland, 2011: 49.

Konstanta lanjut propeller Jadalah: (Molland, 2011: 95)

$$J = \frac{V_{ad}}{n_P d} = \frac{V_S(1 - w_T)}{n_P d} \tag{2.12}$$

Dengan n_P: Putaran propeller (rps)


d: Diameter propeller (m)

$$w_T = 1 - \frac{v_{ad}}{v_s} = 1 - \frac{ndJ}{ndJ_b} = 1 - \frac{J}{J_b}$$
 (2.13)

Menurut Taylor total fraksi laju air w_T: (Molland, 2011: 156)

$$w_T = 0.5C_B - 0.05 \tag{2.14}$$

Diameter propeller yang digunakan juga ditentukan dari Gambar 2.7.

Gambar 2. 7 Fraksi laju air untuk kapal single-screw

Sumber: Molland, 2011: 157.

Faktor deduksi dorong t adalah: (Molland, 2011: 145)

$$t = \frac{(T - R_T)}{T}$$

atau

$$T = \frac{R_T}{(1-t)} \tag{2.15}$$

Untuk lambung single-screw pendekatan faktor deduksi dorongnya adalah: (Molland, 2011: 158)

$$t = k_R w_T (2.16)$$

Dengan k_R : antara 0.5 (sirip kemudi tipis) dan 0.7 (sirip kemudi tebal). (Molland, 2011: 158)

Komponen koefisien quasi-propulsive adalah: (Molland, 2011: 256)

$$\eta_D = \eta_O \eta_H \eta_R \tag{2.17}$$

Dengan η_0 : Efisiensi *open water*

η_H: Efisiensi lambung

 η_R : Efisiensi rotasi relatif

Efisiensi *open-water* dari propeller tergantung pada diameter propeller (D), Rasio *pitch* (P/D), dan putaran (rpm). Untuk ketetapan parameter propeller η_0 dapat dipertimbangkan sebagai: (Molland, 2011: 256)

$$\eta_0 = \eta_a \eta_{dr} \eta_f$$

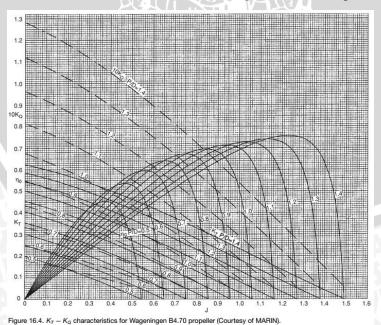
Dengan η_a adalah efisiensi ideal berdasarkan prinsip momentum axial untuk jumlah bilah terbatas. n_{dr} jumlah rugi dikarenakan rugi gesek drag. Biasanya disarankan mengambil nilai komponen tersebut pada beban dorong moderat, dengan $\eta_a = 0.8$, $\eta_{dr} =$ 0.95, $\eta_f = 0.85$. maka $\eta_0 = 0.646$. Penurunan komponen tersebut penting karena upaya penghematan dapat ditingkatkan, seperti pre- atau post-swirl untuk meningkatkan n_{dr}, atau pembuatan permukaan propeller untuk meningkatkan η_f. (Molland, 2011: 256)

ηο juga dapat ditentukan dari berbagai nilai konstanta, sebagai berikut: (Molland, 2011: 267)

$$\eta_{O} = \frac{JK_{T}}{2\pi K_{Q}}$$
Dengan $J: Konstanta\ lanjut = \frac{V_{ad}}{n_{P}d}$

$$K_{T}: Konstanta\ dorong$$
(2.18)

K_T: Konstanta dorong


Ko: Konstanta torsi

Dengan koefisien dorong K_T dan koefisien K_Q torsi sebagai berikut: (Molland, 2011: 377)

$$K_T = K_{TO}(1 - \left(\frac{J}{a}\right)^n)$$
 (2.19)

$$K_Q = K_{QO}(1 - \frac{J}{b}^m) \tag{2.20}$$

Efisiensi open water no juga dapat ditentukan setelah diketahui nilai koefisien advance J, dengan melihat Gambar 2.8. karakteristik open water sebagai berikut:

Gambar 2. 8 K_T-K_Q untuk propeller wageningen B4.70 (courtesy of marin)

Sumber: Molland, 2011: 374.

(2.23)

Cara menggunakan grafik diatas adalah:

- (a) Buka grafik (B4.40 Gambar 2.8) misalnya pada J= 0.512
- (b) Baca P/D yang sesuai, dari K_T (=0.162) yang didapat, = 0.79
- (c) Baca η_0 yang sesuai, dari P/D yang didapat, = 0.588
- (d) Baca K_Q yang sesuai, dari P/D yang didapat, = 0.0225.

Dari Gambar 2.8, diperoleh data rasio pitch seri wageningen B4.70 dapat seperti terlihat pada Tabel 2.5.

Tabel 2. 5 Koefisien K_T dan K_Q, persamaan (2.20, 2.23), B470

P/D	K_{To}	a	n	K_{Qo}	b	m
0.5	0.200	0.55	1.15	0.0180	0.70	1.18
0.6	0.250	0.65	1.20	0.0250	0.79	1.18
0.7	0.300	0.75	1.20	0.0332	0.86	1.20
0.8	0.352	0.86	1.20	0.0433	0.95	1.23
0.9	0.405	0.96	1.20	0.0545	1.03	1.29
1.0	0.455	1.06	1.20	0.0675	1.12	1.29
1.1	0.500	1.16	1.21	0.0810	1.22	1.30
1.2	0.545	1.27	1.21	0.0960	1.32	1.31

Sumber: Molland, 2011: 378.

Efisiensi rotasi relatif η_R adalah sebagai berikut: (Molland, 2011: 155)

$$\eta_{R} = \frac{\eta_{b}}{\eta_{O}} = \frac{J_{O}K_{Tb}}{2\pi K_{Qb}} \frac{2\pi K_{QO}}{J_{O}K_{TO}} = \frac{K_{Tb}}{K_{TO}} \frac{K_{QO}}{K_{Qb}}$$

$$T_{P} = K_{T}\rho_{w}d^{4}n_{P}^{2}$$

$$Q_{P} = K_{Q}\rho_{w}d^{5}n_{P}^{2}$$
(2.21)
$$(2.22)$$

$$P_{P} = 2\pi n_{P} Q_{P} = 2\pi K_{Q} \rho_{w} d^{5} n_{P}^{3}$$
(2.24)

Pada kapal dengan satu propeller, efisiensi rotasi relatif pada keadaan normal antara 1.0 hingga 1.07 (MAN: Diesel&Turbo, 2011: 16). Skala efisiensi rotasi relatif biasanya dari 0.95-1.05 dan sering digunakan untuk kesatuan tujuan persiapan desain (Molland, 2011: 411). Dengan kombinasi w_T dan t, η_R mungkin sering digunakan untuk menentukan hasil tes model tank ke teori.

Untuk efisiensi lambung, didefinisikan sebagai berikut: (Molland, 2011: 411)

$$\eta_H = \frac{1 - t}{1 - w_T} \tag{2.25}$$

Sedangkan faktor korelasi kapal/faktor beban: (Molland, 2011: 86)

$$SCF = 1.2 - \frac{\sqrt{L}}{48}$$

Tabel 2. 6 Nilai faktor korelasi kapal SCF(1+x)

L_{BP} (m)	122	150	180	240	300
Froude friction line	0.97	0.93	0.90	0.86	0.85
ITTC friction line	1.17	1.12	1.08	1.04	1.02

Note: for L < 122 m, SCF = 1.0 assumed.

Sumber: Molland, 2011: 86.
Tabel 2. 7 Tabel Konversi

1 m = 3.28 ft	1 kg = 2.205 lb	1 mile/hr = 1.61 km/hr
1 km = 1000 m	1 kgne = 1000 kg	1 knot = 1 Nm/hr
1 ft = 12 in.	1 kg = 2240 lb	1 knot = 0.5144 m/s
1 mile = 5280 ft	1 lb = 4.45 N	1 HP = 0.7457 kW
1 nautical mile (Nm) = 6078 ft	1 lbs/in. 2 = 6895 N/m 2	1 UK gal = 2.236 litres
1 in. = 25.4 mm	1 bar = 14.7 lbs/in.^2	$Fr = 0.2974 \ V_K/\sqrt{L_f}$

Sumber: Molland, 2011: xx.

2.2 Penelitian Speedboat

Hadi, dkk. melakukan penelitian tentang *speedboat* katamaran di Pantai Gunung Kidul. Mereka mendefinisikan *speedboat* merupakan kategori kapal cepat yang mempunyai kecepatan lebih yang digunakan oleh petugas dalam rangka memberikan pertolongan bila terjadi kecelakaan, dan atau inspeksi/pemeriksaan di pantai, sungai, danau dan penyeberangan. Karakteristik *speedboat* sebagai berikut: (Hadi, 2012: 6)

- Digunakan untuk membantu kelancaran operasional di alur pantai, sungai, danau dan penyeberangan.
- Mempunyai olah gerak yang baik.
- Kapal mempunyai ukuran dan berat yang kecil dan terbuat dari fibreglass yang ringan.
- Kecepatan dapat mencapai 20 knot atau lebih.
- Area navigasi pada suatu kawasan yang tidak lebih dari radius 30 mil dari garis pantai.

Basir, dkk. meneliti kapal THE GANERS (*The Garbage Cleaners Ship*) yang merupakan inovasi teknologi pembersih sampah yang mengambil prinsip Kapal Trimaran

(Tiga Lambung) untuk digunakan di Teluk Jakarta. Pertimbangan ukuran dari kapal tersebut berdasarkan standar dari klasifikasi BKI adalah sebagai berikut:

- Tinggi T=2.5 m
- Panjang L= 6m
- Lebar B = 2m
- Kecepatan maksimal $V_S = 5$ knot

Tabel 2. 8 Spesifikasi mesin

Spesifikasi Mesin							
Motor	12 Volt DC, 5	Kecepatan	7 Knot				
Penggerak	HP	•					
Sistem	Variabel	Berat	20 Kg				
Kecepatan		Mesin					
Sistem	10 A - 20 A DC	Panjang	30 cm				
Baterai	output						
	(Charging)						
Baterai	Lead Acid, 2 x	Lebar	30 cm				
	65 Ah, 12 Volt						
Gear Box	Terkopel langsung dengan perbandingan						
(Transmisi)	1:10						

Sumber: Idham A.M. Basir, 2010: 86.

Sudiyono (2008) dalam penelitian mereka juga telah mendesain kapal wisata untuk melayani rute pariwisata di kota Surabaya yang memakai motor listrik sebagai penggerak kapal wisata mereka. Waktu pengisian baterai dari solar sell 3,3 jam pada kondisi baterai kosong sampai penuh. Data kapal tersebut:

- Panjang garis air Lwl= 3,01 m
- Lebar B=1,38 m
- Tinggi T=0.27 m
- Kecepatan kapal $V_S = 3$ knot

Pada penelitian Kajian Aplikasi Sel Surya sebagai Sumber Tenaga Penggerak Kapal yang ditulis oleh Chandra, dkk. Kapal tersebut diuji di Pulau Bidadari, daerah utara Pantai Ancol. Spesifikasi kapal yang dipakai adalah:

- Displacement: $\nabla = 0.969$ ton
- Volume: $V = 0.946 \text{ m}^3$
- Kecepatan kapal: $V_S = 7$ knot
- Panjang garis air: $L_{wl} = 7.89 \text{ m}$
- Area garis air: $S = 4.59 \text{ m}^2$
- Luas daerah melintang: $A = 0.158 \text{ m}^2$

- Konstanta blok: $C_B = 0.567$
- Kedalaman kapal terbenam air: h = 0.3 m

Tim Solar Boat dari ITS membuat kapal tenaga surya "Jalapatih" untuk perlombaan di daerah sungai sepanjang 200 km. Daerah pengujian kapal di sungai sekitar ITS. Berikut adalah data kapal:

- Tegangan Baterai: 12 V
- Amp H Baterai: 10 Ah
- Jumlah Baterai: 8 buah
- Dimensi utama: 5 x 1.5 x 0.6 x 0.25 (panjang x lebar x tinggi x T)
- Berat: 450 kg tanpa awak
- Daya Motor: Motor DC Torqueedo 1003L 2kW
- Putaran Motor: 1200 rpm
- Tegangan Motor: 24 V
- Arus motor pada keccepatan maksimal: 83 A
- Kecepatan maksimal: 8 knot atau 14.4 km/jam
- Efisiensi Modul Surya: 19.3%
- Propeler: B3 (15 cm)

Speedboat memiliki bermacam-macam spesifikasi sesuai dengan kebutuhan yang ditunjukkan oleh all4solar dalam "Australia, New Zealand, Asia, Pasific Project references for advanced electric boat propulsion" sistem.

Dari data-data tersebut *speedboat* memiliki:

- Kecepatan antara 4-20 knot.
- Kecepatan putar antara 1200-3000 rpm.
- Daya motor listrik antara 1.8-30 kW.
- Tegangan kerja motor listrik antara 48-244 V.

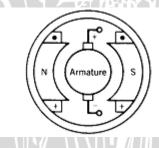
2.3 Prinsip Kerja Motor DC

Sebuah persamaan dapat diturunkan untuk tengangan terinduksi dalam sebuah konduktor yang bergerak dalam sebuah medan magnet. Polaritas tegangan terinduksi dapat ditentukan dengan kaidah tangan kanan sekrup. Jika sebuah konduktor bergerak pada kecepatan linier dalam sebuah medan magnet, tegangan terinduksi pada konduktor adalah: (Sen, 1997: 122)

$$e = B l v ag{2.26}$$

Dengan B: Medan magnet

l: Panjang konduktor


v: Kecepatan linier

Untuk konduktor yang teraliri arus, Arah gaya ditentukan dengan menggunakan kaidah tangan kanan sekrup, gaya Lorentz yang dihasilkan pada konduktor adalah: (Sen, 1997: 123)

$$f = B l i \tag{2.27}$$

Dengan i: Arus mengalir pada konduktor

Ada dua bagian utama dari mesin: stator dan rotor. Stator adalah bagian dari mesin tidak bergerak, umumnya bingkai luar mesin. Rotor adalah bagian dari mesin bebas bergerak, umumnya bagian dalam mesin. Beberapa konduktor diletakkan pada alur dari stator atau rotor untuk membentuk belitan. Belitan dengan tegangan dapat terinduksi disebut belitan *armature* (jangkar). Belitan yang dialiri arus untuk menghasilkan sumber primer dari medan pada mesin disebut belitan *field* (medan). Permanen magnet digunakan pada beberapa mesin untuk menghasilkan medan. Pada mesin de, belitan medan diletakkan pada stator dan belitan jangkar pada rotor. Belitan ini ditunjukkan Gambar 2.9. Arus dc mengalir melalui belitan medan untuk menghasilkan flux pada mesin.

