BAB IV PEMBAHASAN

4.1 Transformator Utama

Transformator yang digunakan untuk penelitian ini adalah transformator utama yang merupakan jenis transformator penaik tegangan untuk menaikkan tegangan yang dihasilkan oleh genetaror utama ke tegangan transmisi 154kV. Foto transformator ditunjukkan pada Gambar 4.1.

Gambar 4. 1 Transformator Utama Unit I di PLTA Sutami Sumber : PLTA Sutami

Data teknis transformator sebagai berikut:

Tipe : Transformator TOSHIBA Type 306775, Thn 1972

Kapasitas : 39 MVA

Frekuensi : 50 Hz

Fasa : 3 fasa (R, S, dan T)

Tegangan primer : 11kV

Tegangan sekunder : 154kV

Temperatur Rise : 50°C

Tegangan impedansi : 9.73%

Standart : JEC-168(1966)

Tipe Pendingin : ONAN / ONAF

Jenis Penempatan : Outdoor

Hubungan kumparan : Y/Δ

Terdapat tiga buah transformator utama yang digunakan di PLTA Sutami, yaitu transformator utama unit 1 dan 2 yang digunakan sejak tahun 1973 dan transformator utama unit 3 yang digunakan sejak tahun 1974. Dalam proses kerjanya transformator ini digunakan secara bergantian dalam memikul beban beban harian dan beban puncak.

Untuk pengecakan transformator dilakukan secara digital melalui ruang kontrol dan secara langsung dengan melihat langsung ke *switch yard*. Pengecekan transformator dibagi menjadi beberapa jenis pengecekan berdasarkan waktu pengecekannya. Salah satunya adalah pengecekan harian yang meliputi, pengecekan level oli, temperatur oli, dan pembebanan dari transformator.

4.2 Data Harian Transformator

Data harian adalah hasil pembukuan dari hasil pengecekan harian transformator. Data harian ini meliputi data level oli, data temperatur oli, data pembebanan transformator, dan data temperatur belitan transformator. Dan untuk penelitian ini data harian yang digunakan adalah data level oli, temperatur oli dan data pembebanan transformator dari tahun 2010-2014

4.2.1 Level oli

Dalam pengecekan level oli ini digunakan alat ukur yang bernama *Oil Level Indicator* yang dipasang tepat di luar konservator, ditunjukkan pada Gambar 4.2.

Gambar 4. 2 *Oil Level Indicator* Sumber: PLTA Sutami

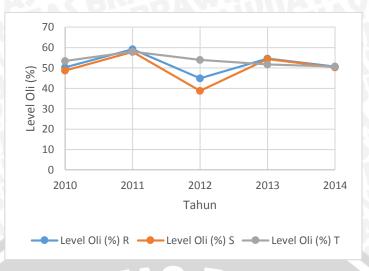
Indikator level oli dinyatakan dalam satuan persen (%), saat kondisi 0% maka oli pada tangki adalah 0 ltr, sedangkan pada saat 100% oli pada tangki adalah 11700 ltr yang merupakan volume maksimum oli dalam tangki. Standar level oli mengacu pada buku panduan transformator, dengan standar minimum oli adalah sebesar 0%, sedangkan stadar maksimum level oli adalah 100%. Tinggi rendahnya level oli perlu dilakukan pengecekan

BRAWIJAYA

secara berkala, karena jika level oli melampaui batas maka akan mempengaruhi kinerja transformator. Dari hasil pengecekan level oli secara berkala setiap harinya, maka dikelompokkan menjadi data bulanan. Data bulanan dari tahun 2010-2014 saat transformator dioperasikan dalam keadaan normal ditujukkan pada Tabel 4.1.

Tabel 4. 1 Tabel Data Bulanan Level Oli

TAHUN		2010			2011		2012		2013				2014		
Bulan	Lev	Level oli (%)		Level oli (%)		Level oli (%)		Ι	evel oli	(%)		Level oli (%)			
Bulan	R	S	Т	R	S	T	R	S	T	R	S	T	R	S	T
<mark>Jan</mark> uari	50	48	58	60	58	58	45	40	54	68	68	56	50	51	50
Februari	40	51	50	66	62	62	44	39	50	53	53	52	50	53	49
M aret	40	30	50	56	56	56	44	45	59	58	55	55	51	51	60
A pril	45	38	52	58	58	56	40	35	49	60	58	58	49	37	48
Mei	42	38	51	61	58	59	40	39	51	55	56	56	52	51	50
J uni	55	52	52	57	55	56	48	31	44	58	56	53	45	48	44
J uli	52	54	55	58	58	58	44	31	48	57	54	54	50	51	63
Agustus	53	52	52	58	56	58	46	40	61	53	56	52	50	52	49
September	58	57	57	58	58	58	42	35	56	37	37	34	50	50	46
Oktober	61	60	60	59	58	58	44	38	57	53	54	51	56	53	50
November	53	52	52	60	59	60	48	41	58	53	54	50	56	55	51
Desember	55	53	53	59	59	58	54	52	61	50	52	50	50	51	48
Rata-rata	50.33	48.75	53.5	59.17	57.92	58.08	44.92	38.83	54	54.58	54.42	51.75	50.75	50.25	50.67


Sumber: PLTA Sutami

Dari data bulanan level oli yang telah di dapat, maka dikelompokkan kembali menjadi data ahunan dengan menghitung rata-rata level oli untuk setiap tahunnya. Sehingga di dapatkan Tabel 4.2 yang menyatakan nilai rata-rata level oli.

Tabel 4. 2 Rata-rata Level Oli

Tahun	Level Oli (%)							
1 alluli	R	S	Ť					
2010	50.33	48.75	53.5					
2011	59.17	57.92	58.08					
2012	44.92	38.83	54					
2013	54.58	54.42	51.75					
2014	50.75	50.25	50.67					

Dari data rata-rata level oli untuk setiap tahun dapat dibuat grafik trend level oli tahunan. Grafik ditunjukkan pada Gambar 4.3.

Gambar 4.3 Grafik Trend Level Oli Tahunan

Dari Grafik pada Gambar 4.3 terlihat untuk rata-rata level oli semua fasa tertinggi selama kurun waktu lima tahun (2010-2014) terjadi pada tahun 2011. Dari adanya data harian level oli, dapat kita buat tabel distribusi frekuensinya dengan sebelumnya melakukan perhitungan sesuai indikator distribusi frekuensi dengan rumus yang terdapat pada persamaan (2.1) dan (2.2). Dengan perhitungan sebagai berikut :

 $k = 1 + 3.3 \log n$, dengan n : jumlah data

 $k = 1 + 3.3 \log 180$

= 8.44 dan dibulatkan menjadi 8

c = nilai max-nilai min / k

= 68-31/8

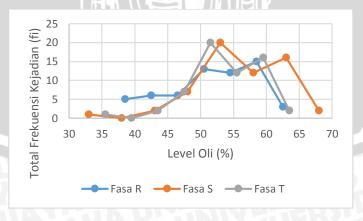
= 4.625 dan dibulatkan menjadi 5

Perhitungan jumlah kelas dan interval kelas untuk setiap fasa juga dihitung dengan cara yang sama (perhitungan dapat dilihat pada bagian lampiran 1), hingga di dapatkan nilai untuk masing-masing fasa terdapat pada Tabel 4.3.

Tabel 4. 3 Indikator Distibusi Frekuensi Level Oli

Indikator Distibusi Frekuensi	k (Jumlah Kelas)	c (Interval Kelas)			
Semua Fasa	8	5			
Fasa R	7	4			
Fasa S	7	5			
Fasa T	7	42-53			

Jika telah dihitung nilai dari jumlah kelas (k) dan interval kelas (c) untuk setiap indikator maka dapat dibuat tabel distribusi frekuensinya. Tabel distibusi frekuensi level oli semua fasa ditunjukkan pada Tabel 4.4.


	IPSAVATA IINISHUEDZOGI PSAV PSA											
I	Distril	busi Level Oli	Transfor	mator dari	tahun 2010)-2014						
Level Oli	v.	frekuensi	(f) m	w	$(x_i - \bar{x})^2$	6.6. = 12						
(%)	x_i	kejadian (f)	$(f).x_i$	$x_i - \bar{x}$	$(x_i - x)$	$f.(x_i-\bar{x})^2$						
31-35	33	6	198	-18.67	348.44	2090.67						
36-40	38	14	532	-13.67	186.78	2614.89						
41-45	43	14	602	-8.67	75.11	1051.56						
46-50	48	30	1440	-3.67	13.44	403.33						
51-55	53	52	2756	1.33	1.78	92.44						
56-60	58	55	3190	6.33	40.11	2206.11						
61-65	63	6	378	11.33	128.44	770.67						
66-70	68	3	204	16.33	266.78	800.33						
Jumlah		180	9300	-9.33	87.11	10030						
Rata-Rata	ì	51.67				Y ,						
Stadar Devi	Stadar Deviasi			12 CD								