Gambar 2. 9 Skematik mesin DC untuk 2 kutub

Sumber: Sen, Principles of Electric Machines and Power Electronic, 1997.

Tegangan terinduksi pada belitan jangkar adalah tegangan bolak-balik. Sebuah komutator mekanik dan sebuah sikat menghimpun fungsi sebagai penyearah atau pembalik, sehingga tegangan terminal jangkar menjadi satu arah.

Selama jangkar berputar pada medan magnet yang dihasilkan oleh kutub stator, dihasilkan tegangan terinduksi pada belitan jangkar. Kita dapat memulai dengan memperhatikan tegangan terinduksi pada lilitan disebabkan perubahan flux (hukum Faraday). Misalnya sebuah lengkung terdiri dari dua konduktor, maka tegangan terinduksi dari persamaan 2.27 adalah: (Sen, 1997: 137)

$$e_t = 2B(\theta)l\omega_m r \tag{2.28}$$

Dengan 1: Panjang konduktor pada alur jangkar

ω_m: Kecepatan mekanik

r: Jari-jari jangkar

Nilai rata-rata dari tegangan terinduksi adalah

$$\overline{e}_{t} = 2\overline{B(\theta)}l\omega_{m}r \tag{2.29}$$

$$\overline{B(\theta)} = \frac{\Phi}{A} = \frac{\Phi p}{2\pi rl} \tag{2.30}$$

Dengan φ: Flux tiap kutub

Dari persamaan 2.29 dan 2.30,

Dengan
$$\varphi$$
: Flux tiap kutub

A: Area tiap kutub = $2\pi rl/p$

Dari persamaan 2.29 dan 2.30,
$$\bar{e}_{t} = \frac{\Phi p}{\pi} \omega_{m}$$
(2.31)

Tegangan terinduksi pada semua lengkung terhubung seri untuk satu jalur parallel melewati sikat positif dan negatif akan berpengaruh pada tegangan terminal Ea, maka:

$$E_{\rm a} = \frac{N}{a} \bar{e}_{\rm t} \tag{2.32}$$

N: Jumlah lengkung pada belitan jangkar

a: Jumlah jalur parallel

dari persamaan 2.31 dan 2.32,

$$E_a = \frac{Np}{\pi a} \Phi \omega_m$$

$$E_a = K_a \Phi \omega_m$$

Dengan K_a : Konstanta jangkar = $\frac{Np}{\pi a} = \frac{Zp}{2\pi a}$

Z: Jumlah total konduktor pada belitan jangkar

Atau

$$E_a = K_a \Phi 2\pi n_m \tag{2.33}$$

$$n_m = \frac{E_a}{2\pi\Phi K_a} \tag{2.34}$$

Jika φ dalam weber dan ω_m dalam radian per detik, maka E_a dalam volt. Persamaan tegangan induksi pada belitan jangkar sesuai dengan operasi dari mesin. Pada generator disebut sebagai tegangan terbangkitkan. Pada motor disebut sebagai emf balik.

Ada variasi metode untuk menurunkan torsi pada jangkar (ketika belitan jangkar dialiri arus pada medan magnet dihasilkan oleh kutub stator). Tetapi, metode sederhana dengan menggunakan gaya Lorentz.

Jika dua konduktor diletakkan dibawah dua kutub bersebelahan, maka gaya pada konduktor jangkar adalah: (Sen, 1997: 138)

$$f_c = B \theta l i_c = B \theta l \frac{l_a}{a}$$
(2.35)

Dengan i_c: arus konduktor belitan jangkar

I_a: arus terminal jangkar

Torsi yang dihasilkan konduktor adalah

$$T_c = f_c r (2.36)$$

Rerata torsi yang dihasilkan sebuah konduktor adalah

$$\overline{T}_{c} = \overline{B(\theta)} l \frac{I_{a}}{a} r \tag{2.37}$$

Dari persamaan 2.30 dan 2.36

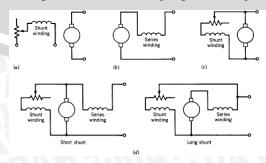
$$\overline{T}_{c} = \frac{\Phi p I_{a}}{2\pi a} \tag{2.38}$$

Semua konduktor pada belitan jangkar menghasilkan torsi dengan arah yang sama dan berpengaruh terhadap rerata torsi. Total torsi yang dihasilkan:

$$T = 2N\overline{T}_c \tag{2.39}$$

Dari persamaan 2.37 dan 2.38,

$$T = \frac{Np}{\pi a} \Phi I_a = K_a \Phi I_a \tag{2.40}$$

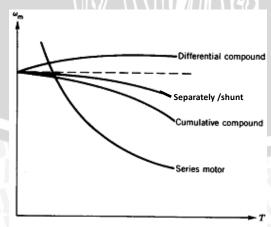

Atau

$$I_a = \frac{T}{\kappa_a \Phi} \tag{2.41}$$

Pada motor, dengan mengabaikan rugi poros terhadap bantalan, daya jangkar (Ea I_a) ke medan magnet dengan sistem elektrik sama dengan daya mekanik (Tω_m). Dari persamaan 2.33 dan 2.39,

$$P_a = E_a I_a = T \omega_m = K_a \Phi I_a \omega_m \tag{2.42}$$

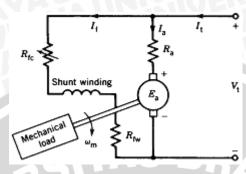
Variasi hubungan rangkaian medan dan jangkar ditunjukkan Gambar 2.10.



Gambar 2. 10 Mesin dc. (a) Penguat terpisah. (b) Seri. (c) Shunt. (d) Kompon Sumber: Sen, 1997: 145.

Pada mesin de penguat terpisah (Gambar 2.10a), belitan medan diberi penguatan dari sumber terpisah. Pada mesin de penguat sendiri, belitan medan dapat dihubungkan tiga cara berbeda. Belitan medan dapat dihubung seri dengan belitan jangkar (Gambar 2.10b), menghasilkan mesin dc seri. Belitan medan dapat dihubung berseberangan dengan belitan jangkar, menghasilkan mesin de shunt (Gambar 2.10c). Bisa juga keduanya digunakan, menghasilkan mesin de kompon (Gambar 2.10d). Jika belitan shunt dihubungkan parallel dengan belitan jangkar, maka disebut kompon pendek. Jika belitan shunt dihubung parallel dengan belitan jangkar dan belitan seri yang terhubung seri, maka disebut kompon panjang. Tidak ada perbedaan yang signifikan pada kedua hubungan tersebut seperti pada Gambar 2.10d. Pada motor kompon, mmf belitan seri dapat membantu atau melawan mmf belitan medan *shunt*. Sehingga menghasilkan performa karakteristik berbeda.

Rangkaian medan dan jangkar dapat dihubungkan dalam cara bervariasi untuk menghasilkan performa karakteristik yang luas-sebuah keuntungan lebih dari mesin dc. kutub medan dapat dihasilkan dengan dua belitan medan, belitan medan shunt dan belitan medan seri. Belitan shunt mempunyai jumlah lengkung banyak dan hanya membutuhkan arus kecil kurang dari 5% arus jangkar (Sen, 1997: 144). Shunt karena belitan medan dihubungkan parallel dengan belitan jangkar. Seri karena belitan medan dihubungkan seri dengan belitan jangkar. Rheostat umumnya dipasang pada rangkaian belitan shunt, untuk mengatur arus medan dan dengan demikian mmf medan bervariasi. Penguat medan juga dapat menggunakan magnet permanen, menghasilkan penguatan konstan. Bentuk ini dapat dipertimbangkan sebagai mesin penguat terpisah.


Karakteristik torsi-kecepatan dari berbagai motor de ditunjukkan pada Gambar 2.11. Motor seri menghasilkan karakteristik variasi kecepatan dalam skala luas.

Gambar 2. 11 Karakteristik torsi-kecepatan dari motor dc yang berbeda Sumber: Sen, 1997: 181.

2.3.1 Motor DC Shunt

Sebuah diagram skematik dari motor de *shunt* ditunjukkan pada Gambar 2.12. Arus jangkar I_a dan kecepatan motor ω_m tergantung dari beban mekanik yang terhubung ke as motor.

Gambar 2. 12 Rangkaian ekivalen motor dc shunt

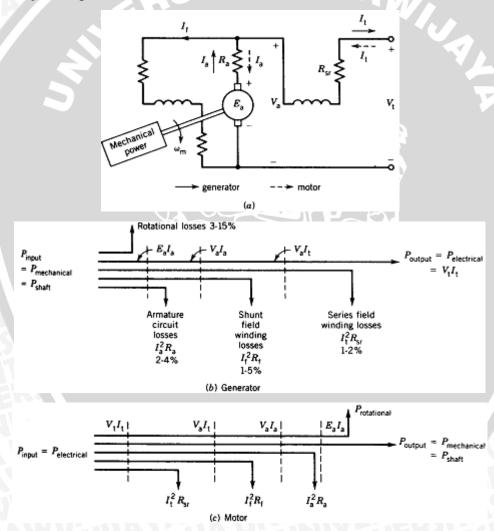
Sumber: Sen, 1997: 168.

Rangkaian jangkar dan rangkaian medan *shunt* dihubungkan berseberangan dengan sebuah sumber dc dengan tegangan konstan V_t. Sebuah rheostat external (R_{fc}) digunakan dalam rangkaian medan untuk mengatur kecepatan dari motor. Motor mendapat daya dari sumber dc, oleh karena itu I_t mengalir ke mesin dari terminal positif sumber dc. Karena rangkaian medan dan rangkaian jangkar dihubungkan ke sumber dc tegangan konstan, hubungan untuk penguat terpisah dan penguat *shunt* sama. Perilaku dari rangkaian medan tergantung dari rangkaian jangkar. Persamaan operasi *steady-state* motor dc *shunt* adalah sebagai berikut: (Sen, 1997: 168)

$$E_{a} = K_{a}\Phi\omega_{m}$$

$$I_{t} = I_{a} + I_{f}$$

$$V_{t} = I_{a}R_{a} + E_{a}$$
Atau
$$E_{a} = V_{t} - I_{a}R_{a}$$
(2.44)


Persentasi rugi tergantung dari ukuran dari mesin dc. Skala persentasi rugi ditunjukkan pada Gambar 2.13 adalah untuk mesin dc pada skala 1 sampai 100 kW atau 1 sampai 100 hp. Mesin yang lebih kecil mempunyai persentasi rugi yang lebih besar, sedangkan mesin yang lebih besar mempunyai persentasi rugi yang lebih kecil. Efisiensi dari mesin adalah:

$$\eta_m = \frac{P_{output}}{P_{input}} = \frac{E_a I_a}{V_t I_t} \tag{2.45}$$

Pada banyak aplikasi, motor de digunakan untuk menggerakkan beban mekanik. Beberapa aplikasi membutuhkan kecepatan konstan selama perubahan beban mekanik terpasang ke motor. Dengan kata lain, beberapa aplikasi membutuhkan kecepatan yang dapat dikontrol dalam skala luas. Teknisi yang berkeinginan menggunakan motor de untuk aplikasi tertentu harus mengetahui hubungan antara torsi dan kecepatan dari sebuah mesin. (Sen, 1997: 174)

Aliran daya pada mesin dc ditunjukkan Gambar 2.13. Variasi rugi-rugi pada mesin terlihat dan nilainya sebagai persentasi dari daya masuk yang ditunjukkan. Mesin dc kompon pendek dipertimbangkan sebagai sebuah contoh.

Daya tersisa digunakan sebagai keluaran daya listrik. Variasi daya dan rugi dalam motor ditunjukkan pada Gambar 2.13c.

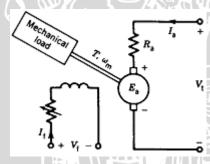
Gambar 2. 13 Rugi daya pada mesin dc

Sumber: Sen, 1997: 169.

Dengan operasi sebagai generator (Gambar 2.13b), daya masuk adalah daya mekanik diturunkan dari prime mover. Bagian dari daya masuk adalah rugi rotasional yang dibutuhkan untuk memutar mesin melawan celah udara dan gesekan (rugi inti rotor juga termasuk dalam rugi rotasional).

Sisa dari daya terkonversi menjadi daya listrik EaIa. Sebagian daya ini hilang dalam R_a (yang termasuk rugi sikat), sebagian hilang dalam R_f (=R_{fc} + R_{fw}), dan sebagian hilang dalam R_{sr}.

Anggap motor dc penguat terpisah ditunjukkan Gambar 2.14. Tegangan, arus, kecepatan, dan torsi terhubung sebagai berikut: (Sen, 1997: 174)


$$E_a = K_a \Phi \omega_m = V_t - I_a R_a$$
$$T = K_a \Phi I_a$$

Dari kedua persamaan diatas, dengan mengabaikan 2Es, kecepatan adalah:

$$\omega_{\rm m} = \frac{V_{\rm t} - I_{\rm a} R_{\rm a}}{K_{\rm a} \Phi} \tag{2.46}$$

Dari persamaan 2.41 & 2.46,

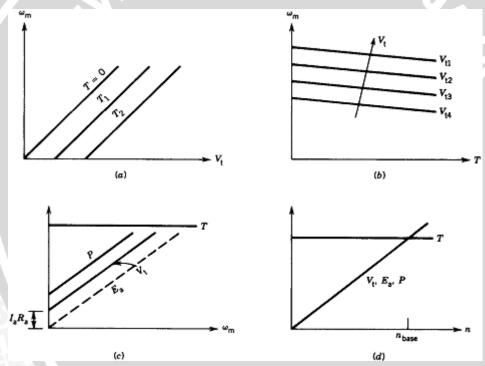
$$\omega_{\rm m} = \frac{V_{\rm t}}{K_{\rm a}\Phi} - \frac{R_{\rm a}}{(K_{\rm a}\Phi)^2}T\tag{2.47}$$

Gambar 2. 14 Motor de penguat terpisah

Sumber: Sen, 1997: 174.

Penurunan pada kecepatan terhadap penambahan torsi adalah kecil, menghasilkan pengaturan kecepatan yang bagus. Pada mesin sebenarnya, flux φ akan bertambah karena reaksi jangkar sebagai T atau Ia, sehingga penurunan kecepatan akan berkurang. Reaksi jangkar menambah pengaturan kecepatan pada sebuah motor dc.

Persamaan 2.47 menyarankan pengaturan kecepatan dalam mesin dc dapat diperoleh dengan metode sebagai berikut: (Sen, 1997: 175)

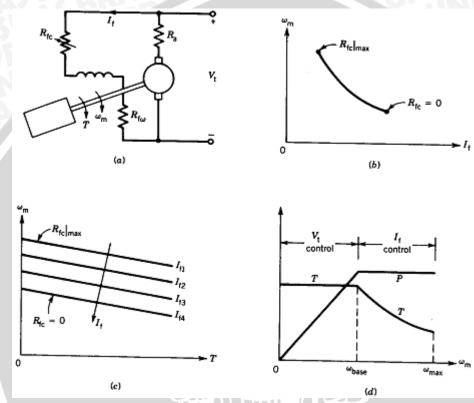

- 1 Pengaturan tegangan terminal (V_t)
- Pengaturan medan (φ) 2
- Pengaturan tahanan jangkar (R_a)

Dalam kenyataanya, kecepatan dalam sebuah mesin de bertambah jika V_t bertambah dan berkurang jika (φ) atau R_a bertambah. Pada metode penaturan tegangan jangkar, tahanan jangkar (Ra) tetap tidak berubah, arus medan If dijaga konstan (umumnya pada nilai nominal), dan tegangan terminal jangkar bervariasi untuk mengubah kecepatan. Jika reaksi jangkar diabaikan, dari pers 4.48.

$$\omega_m = K_1 V_t - K_2$$
Dengan $K_1 = 1/Ka\varphi$

$$K_2 = Ra/(Ka\varphi^2)$$

Untuk torsi yang konstan, seperti aplikasi pada elevator atau hoist crane, kecepatan akan berubah secara linier dengan V_t ditunjukkan Gambar 2.15a. Jika tegangan terminal dijaga konstan dan torsi beban bervariasi, kecepatan dapat diatur dengan V_t ditunjukkan Gambar 2.15b.


Gambar 2. 15 Pengaturan tegangan jangkar motor dc. (a) Variasi kecepatan. (b) Pengaturan kecepatan. (c) Operasi dibawah torsi konstan. (d) Operasi Ra=0

Sumber: Sen, 1997: 176.

Dalam aplikasi nyata, ketika kecepatan berubah dengan mengubah tegangan terminal, arus jangkar dijaga konstan (butuh operasi loop tertutup). Jika Ia konstan, Ea sebanding dengan V_t , sebanding dengan ω_m .

Pada metode pengaturan medan, tahanan jangkar (Ra) dan tegangan terminal Vt tetap konstan dan kecepatan diatur dengan mengubah arus rangkaian medan (I_f). Pada umumnya diperoleh dengan menggunakan rangkaian rheostat medan (R_{fc}) ditunjukkan pada Gambar 2.16a.Kecepatan bervariasi berkebalikan dengan arus medan ditunjukkan pada Gambar 2.16b. terlihat bahwa jika arus rangkain medan mencapai nol, kecepatan menjadi sangat berbahaya tinggi.

Pada nilai I_f tertentu, kecepatan tetap konstan pada level dimana torsi bertambah. Level kecepatan dapat diatur dengan If seperti Gambar 2.16c. Seperti kontrol tegangan jangkar, kontrol medan dapat menghasilkan variasi kecepatan sama baik dengan operasi pengaturan kecepatan.

Gambar 2. 16 Pengaturan medan

Sumber: Sen, 1997: 177.

Jika diasumsikan linearitas magnetic, flux pada mesin (ϕ) akan setara dengan arus medan (If). Oleh karena itu: (Sen, 1997: 177)

$$K_a \Phi = K_f I_f$$

$$\omega_m = \frac{V_t}{K_f I_f} - \frac{R_a}{(K_f I_f)^2} T$$

Untuk kondisi tanpa beban, T=0,

$$\omega_m \approx \frac{V_t}{K_f I_f}$$

Untuk nilai I_f tertentu,

$$\omega_m = K_3 - K_4 T$$

Dengan $K_3 = V_t/K_tI_f$ merepresentasikan kecepatan tanpa beban

$$K_4 = R_a/(K_f I_f)^2$$

Pengaturan kecepatan dari nol ke kecepatan dasar biasanya diperoleh dengan pengaturan tegangan jangkar (V₁). Pengaturan kecepatan diatas kecepatan dasar diperoleh dengan mengurangi arus medan, disebut pelemahan medan. Pada kecepatan dasar, tegangan terminal jangkar pada nilai nominalnya. Jika arus jangkar tidak melebihi arus nominal (batas pemanasan), pengaturan kecepatan diatas kecepatan terhalang daya konstan, disebut sebagai operasi daya konstan. Dengan mengabaikan rugi poros terhadap bantalan, maka:

$$P = V_1 I_a$$
, constant $\approx E_a I_a$

$$T\omega_m = E_a I_a$$

$$T = \frac{E_a I_a}{\omega_m} \approx \frac{\text{constant}}{\omega_m}$$

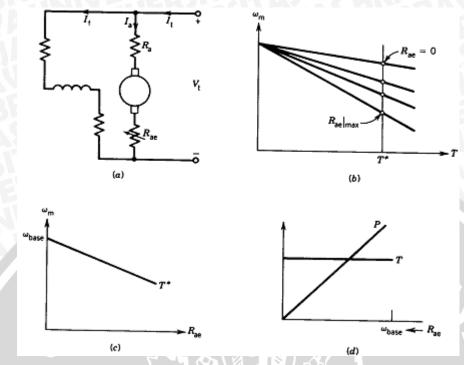
Torsi berkurang dengan kecepatan dalam daerah pelemahan medan. Keterangan dari pengaturan tegangan jangkar (operasi torsi konstan) dan pengaturan medan (operasi daya konstan) ditunjukkan Gambar 2.16d.

Pengaturan medan sederhana untuk diterapkan dan lebih murah, karena pengaturan pada tingkat daya rendah dari rangkaian medan. Tetapi, karena besarnya induktansi pada rangkaian medan, perubahan arus medan akan lambat, yang akan menghasilkan respon lambat pada kecepatan.

Pada metode pengaturan tahanan jangkar tegangan terminal jangkar V_t dan arus medan I_f (φ) dijaga konstan pada nilai nominalnya. Kecepatan diatur dengan mengubah tahanan dalam rangkaian jangkar. Rangkaian rheostat jangkar Rae, seperti pada Gambar 2.17a, digunakan untuk tujuan ini.,

$$\omega_{\rm m} = \frac{V_{\rm t}}{K_{\rm a}\Phi} - \frac{R_{\rm a} + R_{\rm ac}}{(K_{\rm a}\Phi)^2} T$$

Jika Vt dan φ tetap tidak berubah,


$$\omega_{\rm m} = K_5 - K_6 T$$

Dengan $K_5 = Vt/Ka\varphi$ menunjukkan kecepatan tanpa beban

$$K_6 = \frac{R_a + R_{ae}}{(K_a \Phi)^2}$$

Karakteristik kecepatan-torsi untuk variasi nilai tahanan rangkaian jangkar external ditunjukkan pada Gambar 2.17b. nilai dari Rae dapat diatur untuk memperoleh variasi kecepatan selama arus jangkar I_a (torsi $T = K_a \varphi I_a$) tetap konstan. Gambar 2.17b menunjukkan variasi nilai Rae yang dibutuhkan untuk operasi pada nilai torsi tertentu, T*.

Kurva tahanan kecepatan dapat bervariasi dari nol ke kecepatan dasar pada torsi konstan, seperti ditunjukkan Gambar 2.17d, dengan mengubah tahanan external (R_{ae}).

Gambar 2. 17 Pengaturan tahanan jangkar

Sumber: Sen, 1997: 179.

Pengaturan tahanan jangkar sederhana untuk diterapkan. Tetapi, metode ini kurang efisien karena rugi pada R_{ae} . Banyak sistem kendaraan transit tetap menggunakan metode pengaturan ini. Tahanan R_{ae} seharusnya dirancang untuk membawa arus jangkar. Hal ini karena lebih mahal daripada rheostat (R_{fc}) yang digunakan pada metode pengaturan medan.

2.3.2 Parameter Motor DC Shunt

Perancangan motor de *shunt* membutuhkan data primer sebagai berikut: daya keluaran (P_m) , tegangan kerja (V_t) , dan kecepatan putaran (n_m) .

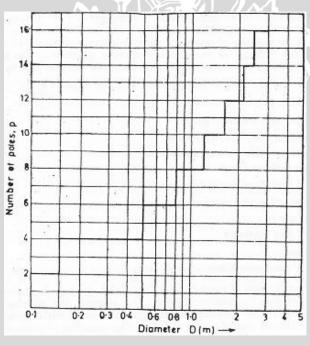
Kategori mesin listrik adalah sebagai berikut: (Sawhney, 1970: 6)

- Mesin ukuran kecil. Mesin listrik yang memiliki daya keluaran hingga 750
 W.
- 2. Mesin ukuran sedang. Mesin listrik yang memiliki daya keluaran dari sedikit kW hingga 250kW.
- 3. Mesin ukuran besar. Mesin listrik dengan daya keluaran 250kW hingga 5000kW.

BRAWIJAYA

4. Mesin ukuran lebih besar. Mesin ini untuk kebutuhan tertentu dari pelanggan dengan permintaan spesifik. Daya mencapai Megawatt.

2.3.3 Parameter Dimensi Utama


Bila merancang motor arus searah persamaan daya jangkar adalah $P_a = P_m$ (Sawhney, 1970: 493). Jika motor DC yang akan dirancang adalah motor berdaya menengah rendah yakni dengan daya 200 - 1 kW, maka persamaannya menjadi: (Sawhney, 1970: 456)

$$P_a(W) = \frac{1+2\eta}{3\eta} P_m$$

Dengan η: Efisiensi motor DC

P_m: Daya keluaran (W)

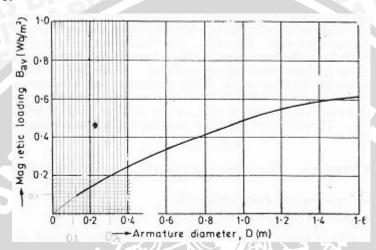
Untuk menentukan jumlah kutub yang dipergunakan maka dilakukan perhitungan batasan frekuensi fluksi dan arus yang mengalir per sikat. Ketentuan jumlah kutub dapat dilihat di Gambar 2.18.

Gambar 2. 18 Jumlah kutub pada mesin dc

Sumber: Sawhney, 1970: 504.

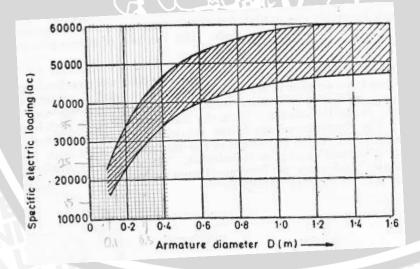
Kecepatan linier dibatasi hingga mencapai 30 m/s, (Sawhney, 1970: 468). Persamaan kecepatan linier adalah:

$$v_a = \pi D_{maks} n_m \tag{2.48}$$


Dengan D_{maks} : Diameter motor maksimal (m) n_m : Putaran motor (rps)

Nilai frekuensi ini untuk mesin arus searah umumnya mempunyai batasan antara 25 sampai dengan 50 Hz (Sawhney, 1970: 503). Persamaan frekuensi fluksi : (Sawhney, 1970: 494)

$$f(Hz) = \frac{pn_m}{2} \tag{2.49}$$


Dengan p: Jumlah kutub

Pembebanan magnetik dan elektrik ditentukan dengan menggunakan Gambar 2.19 dan Gambar 2.20.

Gambar 2. 19 Nilai spesifik untuk pembebanan magnetik

(Sawhney, 1970: 494)

Gambar 2. 20 Nilai Spesifik dari pembebanan elektrik

(Sawhney, 1970: 495)

Persamaan kisar kutub untuk nilai D_{maks} adalah :

$$\tau(m) = \frac{\pi D_{maks}}{p} \tag{2.50}$$

Dengan mengabaikan nilai arus medan, dianggap arus jangkar sama dengan arus terminal ($I_a=I_t$), persamaan arus terminal: (Sawhney, 1970: 578)

$$I_t(A) = \frac{P_m}{\eta V_t} \tag{2.51}$$

Arus yang mengalir per sikat: (Sawhney, 1970: 501)

$$I_b(A) = \frac{2I_a}{p} \tag{2.52}$$

Arus per jalur paralel dibatasi 200 A. Arus per sikat tidak lebih dari 400 A (Sawhney, 1970: 503). Untuk menghemat pemakaian konduktor belitan medan, penampang kutub berbentuk segi empat mendekati bujur sangkar. Persamaan dari panjang dimensi utama adalah: (Sawhney, 1970: 468)

$$L = \Psi \cdot \tau = \Psi \cdot \frac{\pi \cdot D}{p} \tag{2.53}$$

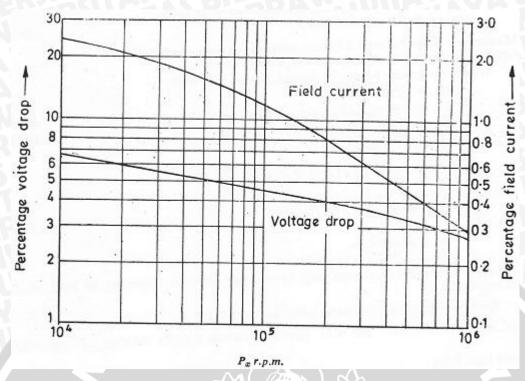
Dengan ψ : Rasio busur kutub (0.64-0.72)

D: Diameter motor (m)

Nilai koefisien keluaran motor DC (kW/m³-rps) ini dirumuskan oleh: (Sawhney, 1970: 493)

$$C_o = \pi^2 B_{av} ac 10^{-3} \tag{2.54}$$

Daya jangkar untuk motor DC dirumuskan: (Sawhney, 1970: 493)


$$P_a(kW) = C_o D^2 L n_m$$

Dengan memasukkan persamaan L ke persamaan diatas, maka diperoleh nilai D menjadi:

$$D = \sqrt[3]{\frac{P_a p}{C_o \pi \Psi n_m}} \tag{2.55}$$

2.3.4 Parameter Jangkar

Untuk menentukan persentase arus medan dan tegangan jatuh pada kumparan jangkar, terlebih dahulu menentukan hasil kali dari P_a dengan rpm motor. Gambar 9.35 (Sawhney, 1970: 521) menunjukkan persentase tegangan jatuh dan arus medan sebagai fungsi dari hasil kali P_a dengan rpm.

Gambar 2. 21 Nilai jatuh tegangan dalam dan arus medan

Sumber: Sawhney, 1970: 521.