Tabel 4. 4 Distibursi Frekuensi Level Oli

Pada tabel distibusi frekeuensi level oli untuk semua fasa dihasilkan nilai stadar deviasi (S) sebesar 7.48%. Yang menyatakan bahwa variasi data dari level oli untuk semua fasa adalah sebesar ±7.48%. Tabel distribusi setiap fasa dapat dilihat pada lampiran 1. Dari tabel distribusi masing-masing fasa di dapatkan nilai standar deviasi sebagai berikut : S_R adalah 6.76 %, S_S adalah 8.81 % dan S_T = 7.53%. Dengan melihat nilai frekuensi kejadian pada tabel distribusi level oli tiap fasa, dapat dibuat grafik polygon seperti pada Gambar 4.4.

7.48

(S)

Gambar 4. 4 Grafik Distibusi Frekuensi Level Oli Tiap Fasa

Dari Gambar 4.4 dapat dilihat bahwa Untuk fasa R frekuensi kejadian paling tinggi adalah sebesar 15 kali yaitu saat level oli berada pada posisi antara 55%-60%, sedangkan untuk fasa S dan T frekuensi kejadian paling tinggi adalah sebesar 20 kali, yaitu saat level oli berada pada posisi antara 50%-55%. Karena besarnya level oli tidak melampaui tinggi maksimal level oli yang ditentukan pada buku panduan penggunaan transformator maka dapat disimpulkan bahwa level oli untuk transformator utama unit 1 masih berada dalam batas yang aman.

4.2.2 Temperatur oli

Pengukuran temperatur oli dilakukan sebanyak tiga kali sehari. Dari tiga kali pengukuran ini diambil nilai tertinggi yang kemudian di jadikan sebagai data harian temperatur oli. Pengukuran ini menggunakan alat yang terpasang dibagian luar transformator, yang disebut dengan Oil Thermometer. Untuk standar temperatur yang digunakan mengacu pada buku panduan transformator, dengan temperatur maksimum sebesar 80°C. Saat temperatur mencapai 80°C maka kontak alarm akan aktif dan memberikan peringatan. Oil Thermometer ditunjukkan pada Gambar 4.5.

Gambar 4. 5 Oil Thermometer Sumber: PLTA Sutami

Pada Oil Thermometer terlihat terdapat dua indikator jarum, yaitu jarum yang berwarna putih menunjukkan temperatur dari oli pada saat terukur, sedangkan untuk indikator yang berwarna merah menujukkan batas temperatur oli yang dijinkan menurut buku panduan transformator. Ketika temperatur oli melampaui batas jarum merah, maka alarm akan berbunyi. menandakan bahwa temperatur oli dalam keadaan tidak wajar. Sehingga pengecekan yang intesif juga perlu dilakukan agar temperatur oli dapat dimonitoring dengan baik. Untuk hasil pengukuran harian temperatur oli selama kurun waktu lima tahun (2010-2014) dapat dilihat dari Tabel 4.5.

Tabel 4. 5 Temperatur Oli Transformator Utama Unit I

TAHUN	2010		2011		2012		50	2013	MART		2014	W			
BULAN	Temperatur (°C)		Temperatur (°C)		Temperatur (°C)		Temperatur (°C)		Temperatur (°C)						
				7 / 1/2				411		AC					
	R	S	T	R	S	T	R	S	T	R	S	T	R	S	T
Januari	70	62	62	62	58	60	68	65	61	58	64	65	63	62	69
Februari	60	60	56	61	74	74	67	62	58	61	60	60	63	60	60
Maret	65	64	60	64	64	62	64	62	59	63	64	64	64	75	56
April	64	64	60	61	75	78	63	61	73	62	60	60	61	59	60
Mei	71	70	62	65	64	68	63	61	56	59	59	55	62	60	56
Juni	63	63	60	62	60	57	63	60	65	61	56	58	56	57	52
Juli	66	61	67	58	56	62	69	60	57	69	60	56	61	58	61
Agustus	63	61	58	62	59	58	63	59	56	64	59	54	60	58	51
September	67	77	65	57	57	57	62	59	59	51	45	45	62	57	44
Oktober	63	63	59	62	59	58	64	59	54	65	63	51	63	63	51
November	65	72	66	64	62	62	63	65	65	67	62	50	64	58	43
Desember	66	64	60	70	66	61	62	55	55	62	62	50	63	63	59
Rata-rata	65.25	65.1	61.25	62.33	62.83	63.1	64.25	60.67	55	61.83	59.5	55.67	61.83	60.83	55.17