Persamaan arus medan:

$$I_f = \%_{I_f} I_t \tag{2.56}$$

Persamaan jatuh tegangan

$$V_{R_a} = \%_{V_{R_a}} V_t \tag{2.57}$$

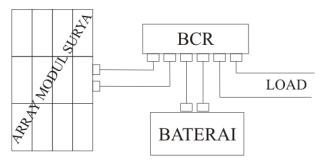
Pada semua motor, diperlukan perlindungan beban lebih. Untuk kapasitas motor lebih dari 1 hp, perlu dipasang pemutus rangkaian yang mempunyai rating kurang dari persentasi arus jangkar beban penuh (arus nominal pada nameplate) sebagai berikut: (NEMA Standards Publication MG 1-1993: hal. 7249)

- 125% untuk motor dengan faktor servis kurang dari 1.15
- 125% untuk motor dengan kenaikan temperatur kurang dari 40°C
- 115% untuk semua motor lainnya

Tegangan induksi emf: (Sawhney, 1970: 530)

$$E_a = V_t - V_{R_a}$$

Persamaan fluksi per kutub: (Sawhney, 1970: 530)


$$\Phi = B_{av}\tau L \tag{2.58}$$

Persamaan resistansi jangkar Ra:

$$R_a = \frac{V_{Ra}}{I_a} \tag{2.59}$$

2.4 Kapasitas Baterai

Komponen sistem kelistrikan modul surya ditunjukkan oleh gambar 2.2. Baterai adalah komponen listrik yang mampu menyimpan energi listrik yang dihasilkan oleh modul surya. Baterai mengalami proses penyimpanan muatan (recharge) atau pelepasan muatan (discharge) tergantung pada keadaan sinar matahari. Cara kerja baterai adalah sel baterai timbal-asam dari komposisi yang berbeda tersuspensi dalam larutan elektrolit asam sulfat. Ketika proses discharge, molekul belerang melepas elektron dari ikatan elektrolit oleh elektroda. Ketika proses recharge, kelebihan elektron menjadi elektrolit kembali. (Anas, 2014: 10)

Gambar 2. 22 Sistem listrik modul surya

Sumber: Anas, 2014: 26.

Standar nominal baterai adalah tergantung dari nominal tegangan baterai lead-acid 2.0 V dan nikel-cadmium 1.2 V. Sedang nominal kapasitas baterai (Ah) berdasarkan nominal arus pelepasan (A) selama satu jam (h). Jika nominal tegangan baterai adalah 24 V, maka terdapat 12 sel baterai lead-acid tersusun seri, atau terdapat 19 atau 20 sel baterai nikel-cadmium tersusun seri. Daftar nominal baterai yang dapat digunakan bervariasi dari 12 V/6.5 Ah sampai dengan 24 V/65 Ah (David G. Vutetakis, 2001: Chapter 10).

Pada 1 sel baterai terdapat energi sebesar: (I. M. Gottlieb, 1994:102)

$$E_0 = C_0 V_0$$

Jika terdapat N-sel baterai, maka terdapat energi sebesar:

$$E = NC_0 V_0 \tag{2.60}$$

Jika N-sel dihubung seri, maka tegangan baterai menjadi:

$$V = NV_0 \tag{2.61}$$

Jika N-sel terhubung parallel, maka kapasitansi baterai menjadi:

$$C=N C_0 \tag{2.62}$$

Energi pada n-sel adalah:

$$E = (NV_0)C_0 = VC_0 \text{ n-sel terhubung seri}$$
 (2.63)

 $E = (NC_0)V_0 = CV_0$ n-sel terhubung parallel

(2.64)

Jika proses pelepasan muatan dilakukan dengan lebih lama, misalnya C/10, maka baterai akan bekerja lebih lama (10 jam). Dalam praktiknya, hubungan antara kapasitansi baterai dan pelepasan muatan tidak linear, dan sedikit energi terpulihkan pada nominal pelepasan muatan yang lebih cepat.

Hukum *Peukert* menghubungkan nominal kapasitas baterai untuk melepaskan muatan: (ECEN 4517/5517: 19)

$$C_p = I^k t_e \tag{2.65}$$

Dengan C_p: kapasitas amp-jam pada nominal pelepasan muatan 1 A

I: arus pelepasan muatan (A)

t_e: waktu pelepasan muatan (jam)

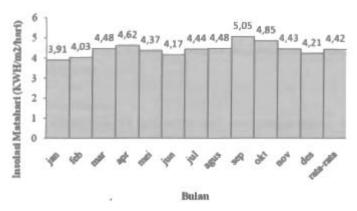
k: konstanta *Peukerts* (1.1 - 1.3)

Pada gambar 2.22, *Battery Control Regulator* BCR adalah perangkat yang mampu memutus aliran listrik dari modul surya. Kapasitas BCR tergantung dari besar arus beban. Semakin besar kapasitas BCR semakin baik sistem kelistrikan karena tidak perlu mengganti BCR apabila ada peningkatan beban. BCR juga mampu mencegah pembebanan modul surya saat modul tersebut tidak menghasilkan listrik. (Anas, 2014: 9)

Sel surya dianalogikan sebagai perangkat dengan dua terminal dimana pada kondisi gelap berfungsi sebagai diode, dan saat kondisi terang dapat menghasilkan energi listrik. Satu sel surya umumnya mengasilkan 0,5-1 V, dan arus short-circuitnya berskala miliampere/cm². Modul surya dapat dihubung seri dan atau paralel untuk memenuhi tegangan dan arus beban. Gabungan dari sel surya dinamakan modul surya, sedang gabungan dari modul surya dinamakan *array* modul surya. Cara kerja sel surya konvensional menggunakan prinsip p-n junction, yaitu junction antara semikonduktor tipep dan tipe-n. Seemikonduktor tersebut terdiri dari ikatan atom berlektron. Semikonduktor tipe-n mempunyai kelebihan electron sedang tipe-p mempunyai kelebihan *hole* dalam struktur atomnya. (Anas, 2014: 6).

Setelah menentukan kapasitas beban baterai, maka besar energi yang disuplai oleh modul surya adalah sebesar: (Chandra, 2010: 15)

$$E_{PS} = 30\% E_{B}$$
 (2.66)


Dengan E_{PS}: Energi beban (Wh)

E_B: Energi baterai (Wh)

Asusmsi rugi-rugi (losses) pada sistem dianggap sebesar 15%, maka total energi sistem E_T adalah: (Chandra, 2010: 15)

$$E_T = E_{PS} + rugi$$
-rugi sistem
$$= E_{PS} + 15\% E_{PS}$$
 (2.67)

Kapasitas modul surya dihitung dengan mempertimbangkan faktor kebutuhan energi, insolasi matahari, dan faktor penyesuaian. Diambil data insolasi terendah matahari (bulan Januari sebesar 3,91) dari Gambar 2.22, agar modul surya dapat memenuhi kebutuhan beban setiap saat. Berikut adalah merupakan grafik insolasi matahari untuk daerah Jakarta dalam kurun waktu satu tahun. (Chandra, 2010: 16)

Gambar 2. 23 Insolasi matahari untuk daerah Jakarta

Sumber: BMG, BPPT.

Faktor penyesuaian f_p pada kebanyakan instalasi modul surya adalah 1,1. Kapasitas modul surya C_{PS} yang dihasilkan adalah: (Chandra, 2010: 16)

$$C_{PS} = f_p$$
. (E_T /insolasi matahari) (2.68)

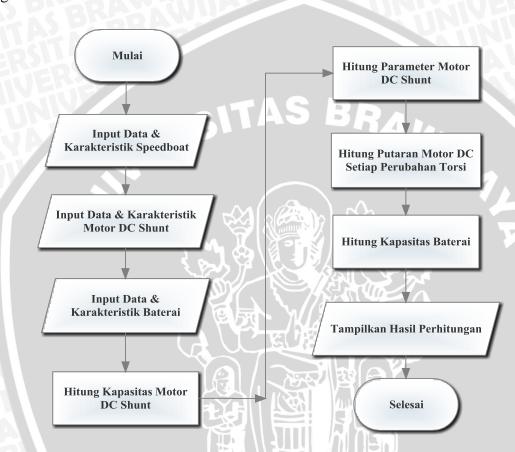
Kapasitas berat B_S yang mampu dibawa oleh speedboat adalah:

$$B_{S} = \nabla - B_{m} - B_{B} - B_{PS} \tag{2.69}$$

Dengan B_S: berat speedboat (kg)

∇: displacement (kg)

B_m: berat motor dc (kg)


B_B: berat baterai (kg)

B_{PS:} berat modul surya (kg)

BAB III

METODOLOGI PENELITIAN

Metodologi penelitian ini digunakan untuk memberikan suatu alur kerangka berfikir dari penulisan. Langkah-langkah dalam analisis secara umum dapat dilihat pada diagram alir Gambar 3.1.

Gambar 3. 1 Diagram alir metode pengerjaan penelitian

3.1 Lokasi

Pengambilan data-data penelitian ini, dilakukan di wilayah perairan Indonesia, khususnya perairan di Pulau Jawa. Daerah pengujian di Laut Jawa (dekat pantai) adalah pantai Gunung Kidul, Teluk Jakarta, dan Pantai Ancol. Sedangkan Daerah pengujian sungai adalah sungai pariwisata Surabaya dan sungai sekitar kampus ITS.

3.2 Pencarian Data

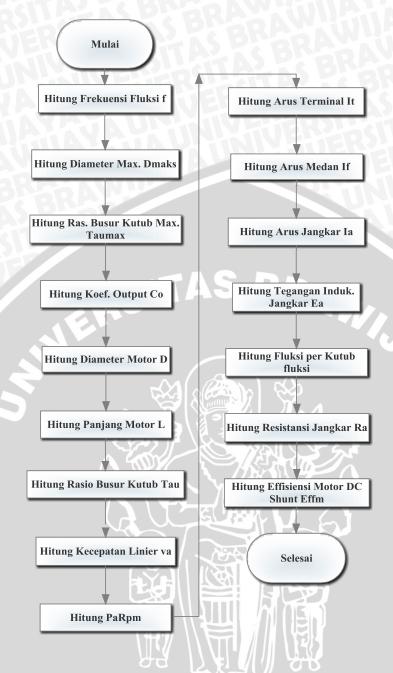
Pencarian data dilakukan dengan cara mencari data sekunder, yaitu dengan mempelajari buku referensi, jurnal, skripsi, *web browsing*, dan forum-forum resmi yang menunjang dalam penyusunan skripsi.


3.3 Pengambilan Data

Data – data yang digunakan adalah data yang bersumber dari buku referensi, jurnal, dan skripsi yang relevan dengan pembahasan skripsi. Pada skripsi ini mengambil cuplikan data dari:

- "JALAPATIH" dari tim Solar Boat FTK ITS 2014.
- Kapal wisata, yang disusun oleh Sudiyono dan Andoko, 2008.
- Speedboat Katamaran untuk SAR, yang disusun oleh Hadi, dkk., 2012.
- "THE GANERS" kapal pembersih sampah, yang disusun oleh Basir, dkk.
- Kapal sel surya, yang disusun oleh Chandra, dkk, 2010.

3.4 Perhitungan dan Penentuan Kapasitas Motor DC


Perhitungan kapasitas motor DC dimulai dengan menentukan dimensi utama *speedboat*. Kemudian perhitungan dilakukan dengan menggunakan langkah-langkah berurutan sesuai standar yang telah ditentukan pada buku referensi sesuai dengan gambar 3.2. Berikut adalah diagram alir menentukan kapasitas motor DC.

Gambar 3. 2 Diagram perhitungan kapasitas motor de

3.5 Perhitungan dan Penentuan Parameter Motor DC Shunt


Perhitungan parameter motor DC *shunt* dilakukan dengan menentukan data utama motor. Kemudian perhitungan dilakukan secara bertahap sesuai ketentuan yang berlaku pada buku referensi seperti pada Gambar 3.3. Sehingga parameter tersebut menghasilkan kerja motor yang proporsional terhadap kebutuhan beban *speedboat*.

Gambar 3. 3 Diagram perhitungan parameter motor dc shunt

3.6 Perhitungan Torsi dan Kecepatan Motor DC Shunt

Perubahan kondisi pembebanan menyebabkan arus jangkar motor naik. Pendekatan matematis dari rangkaian ekivalen motor DC shunt dapat menjelaskan hubungan antara perubahan pembebanan dengan perubahan kecepatan. Seperti terlihat pada Gambar 3.4, masing-masing kondisi pembebanan mempunyai pengaruh pada nilai torsi dan kecepatan motor DC shunt.

Gambar 3. 4 Diagram perhitungan torsi-kecepatan motor dc shunt

3.7 Perhitungan Dan Penentuan Kapasitas Baterai

Perhitungan dan penentuan kapasitas baterai sebagai catu daya motor memerlukan estimasi waktu yang dibutuhkan. Setelah waktu ditentukan maka, kapasitas baterai dan jumlah energi yang diperlukan untuk mencatu motor DC shunt dapat diperoleh. Jika menggunakan baterai dengan kapasitas tertentu, maka jumlah baterai yang dibutuhkan juga dapat diperoleh.

3.8 Kesimpulan Dan Saran

Pada tahapan ini dilakukan pengambilan kesimpulan berdasarkan teori, hasil perhitungan serta analisis. Sebagai akhir dari penelitian yang dilakukan dapat ditarik suatu kesimpulan dari semua proses analisis yang telah dilakukan, dan pemberian saran kepada pembaca yang akan melakukan studi terkait dengan penelitian ini yakni kajian penggunaan motor listrik DC sebagai penggerak speedboat.

ANALISIS MOTOR DC SEBAGAI PENGGERAK SPEEDBOAT

BAB IV

4.1 **Data Speedboat**

Data speedboat yang digunakan dalam penelitian ini adalah data dari penelitian Chandra, dkk. Data *speedboat* adalah:

- Displacement: $\nabla = 0.969$ ton
- Volume: $V = 0.946 \text{ m}^3$
- Kecepatan kapal: $v_s = 7$ knot
- Panjang garis air: $L_{wl} = 7.89 \text{ m}$
- Area garis air: $S = 4,599 \text{ m}^2$
- Luas daerah melintang: $A_P = 0.158 \text{ m}^2$
- Konstanta blok: $C_b = 0.567$
- BRAWIUNE Kedalaman kapal terbenam air: h = 0.3 m

4.2 Perhitungan Kapasitas Motor DC

Perhitungan kapasitas motor de mengacu pada Gambar 3.2. Langkah awal perhitungan tersebut memerlukan data speedboat dan perkiraan tertentu sesuai dengan kebutuhan. Dari data speedboat yang didapat, dengan menggunakan Tabel 2.7, konversi kecepatan kapal v_s dalam knot ke m/s adalah:

$$v_s = 7.0,5144 = 3,6008 \text{ m/s}$$

Viskositas v ditentukan dengan menggunakan Tabel 2.2. Ditentukan viskositas air garam pada suhu 15°C yaitu:

$$v = 1,19.10^{-6} \text{ m}^2/\text{s}$$

Nomor Reynold R_n dihitung menggunakan persamaan 2.6,

$$R_n = v_s L_{wl}/v$$
= 3,6008. 7,89/(1,19 x 10⁻⁶)
= 2.3874.10⁷

Koefisien gesek C_F adalah fungsi dari R_n seperti yang ditunjukkan oleh Gambar 2.4. Dengan $R_n=2,3874.10^7$, maka:

$$C_F = 0.0028$$

Massa jenis air ρ_w ditentukan menggunakan Tabel 2.1. Ditentukan massa jenis air garam pada suhu 15°C yaitu:

$$\rho_{\rm w} = 1025 \text{ kg/m}^3 = 1,025 \text{ ton/m}^3$$

Tahanan gesek R_F dihitung menggunakan persamaan 2.4,

$$R_F = \frac{1}{2} C_F \rho_W S V_S^2$$
= 0,5. 0,0028. 1,025. 4,599. 3,6008²
= 0,0856 kN

Nomor Froude F_n dihitung menggunakan persamaan 2.9, dengan percepatan gravitasi $g=9.81,\, maka:$

$$F_n = \frac{v_s}{\sqrt{gL}}$$
= 3,6008/ $\sqrt{9,81.7,89}$
= 0,4093

Koefisien residu C_R adalah fungsi dari F_n seperti yang ditunjukkan oleh Gambar 2.5. Dengan F_n =0,4093, maka:

ITAS BRA

$$C_R = 0.0035$$

Tahanan residu R_R dihitung menggunakan persamaan 2.7.

$$R_R = \frac{1}{2} C_R \rho_w S V_S^2$$
= 0,5. 0,0035. 1,025. 4,599. 3,6008²
= 0,1070 kN

Massa jenis udara ρ_A ditentukan dengan menggunakan Tabel 2.1. Ditentukan massa jenis udara pada suhu 15°C yaitu:

$$\rho_{A} = 1,23 \text{ atm}$$

Kecepatan udara v_w ditentukan dengan menggunakan skala Beaufort pada Tabel 2.4. Ditentukan kecepatan udara pada air tenang,

$$v_{\rm w} = 0.3 \, {\rm m/s}$$

Tahanan udara R_U dihitung dengan menggunakan persamaan 2.10 dengan menggunakan koefisien udara $C_D = 0.9$. Pada data *speedboat* diperoleh luas melintang $A_P = 0.158 \text{ m}^2$, sehingga:

$$R_U = \frac{1}{2} C_D \rho_A A_P V_w^2$$

= 0.5. 0.9. 1.23. 0.158. 0.3²
= 0.0079 kN

Tahanan total R_T dihitung dengan menggunakan persamaan 2.3.

$$R_T = R_F + R_R + R_U$$
$$= 0.0856 + 0.1070 + 0.0079$$

$$= 0.2004 \text{ kN}$$

Daya efektif P_E dihitung menggunakan persamaan 2.1.

$$P_E = R_T v_s$$

= 0,2004.3,6008

= 0.7216 kW

Fraksi laju air w_t dihitung menggunakan persamaan 2.14. Rentang w_T diperkirakan dari 0,2 hingga 0,45. Pada data speedboat diperoleh koefisien blok C_B = 0,567, sehingga:

$$w_T = 0.5C_B-0.05$$

= 0,5.0,567-0,05

= 0,2335 memenuhi syarat

Koefisien dorong deduksi t dihitung menggunakan persamaan 2.16. Rentang t antara 0,12 hingga 0,3. Koefisien tebal sirip kemudi k_R antara 0,5 hingga 0,7. Ditentukan k_R = 0.6, maka:

$$t = k_R w_T$$

= 0,6. 0,2335

=0,1401memenuhi syarat

Effisiensi lambung dihitung menggunakan persamaan 2.25. Rentang antara 1,1 hingga 1,4.

$$\eta_H = \frac{1-t}{1-w_T}$$

$$\eta_H = \frac{1-0,1401}{1-0,2335} = 1,1219 \qquad \text{memenuhi syarat}$$

Grafik w_T fungsi rasio dari diameter propeler dengan panjang kapal $w_T = f(d/L_{wl})$ ditunjukkan oleh Gambar 2.7. Dengan $w_T = 0.2335$, maka:

$$d/L_{wl} = 0.02$$

$$d = 0.02$$
. $7.89 = 0.1578$ m

Kecepatan lanjut v_{ad} dihitung menggunakan persamaan 2.11.

$$v_{\rm ad} = v_{\rm s} (1-w_{\rm t})$$

=3,6008(1-0,2335)

= 2.7600 m/s

Koefisien lanjut J dihitung menggunakan persamaan 2.12. Dengan kecepatan propeler $n_p = 42$, maka:

$$J = v_{ad} / (n_p d)$$

= 2,7600/(42. 0,1578) = 0,4164

Data propeler yang digunakan adalah seri wageningen B4.70 dengan P/D=1,2. Dengan menggunakan Tabel 2.5. maka dieperoleh data:

•
$$K_{TO} = 0.545$$

•
$$K_{QO} = 0.096$$

•
$$a = 1,27$$

•
$$b = 1.32$$

•
$$n = 1,21$$

•
$$m = 1,31$$

Koefisien dorong K_T dihitung menggunakan persamaan 2.19.

$$K_T = K_{TO} (1-(J/a)^n)$$

= 0,545 (1-(0,4164/1,27) ^{1,21})
= 0,4036

Koefisien torsi K_Q dihitung menggunakan persamaan 2.20.

$$K_Q = K_{QO} (1-(J/b)^m)$$

= 0.096 (1-(0.4164/1.32)^{1.31})
= 0.0748

Torsi propeler Q_P dihitung menggunakan persamaan 2.23.

$$Q_P = K_Q \rho_w d^5 n_P^2$$

= 0,0748. 1,025. 0,1578⁵. 42²
= 0,0132 kNm

Efisiensi *open-water* η_0 (0,35-0,75) dihitung menggunakan persamaan 2.18.

$$\eta_{O} = J K_{T}/(2 \pi K_{Q})$$

$$= 0.4164.0.4036/(2.3.1416.0.0748)$$

$$= 0.3575 memenuhi syarat$$

Efisiensi rotasi relatif η_R (0,95-1,05) dihitung menggunakan persamaan 2.21.

$$\eta_R = K_T \ K_{QO}/(K_{TO} \ K_Q)$$
= 0,4036. 0,096/(0,545. 0,0748) = 0,9502 memenuhi syarat

Koef. *quasi-propulsive* η_D dihitung menggunakan persamaan pada Gambar 2.2.

$$\eta_D = \eta_O \eta_H \eta_R$$

$$= 0,3575. 1,1219. 0,9502$$

$$= 0,3811$$

Daya terkirim P_D dihitung menggunakan persamaan 2.2.

$$\begin{split} P_D &= P_E/\eta_D \\ &= 0.7216/0.3811 = 1.8934 \; kW \end{split}$$

BRAWIJAYA

Koreksi P_D dengan menggunakan faktor koreksi SCF. Karena $L_{wl} < 122m$, maka ditentukan SCF=1, sehingga:

$$P_D = P_D SCF$$

= 1,8934 kW

Digunakan gear untuk menyesuaikan putaran motor dengan putaran propeler, maka efisiensi transmisi $\eta_T = 0.95$.

Daya servis P_S dihitung menggunakan persamaan pada Gambar 2.2.

$$P_S = P_D/\eta_T$$

= 1,8934/0,95
= 1,9931 kW

Nilai margin berkisar antara 0,15-0,3. Ditentukan margin = 0,15. Daya terpasang P_I dihitung menggunakan persamaan pada Gambar 2.2.

$$P_{I} = (P_{E}/\eta_{D}) SCF (1/\eta_{T}) + margin$$

= $P_{S} + margin$
= $1,9931 + 0.15$
= $2,1431 \text{ kW}$

4.3 Perhitungan Parameter Motor DC Shunt

Perhitungan parameter motor de *shunt* mengacu pada Gambar 3.3. Langkah awal perhitungan motor de *shunt* membutuhkan data primer sebagai berikut: daya keluaran (P_m) , tegangan kerja (V_t) , dan kecepatan putaran (n_m) .

Daya motor $P_m \ge$ Daya terpasang P_I , maka:

$$P_{\rm m} = 2.2 \text{ kW} = 2200 \text{ W}$$

Daya jangkar
$$P_a = P_m = 2.2 \text{ kW} = 2200 \text{ W}$$

Ditentukan putaran motor nominal $n_m = 1800 \text{ rpm}$

$$n_m = rpm/60 = 1800/60 \ = 30 \ rps$$

Ditentukan tegangan terminal $V_t = 24 \text{ V}$

Ditentukan efisiensi motor $\eta_m = 0.7$.

Setelah ada data utama, Dimensi utama motor DC *shunt* (diameter motor D dan panjang motor L) dihitung. Diasumsikan kecepatan linier motor $v_a = 13,25$ m/s. Nilai $v_a < 30$ m/s. Diameter maksimal D_{maks} dihitung menggunakan persamaan 2.48.

$$D_{\text{maks}} = v_a / (\pi n_{\text{m}})$$

= 13,25/(3,1416.30)
= 0,1406 m

BRAWIJAY

Jumlah kutub p dapat ditentukan dengan melihat besar D seperti yang ditunjukkan oleh Gambar 2.18. Dengan $D_{maks} = 0,1406$ m, maka:

$$p = 2$$

Frekuensi fluksi f (25≤f≤50 Hz) dan dihitung menggunakan persamaan 2.49.

$$f = p n_m / 2$$

= 30 Hz memenuhi syarat.

Beban magnetik B_{av} dapat ditentukan dengan melihat besar D seperti yang ditunjukkan oleh Gambar 2.19. Dengan $D_{maks}=0,1406$ m, maka:

$$B_{av} = 0.125$$

Beban elektrik ac dapat ditentukan dengan melihat besar D seperti yang ditunjukkan oleh Gambar 2.20. Dengan $D_{maks} = 0,1406$ m, maka:

$$ac = 30000$$

Kisar kutub τ dihitung menggunakan persamaan 2.52.

$$\tau_{max} = \pi D_{maks} / p$$

= 3,1416. 0,1406/2 = 0,2208 m

Koefisien keluaran motor Co dihitung menggunakan persamaan 2.56.

$$C_{O} = \pi^{2} B_{av} ac$$

= 3.1416². 0,125. 30000
= 37011

Diameter jangkar D dihitung menggunakan persamaan 2.57. Rasio busur kutub Ψ antara 0,64 $<\Psi<$ 0,72. Ditentukan $\Psi=$ 0,7. Daya jangkar $P_a=$ daya motor mekanik $P_m=$ 2200 W, maka:

$$D = \sqrt[3]{\frac{P_a p}{C_0 \pi v n_m}}$$

$$D = \sqrt[3]{\frac{2200.2}{37011.3,1416.0,7.30}} = 0,1217 \text{ m}$$

Kisar kutub τ dihitung lagi, dengan D=0,1217 m dan dihitung menggunakan persamaan 2.50, maka:

$$\tau = \pi D / p$$

= 3,1416. 0,1217/2
= 0,1911 m

Panjang jangkar L dihitung menggunakan persamaan 2.53,

$$L = \Psi \tau$$

= 0,7. 0,1911 = 0,1338 m

Kecepatan linier v_a dihitung kembali dengan D = 0,1217 m, maka:

$$v_a = \pi D n_m$$

= 11.4689 m/s memenuhi syarat.

Persentase arus medan I_f dan tegangan drop jangkar V_{Ra} sebagai fungsi hasil kali jangkar Pa dan putaran motor rpm, ditunjukkan oleh Gambar 2.21. Hasil kali antara daya jangkar Pa dan putaran motor rpm adalah:

$$P_a$$
 . $rpm = 2200$. $1800 = 3960000$

Dengan menggunakan Gambar 2.21, dengan Parpm = 3960000, maka diperoleh:

$$%I_f = 0.19/100$$
, dan

$$%V_{Ra} = 2,1/100.$$

Arus terminal I_t dihitung menggunakan persamaan 2.51.

$$I_t = P_m/(\eta_m * V_t) = 2200/(0,7.24) = 130,9524 \text{ A}$$

If dihitung menggunakan persamaan 2.56.

$$I_f = \% I_f . I_t$$

$$I_f = (0,19/100). 130,9524$$

$$= 0.2488 A$$

Arus jangkar Ia dihitung menggunakan persamaan 2.43.

$$I_a = I_t - I_f$$

$$= 130,7036 A$$

Arus medan $I_f < 0.05 I_a$ atau $I_f < 6.5352 A$

$$I_f = 0.2488 A$$
 memenuhi syarat.

Tegangan jatuh jangkar V_{Ra} dihitung menggunakan persamaan 2.57.

$$V_{Ra} = \% V_{Ra} V_t$$

$$=(2,1/100)24$$

$$= 0.5040 \text{ V}$$

Tegangan terinduksi jangkar E_a dihitung menggunakan persamaan 2.44.

$$E_a = V_t - V_{Ra}$$

$$= 24-0.5040 = 23.4960 \text{ V}$$

Fluksi per kutub Φ dihitung menggunakan persamaan 2.58.

$$\Phi = B_{av} \tau L$$

$$= 0.125. \ 0.1911. \ 0.1338$$

$$= 0.0032 \text{ Wb}$$

Resistansi jangkar R_a dihitung menggunakan persamaan 2.59.

$$R_a = \frac{V_{Ra}}{I_a}$$

$$= \frac{0,5040}{130,7036}$$

$$= 0,0039 \Omega$$

Effisiensi motor η_m dihitung menggunakan persamaan 2.45, menjadi:

$$\eta_m = \frac{P_{output}}{P_{input}} = \frac{E_a I_a}{V_t I_t} = \frac{23,496.130,7036}{24.130,9524} = 0,97714$$

4.4 Torsi dan Kecepatan Motor DC Shunt

Perhitungan torsi dan kecepatan motor dc *shunt* mengacu pada Gambar 3.4. Langkah awal adalah konstanta jangkar K_a dihitung menggunakan persamaan 2.42.

$$P_a = E_a I_a = T \omega_m = K_a \Phi I_a \omega_m$$

Daya jangkar P_a dihitung menggunakan persamaan 2.42. Dengan E_a = 23,4960 V dan I_a = 130,7036 A, maka P_a adalah:

$$P_a = E_a I_a$$

= 23,4960. 130,7036
= 3071 W

Torsi yang dibangkitkan T_a dihitung menggunakan persamaan 2.42. Dengan n_m = 30 rps, maka T_a adalah:

$$T_a = P_a/(2 \pi n_m)$$

= 3071/(2.3,1416.30)
= 16,292 Nm

Jadi, konstanta jangkar K_a dihitung menggunakan persamaan 2.40. Dengan Φ = 0,0032 Wb, maka K_a adalah:

$$K_a = T_a/(\Phi I_a)$$

= 16,292 /(0,0032.130,7036)
= 38,989

Kecepatan sudut ω_m dihitung menggunakan persamaan 2.47.

$$\omega_m = \frac{V_t}{K_a \phi} - \frac{R_a}{(K_a \phi)^2} T_a$$

Saat terjadi peningkatan beban, T_a menjadi T dan ω_m menjadi ω . Sehingga persamaan 2.47 menjadi:

$$\omega = \frac{V_t}{K_a \Phi} - \frac{R_a}{(K_a \Phi)^2} T$$

Putaran motor menjadi:

$$n = \omega/(2\pi)$$

Persamaan 2.41 menjadi:

$$I = T / (K_a \Phi)$$

Peningkatan T adalah 0,1 Nm secara bertahap. Maka T berturut-urut adalah 16,392; 16,492; 16,592; dst.