Sumber: PLTA Sutami

Dari data bulanan temperatur oli yang telah di dapat, maka dikelompokkan kembali menjadi data tahunan dengan menghitung rata-rata temperatur oli untuk setiap tahunnya. Sehingga di dapatkan Tabel 4.6 yang menyatakan nilai rata-rata temperatur oli.

Tabel 4. 6 Rata-Rata Temperatur Oli

Tahun	Temperatur (°C)								
	R	S	T						
2010	65.25	65.1	61.25						
2011	62.33	62.83	63.1						
2012	64.25	60.67	55						
2013	61.83	59.5	55.67						
2014	50.75	50.25	50.67						

Dari data rata-rata temperatur oli untuk setiap tahun dapat dibuat grafik trend level oli tahunan. Grafik ditunjukkan pada Gambar 4.6.

Gambar 4. 6 Grafik Trend Temperatur Oli Tahunan

Pada grafik temperatur oli pertahun terlihat bahwa nilai rata-rata temperatur oli untuk setiap fasa memiliki nilia yang berbeda. Untuk fasa R rata-rata temperatur oli tertinggi terjadi pada tahun 2012, sedangkan untuk fasa S dan T nilai rata-rata temperatur oli tertinggi terjadi pada tahun 2011. Dengan adanya data harian temperatur oli, dapat kita buat tabel distribusi frekuensinya, dengan sebelumnya melakukan perhitungan sesuai indikator distribusi frekuensi dengan rumus yang terdapat pada persamaan (2.1) dan (2.2). Dengan perhitungan sebagai berikut:

 $k = 1 + 3.3 \log n$, dengan n : jumlah data

 $k = 1 + 3.3 \log 180$

= 8.44 dan dibulatkan menjadi 8

c = nilai max-nilai min / k

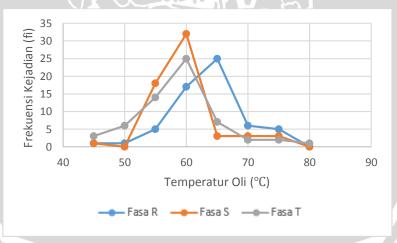
= 74-43/8

= 3.875 dan dibulatkan menjadi 4

Perhitungan jumalah kelas dan interval kelas untuk setiap fasa juga dihitung dengan cara yang sama (perhitungan dapat dilihat pada bagian lampiran 2), hingga di dapatkan nilai untuk masing-masing fasa terdapat pada Tabel 4.7.

BRAWIU

Tabel 4. 7 Indikator Distibusi Frekuensi Temperatur Oli


Indikator Distibusi Frekuensi	k (Jumlah Kelas)	c (Interval Kelas)
Semua Fasa	8	4
Fasa R		3
Fasa S	75	5
Fasa T	7,17	5

Jika telah dihitung nilai dari jumlah kelas (k) dan interval kelas (c) untuk setiap fasa maka dapat dibuat tabel distribusi frekuensinya. Tabel distibusi frekuensi temperatur oli semua fasa ditunjukkan pada Tabel 4.8.

	Table No Distribusi Temperatur on Seman Tasa											
Distribu	si Tem	peratur Oli Transform	ator dari t	ahun 2010)-2014							
Temperatur Oli (°C)	x_i	frekuensi kejadian (f)	$(f).x_i$	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	$f.(x_i-\bar{x})^2$						
43-46	44.5	4	178	-16.84	283.73	1134.94						
47-50	48.5	2	97	-12.84	164.97	329.96						
51-54	52.5	7	367.5	-8.84	78.23	547.57						
55-58	56.5	29	1638.5	-4.84	23.47	680.59						
59-62	60.5	69	4174.5	-0.84	0.72	49.21						
63-66	64.5	48	3096	3.16	9.95	477.96						
67-70	68.5	12	822	7.16	51.21	614.42						
71-74	72.5	5	362.5	11.16	124.45	622.23						
Jumlah		180	11042	-7.6	966.42	5375.64						
Rata-Rata		61.34			11777							
Stadar Deviaci (S	3	5.48	DRA.									