Pada iterasi 1, T = 16,392 Nm, maka ω , n, dan I adalah:

$$\omega = \frac{24}{38,989.0,0032} - \frac{0,0039}{(38,989.0,0032)^2}$$
16,392 = 188,47 rad/s

$$n = \omega/(2\pi) = 188,47/(2.3,1416) = 1799,8 \text{ rps}$$

$$I = T / (K_a \Phi) = 16,392/(38,989. \ 0,0032) = 131,51 A.$$

Pada iterasi ke-2, T = 16,492 Nm, maka ω , n, dan I adalah:

$$\omega = \frac{24}{38,989.0,0032} - \frac{0,0039}{(38,989.0,0032)^2}$$
16,492 = 188,45 rad/s

$$n = 60\omega/(2\pi) = 60.188,45/(2.3,1416) = 1799,5 \text{ rpm}$$

$$I = T / (K_a \Phi) = 16,492/(38,989, 0,0032) = 132,31 A.$$

Pada iterasi ke-3, T = 16,592 Nm, maka ω , n, dan I adalah:

$$\omega = \frac{24}{38,989.0,0032} - \frac{0,0039}{(38,989.0,0032)^2}$$
16,592 = 188,42 rad/s

$$n = 60\omega/(2\pi) = 60.188,42/(2.3,1416) = 1799,3 \text{ rpm}$$

$$I = T / (K_a \Phi) = 16,592/(38,989, 0,0032) = 133,11 A.$$

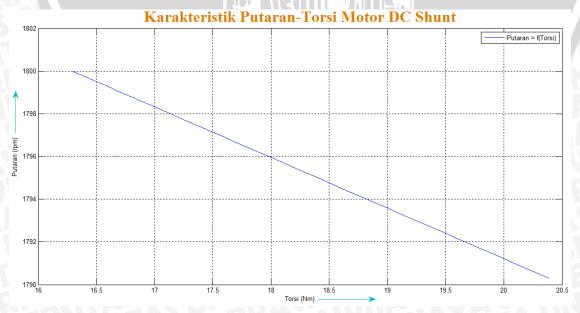
Peningkatan torsi menyebabkan peningkatan arus jangkar. Ketika I telah mencapai 125% dari I_a, maka motor harus dalam keadaan trip. Oleh karena itu, proses perhitungan berhenti saat I <= 125% I_a.

Proses perhitungan berhenti pada iterasi ke-40, dengan T=20,292 Nm, maka ω, n, dan I adalah:

$$\omega = \frac{24}{38,989.0,0032} - \frac{0,0039}{(38,989.0,0032)^2} 20,292 = 187,5 \text{ rad/s}$$

$$n = 60\omega/(2\pi) = 60.187,5/(2.3,1416) = 1790,5 \text{ rpm}$$

$$I = T / (K_a \Phi) = 20,292 / (38,989.0,0032) = 162,79 A.$$


Hasil dari perhitungan iterasi dapat dilihat dalam Tabel 4.1 sebagai berikut:

Tabel 4. 1 Hasil perhitungan arus, kecepatan putar, dan putaran motor de shunt

i	T(Nm)	I(A)	ω(rad/s)	n(rpm)	i	T(Nm)	I(A)	ω(rad/s)	n(rpm)
1	16.392	131.51	188.47	1799.8	22	18.492	148.35	187.95	1794.8
2	16.492	132.31	188.45	1799.5	23	18.592	149.16	187.92	1794.5
3	16.592	133.11	188.42	1799.3	24	18.692	149.96	187.90	1794.3
4	16.692	133.91	188.40	1799.1	25	18.792	150.76	187.88	1794.1

5	16.792	134.71	188.37	1798.8	26	18.892	151.56	187.85	1793.8
6	16.892	135.52	188.35	1798.6	27	18.992	152.36	187.83	1793.6
7	16.992	136.32	188.32	1798.3	28	19.092	153.17	187.80	1793.4
8	17.092	137.12	188.30	1798.1	29	19.192	153.97	187.78	1793.1
9	17.192	137.92	188.27	1797.9	30	19.292	154.77	187.75	1792.9
10	17.292	138.73	188.25	1797.6	31	19.392	155.57	187.73	1792.7
11	17.392	139.53	188.22	1797.4	32	19.492	156.38	187.70	1792.4
12	17.492	140.33	188.20	1797.2	33	19.592	157.18	187.68	1792.2
13	17.592	141.13	188.17	1796.9	34	19.692	157.98	187.65	1791.9
14	17.692	141.94	188.15	1796.7	35	19.792	158.78	187.63	1791.7
15	17.792	142.74	188.12	1796.4	36	19.892	159.58	187.60	1791.5
16	17.892	143.54	188.10	1796.2	37	19.992	160.39	187.58	1791.2
17	17.992	144.34	188.07	1796.0	38	20.092	161.19	187.55	1791.0
18	18.092	145.14	188.05	1795.7	39	20.192	161.99	187.53	1790.8
19	18.192	145.95	188.02	1795.5	40	20.292	162.79	187.50	1790.5
20	18.292	146.75	188.00	1795.3	41	20.392	163.60	187.48	1790.3
21	18.392	147.55	187.97	1795.0	\ ₁ /				

Dari tabel 4.1, dapat diperoleh karakteristik putaran sebagai fungsi dari torsi motor de shunt seperti terlihat pada Gambar 4.1. Penambahan torsi pada motor menyebabkan putaran motor berkurang.

Gambar 4. 1 Karakteristik putaran-torsi motor de shunt

4.5 Perhitungan Kapasitas Baterai Beban Speedboat

Arus terminal I_t merupakan penjumlahan arus medan I_f dengan arus jangkar I_a. Saat motor de bekerja dalam keadaan nominal, arus terminal I_t adalah:

$$I_t = I_f + I_a$$

= 0,24881+ 130,7
= 130.95 A

Ditentukan k = 1,13 dan dalam waktu pelepasan muatan $t_e = 1$ jam. Maka kapasitas baterai C_P dihitung menggunakan persamaan 2.65. BRAWINA

$$C_P = t_e I_t^k$$

= 1. 130,95^{1,13}
= 246,8 Ah

Energi baterai E_B dalam 1 jam adalah:

$$E_B = V_t C_P$$

= 24. 246,8
= 5923,1 watt Jam

Baterai yang digunakan adalah baterai dengan tegangan V_O = 24 V dan kapasitas C_O = 65 Ah. Karena tegangan motor V_t sama dengan tegangan baterai V_O, maka ada N baterai terpasang paralel.

Jumlah baterai N yang terhubung paralel, dihitung menggunakan persamaan 2.64.

$$N_B = E_B/(C_O V_O)$$

= 5923,1/(65. 24)
= 3,7969 = 4 buah

Setelah menentukan kapasitas beban baterai, maka besar energi yang disuplai oleh modul surya dihitung menggunakan persamaan 2.66:

$$E_{PS} = 30\% E_B = 0.3.5923.1$$

 $E_{PS} = 1776.9$ Watt jam

Asusmsi rugi-rugi (losses) pada sistem dianggap sebesar 15%, maka total energi sistem modul surya E_T dihitung menggunakan persamaan 2.67:

$$E_T = E_{PS} + 15\%$$
 $E_{PS} = 1776,9+0,15.$ 1776,9
 $E_T = 2043,5$ Watt jam

Diambil data insolasi terendah matahari adalah 3, 91 jam. Faktor penyesuaian f_p pada kebanyakan instalasi modul surya adalah 1,1. Kapasitas modul surya C_{PS} dihitung menggunakan persamaan 2.68:

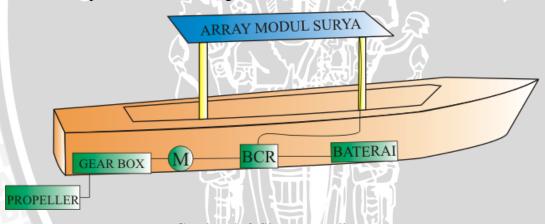
 $C_{PS} = f_p$. $(E_T/insolasi\ matahari) = 1,1.(2043,5/3,91)$

$$C_{PS} = 574,89 \text{ Wp}$$

Dengan menggunakan modul surya 200Wp, jumlah modul surya yang dibutuhkan adalah:

$$N_{PS} = C_{PS}/200$$

$$N_{PS} = 2,8744 = 3$$
 buah


Berat motor B_m = 7 kg, Berat baterai B_B = 4.15 = 60 kg, Berat modul surya = 3.17 = 51 kg. Kapasitas berat *speedboat* B_S dihitung menggunakan persamaan 2.69:

$$B_S = \nabla - B_m - B_B - B_{PS}$$

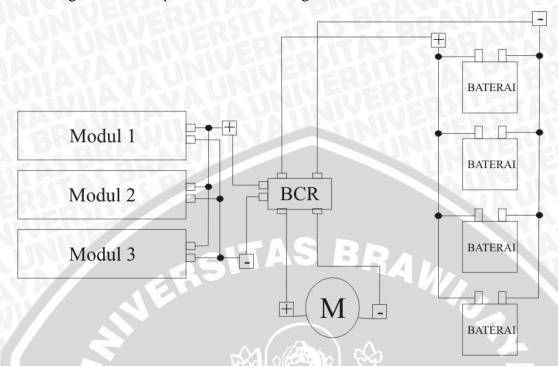
= 969 - 7-60 - 51
= 851 kg

Asumsi berat 1 orang =100 kg, maka jumlah penumpang Np adalah:

$$Np = B_S/100 = 851/100$$

= 8,51 = 8 orang

Skema speedboat adalah sebagai berikut:


Gambar 4. 2 Skema speedboat

Pada gambar 4.2, pemasangan modul surya di atap mempunyai beberapa keuntungan antar lain: modul surya mendapatkan cahaya tanpa penghalang dan sebagai peneduh penumpang *speedboat*. Modul surya dihubungkan ke BCR untuk diatur arus dan tegangan keluarannya sesuai dengan kebutuhan baterai. Kapasitas BCR tidak boleh kurang dari arus baterai. Tegangan baterai adalah 24 V dan arus baterai adalah:

$$I_B = I_m^{-1,13}$$

= 130,95^{1,13} = 246,79 A

Baterai memberikan suplai daya ke motor agar motor dapat memutar poros *gearbox. Gearbox* mengatur besar putaran dari motor agar sesuai dengan kebutuhan propeler.

Diagram elektrik speedboat adalah sebagai berikut:

Gambar 4. 3 Skema rangkaian elektrik pada speedboat

Pada gambar 4.3, Speedboat menggunakan tiga modul surya, tiga BCR, empat baterai, satu BCR dan satu motor. Masing-masing keluaran dari modul surya dihubungkan ke tiga BCR yang telah dihubung paralel. Kemudian keluaran tiga BCR dihubungkan ke empat baterai yang telah terhubung paralel. Keluaran dari empat baterai dihubungkan ke BCR guna untuk diatur besar tegangan dan arus yang sesuai dengan kebutuhan motor. BCR dapat beroperasi saat modul surya dan baterai bekerja bersama, atau saat salah satunya bekerja. Keluaran BCR dihubungkan ke motor dc shunt yang mengubah energi listrik berupa tegangan dan arus, menjadi energi mekanik berupa putaran.

BAB V

PENUTUP

5.1 Kesimpulan

Kesimpulan yang didapat dari penelitian ini adalah:

Kapasitas motor DC shunt yang diperlukan untuk menggerakkan speedboat: 1.

Daya nominal $P_m = 2200 \text{ W}$

Putaran nominal = 1800 rpm

Tegangan $V_t = 24 \text{ V}$

Diameter D = 0.1217 m

Panjang L = 0.1338 m

Arus medan $I_f = 0.2488 A$

AS BRAWIUSE Tegangan jatuh jangkar $V_{Ra} = 0.5040 \text{ V}$

Arus beban penuh $I_a = 130,7036 A$

Resistansi jangkar $R_a = 0.0039 \Omega$

Efisiensi motor = 0.9771

- 2. Pada kondisi beban penuh, putaran motor 1800 rpm, arus jangkar motor 130,7036 A dan torsi motor 16,292 Nm. Pada kondisi arus jangkar maksimal 163,3795 A, diperoleh torsi maksimal 20,292 Nm dan putaran motor menjadi 1790,5 rpm.
- 3. Kapasitas akumulator yang diperlukan untuk memberikan suplai daya ke motor DC shunt selama satu jam adalah 246,8 Ah. Energi baterai dalam satu jam adalah 5923,1 W jam. Sehingga membutuhkan empat buah baterai 24 V 65 Ah terhubung paralel dan tiga buah modul surya 200 Wp.

5.2 Saran

Penelitian ini masih kurang sempurna dikarenakan tidak adanya pengukuran secara langsung sehingga nilai parameter-parameter dari motor kurang akurat. Selain itu keterbatasan alat juga menjadi kendala pada penelitian ini, sehingga tidak dapat dilakukan analisis transien dari motor dc.

DAFTAR PUSTAKA

- All4solar, aquawatt, 2013, Australia, New Zealand, Asia, Pacific Project References for Advanced Electric Boat Propulsion Systems, Australia.
- Anas, M. Azwar, 2014. *Power Management Control* pada Sistem Hibrida Pygenset Menggunakan *Zelio Logic Smart Relay*, Elektro, Universitas Brawijaya: Malang.
- Basir, Idham Aulia M., dkk., 2012, "The Ganers" Kapal Pembersih Sampah Dengan Sistem Lambung Tiga sebagai Solusi Pembersih Sampah di Teluk Jakarta, Fak. Teknologi Kelautan, Institut Teknologi Sepuluh Nopember Surabaya: Surabaya.
- Chandra, H., 2010, *Kajian Aplikasi Sel Surya Sebagai Sumber Tenaga Penggerak Kapal Tanpa Bbm*, BPPKP Kementrian Kelautan dan Perikanan: Jakarta.
- ECEN 4517/5517, Lecture: Lead-acid batteries.
- Fuhs, Allen., Chapter 6: Multifaceted Complexity of Batteries.
- Hadi, Eko Sasmito, dkk., 2012. Analisa Performa Hullform pada Pra Perancangan Speed Boat Katamaran untuk Search and Rescue di Pantai GunungKidul Yogyakarta Berbasis CFD. Teknik Perkapalan, Fakultas Teknik UNDIP: Semarang.
- Karlsen, A.T., 2012, On Modeling of a Ship Propulsion System for Control Purposes, NTNU-Trondheim: Norwegia.
- Man Diesel & Turbo, 2011, *Basic Principles of Ship Propulsion*, 2450 Copenhagen SV: Denmark.
- Jalapatih, 2014, *Proposal Marine Solar Boat Team ITS Dong Energy Solar Chalange*Perairan *Frisian* Belanda. ITS: Surabaya.
- Molland, A. F., 2011, *Ship Resistance and Propulsion*, Cambridge University Press: United States of America.
- National Electrical Manufacturers Association. 1995. NEMA Standards Publication MG 1-1993. Copyright: NEMA.
- Sawhney, A. K., 1970, Electrical Machine Design, D. R. Printing Service: Delhi.
- Sen, P. C., 1997, *Principles of Electrical Machines and Power Electronics*, Lehigh Press: United States of America.
- Sudiyono, Antoko, Bambang., 2008, Perancangan dan Pembuatan Kapal Wisata dengan Motor Generator Listrik Tenaga Surya sebagai Energi Alternatif Penggerak Propeler, Jurusan Teknik Permesinan Kapal Politeknik Perkapalan Negeri Surabaya: Surabaya.
- Vutetakis, D. G., 2001, The Avionics Handbook Ch. 10: Batteries, CRC Press: LLC.

Bav = 0.125;

LAMPIRAN 1

KODING

```
%Perhitungan Kapasitas Motor DC Shunt
disp('Perhitungan Kapasitas Motor DC Shunt')
Vs = 7*0.5144;
Lwl = 7.89; S = 4.599;
Cb = 0.567; h = 0.3;
v = 1.19*10^{(-6)};
Re = Vs*Lwl/v
Cf = 0.0028;
pw = 1025/1000;
Rf = Cf*0.5*pw*Vs^2*S
                                                      AS BRAWING AL
g = 9.81;
Fr = Vs/sqrt(g*Lwl)
Cr = 0.0035;
Rr = Cr*0.5*pw*Vs^2*S
Cd = 0.9; Vw = 0.3;
pa = 1.23; Ap = 0.158;
Ru = Cd*0.5*pa*Vw^2*Ap
Rt = Rf + Rr + Ru
Pe = Rt*Vs
wt = 0.5*Cb-0.05 \% 0.2-0.45(2)
kr = 0.6;
t = kr*wt \% 0.12-0.3 for one propeler (2)
effh = (1-t)/(1-wt)\% 1.1-1.4 for one propeler (2)
d = Lw1*0.02
np = 42;
Vad = Vs*(1-wt);
J = Vad/(np*d)
Kt0 = 0.545;
a = 1.27;
n = 1.21;
Kq0 = 0.096;
b = 1.32;
m = 1.31;
Kt = Kt0*(1-(J/a)^n);
Kq = Kq0*(1-(J/b)^m);
Qp = Kq*pw*d^5*np^2
eff0 = J*Kt/(2*pi*Kq) \% 0.35-0.75 (2)
effr = Kt*Kq0/(Kt0*Kq) %0.95-1.05 section 8.7 (1)
%1-1.07 for one prop (2)
effd = eff0*effh*effr
Pd = Pe/effd;
SCF = 1; \% 1 \text{ for Lbp} < 122m (1)
Pd = Pd*SCF
efft = 0.95; %0.98=direct, 0.95=gear box'
Ps = Pd/efft
margin = 0.15; %0.15-0.3(1)
Pi = (Pe/effd)*SCF*(1/efft)+margin
% Perhitungan Parameter Motor DC Shunt
disp('Parameter Motor DC Shunt')
Pm = 2200;
rpm = 1800;
nm = rpm/60;
Vt = 24;
effj = 0.7;
Pa = Pm;
va = 13.25; % Va < 30 m/s
Dmaks = va/(pi*nm)
p = 2;
\hat{f} = p*nm/2 \%25 < f < 50 Hz
tau = pi*Dmaks/p
```


BRAWIUAL

```
ac = 30000;
Co = pi^2*Bav*ac
phi = 0.7; %0.64<pi<0.72
koefD = phi*pi/p;
Dp3 = (p*Pa)/(Co*phi*pi*nm);
D = (Dp3)^{(1/3)}
tau = pi*D/p;
L = koefD*D
va = pi*D*nm
Parpm = Pa*rpm
persenIf = 0.19/100;
persenVra = 2.1/100;
It = Pm/(effj*Vt)
If = persenIf*It \% If<0.05Ia (1)
Vra = persenVra*Vt
Ia = It-If
Ea = Vt-Vra
fluksi = Bav*tau*L
Ra = (Vra)/Ia
effm = Ea*Ia/(Vt*It)
% Torsi Motor DC Shunt Beban Nominal
disp('Motor DC Shunt Beban Nominal')
Pad = Co*D^2*L*nm;
Pa = Ea*Ia;
Ta = Pa/(2*pi*nm)
Ka = Ta/(fluksi*Ia)
omegan = (Vt/(Ka*fluksi))-(Ra*Ta/(Ka*fluksi)^2);
nn = omegan/(2*pi)
disp('Motor DC Shunt Beban Lebih')
disp('i
                        omega
                  I
                                    putaran')
T=Ta;
I=Ia;
iter = 0;
format short g
while (I<= Ia*1.25)
  iter = iter + 1;
  T=T+0.1;
  I=T/(Ka*fluksi);
  omega=(Vt/(Ka*fluksi))-(Ra*T/(Ka*fluksi)^2);
  putaran=omega*60/(2*pi);
  fprintf('%i', iter), disp([T, I, omega, putaran]);
end
T1=[Ta:0.1:T];
n=((Vt/(Ka*fluksi))-(Ra*(T1)/(Ka*fluksi)^2))*60/(2*pi);
plot(T1,n)
grid on
% Perhitungan Baterai Beban Nominal
disp('Kapasitas Baterai Beban Nominal')
It = Ia + If
k = 1.13;
time = 1;
Cp = It^k*time
% 1 Baterai 24 V 65 ah
Vo = 24; Co = 65;
Eb = Vt*Cp
Nb = Eb/(Co*Vo)
Nb = 4;
Eps = 0.3*Eb
Et = Eps+0.15*Eps
inso = 3.91; fp = 1.1;
Cps= fp*Et/inso
Nps = Cps/200
Nps = 3; Bm = 7;
Bb = Nb*15; Bps = Nps*17;
Bs= dis-Bm-Bb-Bps
Np = Bs/100
```

A STATE OF THE PARTY OF THE PAR

LAMPIRAN 2

HASIL SIMULASI

ERSITAS BRAWN

Perhitungan Kapasitas Motor DC Shunt

Re = 2.3874e+007

Rf = 0.0856

Fr = 0.4093

Rr = 0.1070

Ru = 0.0079

Rt = 0.2004

Pe = 0.7216 wt = 0.2335

t = 0.1401

effh = 1.1219

d = 0.1578

J = 0.4164

Qp = 0.0132

eff0 = 0.3575

effr = 0.9502

effd = 0.3811

Pd = 1.8934

Ps = 1.9931Pi = 2.1431

Parameter Motor DC Shunt

Dmaks = 0.1406

f = 30

tau = 0.2208

Co = 3.7011e + 004

D = 0.1217

L = 0.1338

va = 11.4689

Parpm = 3960000

It = 130.9524

If = 0.2488

Vra = 0.5040

Ia = 130.7036

Ea = 23.4960

fluksi = 0.0032

Ra = 0.0039

effm = 0.9771

Motor DC Shunt Beban Nominal

Ta = 16.2922

Ka = 38.9891

nn = 30.0000

Motor DC Shunt Beban Lebih

i	T	I ome	ega puta	aran
1	16.392	131.51	188.47	29.996
2	16.492	132.31	188.45	29.992
3	16.592	133.11	188.42	29.988
4	16.692	133.91	188.4	29.984
5	16.792	134.71	188.37	29.98
6	16.892	135.52	188.35	29.976

AS BRAWIUS

7	16.992	136.32	188.32	29.972
8	17.092	137.12	188.3	29.968
9	17.192	137.92	188.27	29.964
10	17.292	138.73	188.25	29.961
11	17.392	139.53	188.22	29.957
12	17.492	140.33	188.2	29.953
13	17.592	141.13	188.17	29.949
14	17.692	141.94	188.15	29.945
15	17.792	142.74	188.12	29.941
16	17.892	143.54	188.1	29.937
17	17.992	144.34	188.07	29.933
18	18.092	145.14	188.05	29.929
19	18.192	145.95	188.02	29.925
20	18.292	146.75	188	29.921
21	18.392	147.55	187.97	29.917
22	18.492	148.35	187.95	29.913
23	18.592	149.16	187.92	29.909
24	18.692	149.96	187.9	29.905
25	18.792	150.76	187.88	29.901
26	18.892	151.56	187.85	29.897
27	18.992	152.36	187.83	29.893
28	19.092	153.17	187.8	29.889
29	19.192	153.97	187.78	29.885
30	19.292	154.77	187.75	29.882
31	19.392	155.57	187.73	29.878
32	19.492	156.38	187.7	29.874
33	19.592	157.18	187.68	29.87
34	19.692	157.98	187.65	29.866
35	19.792	158.78	187.63	29.862
36	19.892	159.58	187.6	29.858
37	19.992	160.39	187.58	29.854
38	20.092	161.19	187.55	29.85
39	20.192	161.99	187.53	29.846
40	20.292	162.79	187.5	29.842
41	20.392	163.6	187.48	29.838

Kapasitas Baterai Beban Nominal

130.95 Cp = 246.8 Eb = 5923.1 Nb = 3.7969 1776.9 Eps = Et =2043.5 574.89 Cps = 2.8744 Nps = Bs = 851Np = 8.51

LAMPIRAN 3

DATA MOTOR DAN BATERAI

CUSTOM IEC FRAME DC MOTORS MOTOR SELECTION GUIDE

LOW VOLTAGE MOTORS

IEC 71 and 80 FRAMES

12. 24 or 36 VOLTS

Full Load Amperage						S1 Conti	inuous C	Duty Enc	losures C	15 Minute Dutys Approximate Amperage			e	
kW	HP	RPM	12V	24V	36V	Frame	Dim.	Frame	Dim.	kW	HP	12V	24V	36V
0,18	1/4	1200	20	10	6,7	71	234	71	262	0,37	1/2	40	20	15
		1500	20	10	6,7	71	234	71	262			40	20	15
		1800	21	10	6,9	71	234	71	262			40	20	15
		2500	21	11	7,0	71	234	71	249			40	20	15
		3000	21	11	7,0	71	234	71	249			40	20	15
0,25	1/3	1200	27	13	8,9	71	247	71	287	0,55	3/4	65	30	20
		1500	27	13	8,9	71	234	71	275			65	30	20
		1800	27	14	9,2	71	234	71	262			65	30	20
		2500	28	14	9,2	71	234	71	262			65	30	20
		3000	28	14	9,3	71	234	71	262			65	30	20
0,37	1/2	1200	40	20	13	71	272	71	313	0,75	1	80	40	30
		1500	40	20	13	71	260	71	300			80	40	30
		1800	40	20	13	71	247	71	300			80	40	30
		2500	40	20	13	71	234	71	287			80	40	30
		3000	41	21	14	71	234	71	287			80	40	30
0,55	3/4	1200	58	29	19	71	323	71	363	1,1	11/2	_	65	45
		1500	58	29	19	71	298	71	338			_	65	45
		1800	58	29	19	71	285	71	338			_	65	45
		2500	60	30	20	71	260	71	325			_	65	45
		3000	60	30	20	71	247	71	325			_	65	45
		1200	58	29	19	80	335	80	389	1,1	11/2	150	65	45
		1500	58	29	19	80	310	80	376			150	65	45
		1800	58	29	19	80	297	80	363			150	65	45
		2500	60	30	20	80	272	80	351			150	65	45
		3000	60	30	20	80	259	80	351			150	65	45
0,75	1	1200	74	37	25	80	373	80	427	1,5	2	_	90	60
		1500	78	39	26	80	348	80	414			_	90	60
		1800	78	39	26	80	322	80	402			_	90	60
		2500	78	39	26	80	297	80	389			_	90	60
		3000	80	40	27	80	284	80	376			_	90	60
1,1	11/2	1800	110	57	38	80	386	_	_	2,2	3	_	_	_
		2500	110	57	38	80	348	80	402			_	_	90
		3000	120	58	39	80	322	80	389			_	_	90
1,5	2	2500	_	76	51	80	399	_	_	3,0	4	_	_	100
		3000	_	78	52	80	373	80	427			_	_	100

For dimensions, see drawing 10 on page 34.

LOW VOLTAGE MOTORS

12, 24, 36 or 48 VOLTS

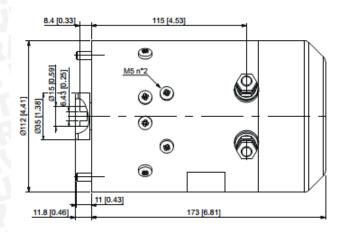
					Amperac	_	S1 Continuous Duty Enclosures						15 Mi	nute Duty	Enclos	uress		
kW	НР	RPM	12V	24V	36V	48V	ODP Frame	C Dim.	TEFC Frame	C Dim.	TENV Frame	C Dim.	ODP Frame	C Dim.	TEFC Frame	C Dim.	TENV Frame	C Dim.
1,5	2	1800	146	73	49	37	80	332	80	414	80	421	80	383	80	376	80	344
		2500	146	73	49	37	80	357	80	376	80	370	80	332	80	414	80	319
		4000	146	73	49	37	80	306	80	389	80	319	80	281	80	363	80	344
2,2	3	1800	_	110	73	55	80	370	_	_	_	_	80	370	80	427	80	421
		2500	_	110	73	55	80	332	80	427	_	_	80	332	80	389	80	370
		4000	_	110	73	55	80	357	80	363	80	370	80	319	80	402	80	319
3,0	4	1800	_	146	98	73	80	421	_	_	_	_	80	421	80	465		
		2500	_	146	98	73	80	370	_	_	_	_	80	370	80	414	80	395
		4000	_	146	98	73	80	319	80	402	80	370	80	357	S56	440	80	332
3,7	5	1800	_	183	122	91	_	_	_	_	_	_	_	_	_	_	_	_
		2500	_	183	122	91	80	408	_	_	_	_	80	395	80	465	_	_
		4000	_	183	122	91	80	332	_	_	_	_	80	332	80	389	80	370
4,5	6	1800	_	_	146	110	_	_	_	_	_	_	_	_	_	_	_	_
		2500	_	_	146	110	_	_	_	_	_	_	80	421	_	_	_	_
		4000	_	_	146	110	80	395	_	_	_	_	80	344	80	414	_	_
5,2	7	1800	_	_	170	128	—	_	_	_	_	_	-	_	_	_	_	_
		2500	_	_	170	128	—	_	_	_	_	_	l –	_	_	_	_	_
		4000	_	_	170	128	_	_	_	_	_	_	80	370	80	440	_	_
6,0	8	1800	_	_	195	146	_	_	_	_	_	_		_	_	_	_	_
		2500	_	_	195	146	_	_	_	_	_	_	 	_	_	_	_	_
		4000	_	_	195	146	_	_	_	_	_	_	80	395	80	465	_	_

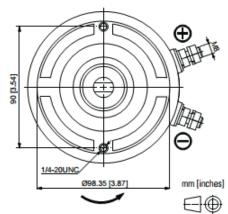
For dimensions, see drawing 🕒 on page 34.