Tabel 4.8 Distibusi Frekuensi Temperatur Oli Semua Fasa

Pada tabel distibusi frekeuensi temperatur oli untuk semua fasa dihasilkan nilai stadar deviasi (S) sebesar 5.48 °C. Yang menyatakan bahwa variasi data dari temperatur oli untuk semua fasa adalah sebesar 5.48 °C. Tabel distribusi masing-masing fasa dapat dilihat pada lampiran 1.2. Dari tabel distribusi masing-masing fasa di dapatkan nilai standar sebagai berikut: S_R adalah 3.55 °C, S_S adalah 5.41 °C dan S_T adalah 6.85 °C. Dengan data nilai frekuensi kejadian pada tabel distribusi temperatur oli tiap fasa, dapat dibuat grafik polygon seperti pada Gambar 4.7

Gambar 4.7 Grafik Distibusi Frekuensi Temperatur Oli Tiap Fasa

Dari gambar grafik diatas dapat dilihat bahwa, untuk fasa R frekuensi kejadian paling tinggi adalah sebesar 25 kali yaitu saat temperatur oli berada pada suhu antara 60°C – 70°C sedangkan untuk fasa S adalah sebanyak 32 kali yaitu saat temperatur oli berada pada suhu 60°C, dan untuk fasa T frekuensi kejadian paling tinggi adalah sebesar 25 kali, yaitu saat temperaturl oli berada pada posisi antara 60°C. Karena besarnya

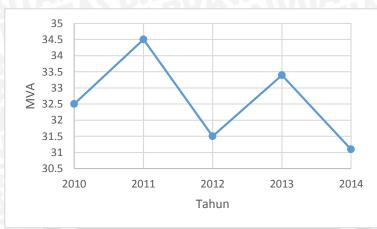
temperatur oli tidak melampau tinggi maksimal level oli yang ditentukan pada buku panduan transformator yaitu maksimal 80°C maka dapat disimpulkan bahwa level oli untuk transformator.

4.2.3 Data pembebanan

Pengecekan terhadap pembebanan transformator dilakukan sebanyak tiga kali dalam sehari, namun untuk pembukuannya hanya diambil nilai maksimum dan minimumnya saja. Yang kemudian dijadikan sebagai data pembebanan bulanan. Untuk pengecekan pembebanan dimonitoring dari langsung dari ruang kontrol. Data hasil pengecekan pembebanan transformator selama lima tahun (2010-2014) dapat dilihat pada Tabel 4.9.

Tabel 4.9 Data Pembebanan Transfomator Utama Unit I

Bulan	Г	ata Pen	nebanaı	n (MVA	(1)
Dulali	2010	2011	2012	2013	2014
Januari	30	33	30	30	33
Februari	35	33	33	35	30
Maret	35	35	35	35	30
April	35	35	35	35	35
Mei	35	35	30	35	35
Juni	35	35	35	35	30
Juli	35	35	30	35	30
Agustus	35	35	30	35	30
September	30	35	30	30	30
Oktober	30	34	30	33	30
November	30	34	30	30	30
Desember	25	35	30	33	30
Rata-rata	32.5	34.5	31.5	33.4	31.1


Sumber: PLTA Sutami

Dari data bulanan yang telah di dapat, maka dikelompokkan kembali menjadi data tahunan dari hasil rata-rata pembebanan per tahun, dan tunjukkan pada Tabel 4.10.

Tabel 4. 10 Rata-rata Pembebanan

Tahun	Pembebanan (MVA)
2010	32.5
2011	34.5
2012	31.5
2013	33.4
2014	31.1

Dari data rata-rata pembebanan selama lima tahun dapat dibuat grafik trend pembebanan transformator seperti Gambar 4.8.

Gambar 4.8 Grafik Trend Pembebanan Tahunan

Jika dilihat dari grafik pada Gambar 4.8 terlihat nilai rata-rata pembebanan terbesar untuk kurun waktu lima tahun terjadi pada tahun 2011. Dengan rata-rata pembebanan sebesar 34.5 MVA. Sedangkan rata-rata nilai pembebanan terkecil terjadi pada tahun 2014, yaitu sebesar 31.1 MVA Dengan adanya data pembebanan, dapat kita buat tabel distribusi frekuensinya, dengan sebelumnya melakukan perhitungan sesuai indikator distribusi frekuensi dengan rumus yang terdapat pada persamaan (2.1) dan (2.2). Dengan perhitungan sebagai berikut:

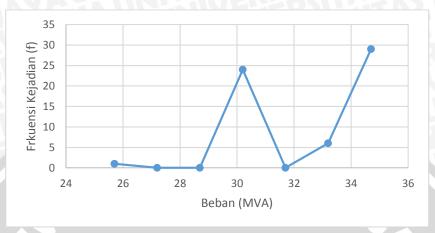
 $k = 1 + 3.3 \log n$, dengan n : jumlah data

 $k = 1 + 3.3 \log 60$

= 6.87 dan dibulatkan menjadi 7

c = nilai max-nilai min / k

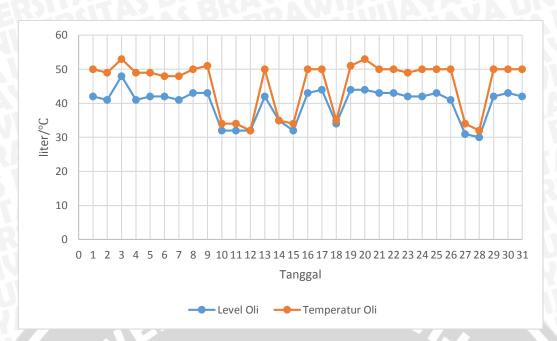
= 35-25 / 7

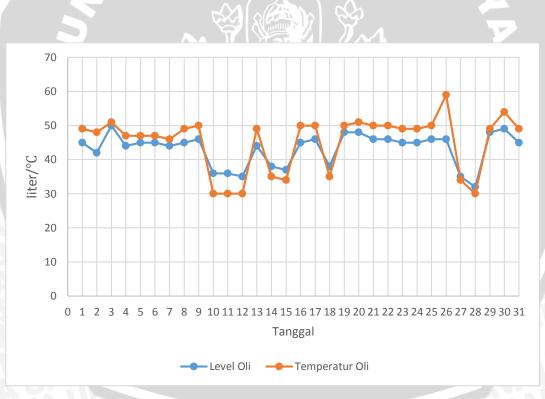

= 1.428 dan dibulatkan menjadi 1.4

Sehingga tabel distribusi frekuensinya ditunjukkan pada Tabel 4.11.

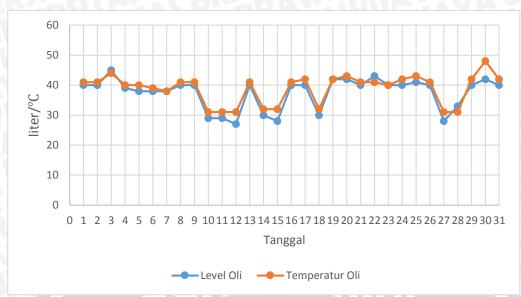
Tabel 4. 11 Distibusi Frekuensi Pembebanan Transformator

Distribu	Distribusi Pembebanan Transformator dari tahun 2010-2014									
		frekuensi	(()	_	_,2	2				
Beban (MVA)	x_i	kejadian (f)	$(f).x_i$	$x_i - \bar{x}$	$(x_i - x)$	$f.\left(x_{i}-\bar{x}\right)^{2}$				
25-26.4	25.7	1	25.7	-6.9	47.61	47.61				
26.5-27.9	27.2	0	0	-6.9	47.61	0				
28-29.4	28.7	0	0	-3.9	15.21	0				
29.5-30.9	30.2	24	724.8	-2.4	5.76	138.24				
31-32.4	31.7	0	0	-0.9	0.81	0				
32.5-33.9	33.2	6	199.2	0.6	0.36	2.16				
34-35.4	34.7	29	1006.3	2.1	4.41	127.89				
Jumlah	Jumlah		1956	-18.3	121.77	315.9				
Rata-Rata		32.6								
Standar Deviasi		2.32								


Dari tabel distribusi frekuensi di dapatkan nilai dari standar deviasi (S) sebesar 2.32 MVA. Selain itu juga dihasilkan grafik polygon untuk pembebanan transfomator, antara frekuensi kejadian (f) denga besarnya pembebanan (MVA). Grafik polygon ditunjukkan pada Gambar 4.9.