Electrical Specifications:

These motors are intended for direct current input having a form factor of 1,0 to 1,05 such as is provided by a battery, generator or solar power. They have linear speed and torque characteristics. The output speed can be adjusted by voltage change using series/parallel battery connections or adjustable voltage controls having a form factor of 1,05 or lower.

Mechanical Features:

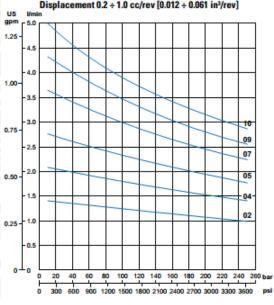

Low-profile "48 frame" barrel. Strong, rolled steel construction with cast aluminum endshields and cast iron bearing inserts. Permanently lubricated sealed ball bearings. Available in a variety of mountings including universal end fixing to accept the IEC 71, 80, 90, 100 or 112 frame B5 flange or B14 face adapter packages, NEMA C face, with or without base, and four-bolt pump mounting. Special mountings quoted on request.



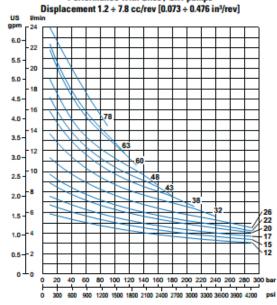
25022100

24 VDC - 2.2 KW - D.115 MOTOR

RATED FEATURES


Voltage	24 VDC
Power	2.2 kW
Nominal diameter	115 mm [4.53 in]
Motor type	Wound field
Wotor type	compound
Rotation	CCW
Protection class IP	54
(with motor assembled on hydraulic power pack)	54
S2 / S3 duty service	see curves
Insulation class	F
Weight	6.7 kg [14.77 lb]
·	

PUMP TYPE


Code	cc/rev.	GR (Size)
02	0.25	05
04	0.45	05
05	0.56	05
07	0.75	05/1
09	0.9	05/1
10	1.0	05/1
12	1.2	05/1
15	1.5	1
17	1.7	1
20	2.0	1

Code	cc/rev.	GR (Size)
22	2.2	1
26	2.6	1
32	3.2	1
38	3.8	1
43	4.3	1
48	4.8	1
60	6.0	1
63	6.3	1
78	7.8	1

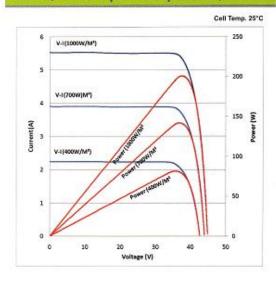
Performance with GR05 / GR1 pumps Displacement 0.2 ÷ 1.0 cc/rev [0.012 ÷ 0.061 in³/rev]

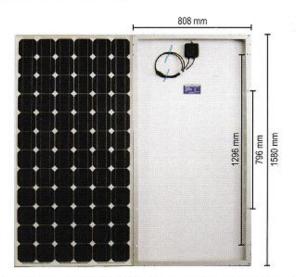
Performance with GR05 / GR1 pumps Displacement 1.2 ÷ 7.8 cc/rev [0.073 ÷ 0.476 in³/rev]

Electrical Characteristics

STC	SP 200 Wp Nonocrystaline
Optimum Operating Voltage (Vpm)	37.44 V
Optimum Operating Current (Imp)	5.35 A
Open - Circuit Voltage (Voc)	44.50 V
Short - Circuit Current (Isc)	5.50 A
Maximum Power at STC (Pmax)	200 W
Modul Efficiency	16 %
Operating Module Temperature	-40 °C to +85°C
Maximum System Voltage	1000 V DC
Maximum Series Fuse Rating	15 A
Power Tolerance	+ 0 - 3 %

STC: Irradiance 1000 W/m², module temperature 25 °C, AM=1.5;


Mechanical Characteristics


Solar Cell	Monocrystalline
No. Of Cells	72 (6 X 12)
Dimensions	1580 X 808 X 45 mm
Weight	16.5 Kg
Junction Box	IP65
Diodes	Schottky by-pass diodes
Output Cables	TUV (2Pfg 1169); PV1-F 1*4mm, Cable with polarized weather proof DC rated ZJRH connectors (MC3 or MC4 type) symmetrical length 1000mm (-) and 1000 mm (+)
Connectors	RADOX® SOLAR integrated twist locking connectors
Construction	Front : High-transmission low-iron,3,2 mm tempered glass; Back cover : Tedlar / TPE / TPT
	Encapsulant : EVA; Frame : Anodized aluminum alloy

Temperature Characteristics

Nominal Operating Cell Temperature (NOCT) 45 ± 5 °C Temperature Coefficient of Power -0.41 %/°C -0.31 %/°C Temperature Coefficient of Voc Temperature Coefficient of Isc 0.047 %/°C

Current-Voltage & Power-Voltage Curve (SP 200 Wp Monocrystalline)

PT Len Industri (Persero)
JI. Soekarno-Hatta 442 Bandung 40254 Indonesia
Phone : 62-22-5202682 Fax. : 62-22-5202695
Web : www.len.co.id Email : marketing@len.co.id

RATING(a)	CONCORDE	CONCORDE SLA	TELEDYNE VLA	TELEDYNE SLA	HAWKER SLA	MARATHON VNC	SAFT VNC
12V/6.5Ah							615
12V/10Ah 12V/15Ah				G-30s	SBS-15		10.15
12V/18Ah	CB-25	RG-25	G-25		SBS-30		
12V/23Ah	CB-35	RG-35	G-25M G-35	G-35S			
12V/25Ah	CB-35M		G-35M		SBS-40		
12V/37Ah					SBS-60		
12V/65Ah	CB12-88		G-88				
13.2V/36Ah						CA-138	40153
13.2V/40Ah						SP-138 CA-13	40253 40152
13.21740.111						CA-13-1	10152
13.2V/42Ah						CA-130	40353
22.8V/3Ah						CA-13 CA-125	19V03KHB
22.8V/5.5Ah						MA-300H	
						CA-51 CA-53	
						CA-54	
22.8V/6.5Ah						MA-500H	605
22.8V/7Ah							19V07L
22.8V/12Ah							1201 12101
22.8V/13Ah						CA-7	
						CA-10N CA-515A/B	
						CA-101	
						CA-103 CA-106	
						CA-154	
22.8V/14Ah							1277 1277-1
22.8V/15Ah							12277
22.8V/20Ah						CA-20H CA-21H	
22.8V/22Ah						Cit 2111	23175
22.8V/23Ah							19V023KHI 2353-1
22.8V/24Ah						CA-4	2555-1
						CA-9 MA-11	
						CA-24A/B	
						CA-27 CA-272-7	
						KCA-727	
22.8V/40Ah						CA-737 CA-5	
22.0 V/40AII						KA-5h	
						MA-5 CA-747	
22.8V/60Ah						CA-88A/B	
2.8V/65Ah 24V/3Ah						MA-2-1	2000381118
4V/5Ah					9750B0818	MA-300	20V03KHB
24V/8Ah	CB24-9 CB24-9M		G-240 G-241				
4V/10Ah	CB24-9M CB24-11	RG-24-11M	G-242	G-242S	9750R0817		
	CB24-11M		G-243	G-243s	9750R0819		
			GE-54C GE-54E		9750R0824 9750G082		
24V/14Ah		RG-400E					
24V/14Ah	CB24-40E		G-640C G-640E			CA-154-5	
							(continue
		Batteries (Continued)					
RATING ^(a)	CONCORDE	CONCORDE SLA	TELEDYNE VLA	TELEDYNE SLA	HAWKER SLA	MARATHON VNC	SAFT VNC
24V/43Ah			G-63381C G-6381E				4078 4078-4
			G 65612				4078-7
							40208 40208-1
							40208-2
24V/44Ah		RG-380E/40					40378
24V/45Ah	CB24-380C	272-2001/40					
24V/48Ah	CB24-380E CB24-382E						
24V/50Ah	OD2T-302E						21931
24V/65Ah						MA-2	21932
24V/65Ah 26.4V/7Ah						IVIA-2	22V07L
26.4V/13Ah						CA-121	

⁽a) Voltage rating is based on 1.2 V per cell for nickel-cadmium and 2.0 V per cell for lead-acid. Capacity rating is based on the one-hour rate.

LAMPIRAN 3

STANDARD NEMA

GENERATORS AND MOTORS

GENERATORS AND MOTORS

7 249

controllers the location of the control point will be the same as the location of the controller. For magnetic controllers the location of the control point will be the point of location of the START and STOP pushbuttons, which may or may not be the same as the location of the controller.

For motors rated over 600 V, the ultimate-trip current of overcurrent (overload) relays or other motor protective devices used shall not exceed 115 percent of the controller's continuous current rating. Where the motor branch-circuit disconnecting means is separate from the controller, the disconnecting means current rating shall not be less than the ultimate trip setting of the overcurrent relays in the circuit.

380. Overload protection of motors. Each continuous-duty motor must be protected against excessive overloads under running conditions by some approved protective device. This protective device, except for motors rated at more than 600 V, may consist of thermal relays, thermal release devices, or magnetic relays in connection with the motor controller, fuses, an inverse-time circuit breaker, or a thermal protector built into the motor.

Except for a thermal protector in the motor, the National Electrical Code requires that the protection be as follows:

- 1. More Than 1 hp. Each continuous-duty motor rated more than 1 hp shall be protected against overload by one of the following means:
- **a.** A separate overload device that is responsive to motor current. This device shall be selected to trip or shall be rated at no more than the following percentage of the motor-nameplate full-load current rating:

Motors with a marked service factor	Percent 125
not less than 1.15 Motors with a marked temperature rise not over 40°C	125
All other motors	115

For a multispeed motor, each winding connection shall be considered separately. This value may be modified as permitted by Par. 6.

Where a separate motor-running overload device is so connected that it does not carry the total current designated on the motor nameplate, as for Y-delta starting, the proper percentage of nameplate current applying to the selection or setting of the overload device shall be clearly designated on the equipment, or the manufacturer's selection table shall take this into account.

- b. A thermal protector integral with the motor, approved for use with the motor which it protects on the basis that it will prevent dangerous overheating of the motor due to overload and failure to start. The National Electrical Code specifies the level of protection to be provided by the motor manufacturer. If the motor current-interrupting device is separated from the motor and its control circuit is operated by a protective device integral with the motor, it shall be so arranged that the opening of the control circuit will result in an interruption of current to the motor.
- c. A protective device integral with the motor that will protect the motor against damage due to failure to start shall be permitted if the motor is part of an approved assembly that does not normally subject the motor to overloads.

- NEMA standards, which specify mounting dimensions for induction motors and, in general, minimum performance characteristics for all types of motors and control
- IEEE standards, which specify temperature limits for insulation materials and prescribe the methods of rating and testing apparatus
- The National Electrical Code, which is the general guide of inspectors in determining acceptability of enclosures, protection, and installation of motors
- 4. State laws, which stress safety and reduction of fire hazards
- 5. City ordinances, which may specify particular construction considered necessary locally to avoid fires and accidents

354. Standard ratings of motors (NEMA standards).¹ The standard horse-power ratings of motors are 1, 1.5, 2, 3, 5, 7.5, 10, 15, 25, and 35 mhp and $\frac{1}{20}$, $\frac{1}{12}$, $\frac{1}{8}$, $\frac{1}{6}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{2}$, $\frac{3}{4}$, 1, $\frac{1}{2}$, 2, 3, 5, $\frac{7}{2}$, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 7000, 8000, 9000, 10,000, 11,000, 12,000, 13,000, 14,000, 15,000, 16,000, 17,000, 18,000, 19,000, 20,000, 22,500, 25,000, 27,500, 30,000, 32,500, 35,000, 37,500, 40,000, 45,000, 50,000, 55,000, 60,000, 65,000, 70,000, 75,000, 80,000, 90,000, and 100,000 hp.

The standard full-load speed ratings for constant-speed, integral-horsepower dc motors are 3500, 2500, 1750, 1150, 850, 650, 500, 450, 400, 350, 300, 250, 225, 200, 175, 150, 110, 100, 90, 80, 70, 65, 60, 55, and 50 rpm.

The standard full-load ratings for small constant-speed dc motors from ½0 to 1 hp are 3450, 2500, 1725, and 1140 rpm.

The standard speeds for 60-Hz synchronous motors are 3600, 1800, 1200, 900, 720, 600, 514, 450, 400, 360, 327, 300, 277, 257, 240, 225, 200, 180, 164, 150, 138, 129, 120, 109, 100, 95, 90, 86, and 80 rpm.

The standard synchronous speeds for 60-Hz, polyphase and single-phase induction motors, except permanent-split-capacitor motors, are 3600, 1800, 1200, 900, 720, 600, 514, 450, 400, 360, 327, 300, 277, 257, 240, and 225 rpm.

The standard synchronous speeds for 60-Hz, single-phase permanent-split-capacitor motors are 3600, 1800, and 1200 rpm.

The approximate full-load speeds of induction motors can be obtained from the synchronous speeds by means of the approximate full-load slips.

The standard voltages are as follows:

- Direct-current fractional-horsepower motors intended for use on adjustable voltage rectifier power supplies^a
 - a. Single-phase primary power source
 - b. Three-phase primary power source
- Industrial direct current^a

75, 90, 150, or 180 V

240 V

180, 240, 250, 500, 550, or 700 V

¹This material is reproduced with the permission of the National Electrical Manufacturers Association from the NEMA Standards Publication MG 1-1993 copyright ₺ 1995 by NEMA.