Gambar 4. 9 Grafik Distibusi Frekuensi Pembebanan Transfomator Dari grafik pada Gambar 4.9 terlihat bahwa frekuensi kejadian tertinggi adalah 29 kali yaitu ketika daya antara 34 MVA-36 MVA. Jika melihat pada rating transfomator yang memiliki kapasitas maksimum 39 MVA, maka pembebanan yang terjadi dalam kurun waktu lima tahun (2010-2014) masih tergolong aman, karena nilai pembebanan yang tidak melampaui batas rating transfomator.

4.2.4 Hubungan antara level oli dengan temperatur oli


Secara teori hubungan antara level oli dengan temperatur oli adalah sebanding, dimana level oli akan naik sejalan dengan naiknya temperatur oli begitu pula sebaliknya. Hal ini dibuktikan dengan adanya data level oli dan data temperatur oli yang diambil pada hari yang sama dan jam yang sama, yaitu pada pukul 23.00 WIB dalam periode satu bulan. Berikut adalah garfik hubungan antara level oli dengan temperatur oli untuk tiaptiap fasa ditunjukkan pada Gambar 4.10 s/d Gambar 4.12.

Gambar 4. 10 Hubungan Antara Level Oli dengan Temperatur Oli untuk Fasa R

Gambar 4. 11 Hubungan Antara Level Oli dengan Temperatur Oli untuk Fasa S

Gambar 4. 12 Hubungan Antara Level Oli dengan Temperatur Oli untuk Fasa T

Jika dilihat dari gambar masing-masing fasa terlihat bahwa hubungan antara besarnya level oli dengan temperatur oli adalah ekuivalen. Yaitu disaat temperatur oli naik maka level oli juga akan ikut naik, hal ini diakibatkan adanya pemuaian dari minyak transforamtor. Dengan koefisien muai dari minyak transformator adalah sebesar 0.000725/ °C (M.A Laughton : 14)

4.3 Hasil Pengujian Minyak Transformator

Pengujian minyak transformator dilakukan dengan menggunakan metode DGA yang menghasilkan nilai gas-gas yang terkandung di dalam minyak transformator, pengujian ini dilakukan untuk setiap fasa. Tabel hasil pengujian setiap fasa terdapat pada Tabel 4.12 s/d Tabel 4.14.

I I ALA I	Tuest I. 12 Tuest Tengerium Partyuk Tuustoffund Tuest K												
2017	H_2	CH_4	CO	CO_2	C_2H_4	C_2H_6	C_2H_2	TDCG					
Tanggal	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)					
15/02/2011	98	14	346	4848	38	34	36	566					
28/07/2011	788	560	1397	989	70	80	0	2895					
03/5/2012	179	56	192	4230	50	1	56	534					
19/08/2012	20	21	270	478	101	123	48	583					
31/12/2012	129	40	396	440	133	19	6	723					
02/4/2013	5	89	189	2526	47	58	38	426					
14/09/2013	109	117	167	2131	18	398	1.	810					
05/2/2014	50	130	145	918	198	56	-1	580					
07/9/2014	87	115	295	823	187	45	55	784					
21/01/2015	CAD	9	51	733	19	131	0	211					

Tabel 4. 12 Hasil Penguijan Minyak Transformator Fasa R

Sumber: PLTA Sutami

Tabel 4. 13 Hasil Pengujian Minyak Transformator Fasa S

	H_2	CH_4	CO	CO_2	C_2H_4	C_2H_6	C_2H_2	TDCG
Tanggal	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
15/02/2011	68	110	125	2410	111	65	1	480
28/07/2011	703	476	550	2759	43	141	45	1958
03/5/2012	93	97	298	1856	59	19	0	566
19/08/2012	21	49	321	2670	90	99	19	599
31/12/2012	90	75	67	1220	47	23	10	312
02/4/2013	16	123	581	710	202	101	0	1023
14/09/2013	209	27	227	2464	8	27	0	498
05/2/2014	115	59	280	4769	41	81	77	653
07/9/2014	298	35	335	1517	32	65	0	765
21/01/2015	1	6	86	1074	16	59	1	169

Sumber: PLTA Sutami

Tabel 4. 14 Hasil Pengujian Minyak Transformator Fasa T

	H_2	CH_4	CO	CO_2	C_2H_4	C_2H_6	C_2H_2	TDCG
Tanggal	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
15/02/2011	45	29	127	2100	72	14	28	301
28/07/2011	714	527	493	2009	175	_28	16	1953
3/5/2012	147	79	339	1350	47	76	36	724
19/08/2012	79	440	178	3291	30	123	3	853
31/12/2012	89	49	<u>120</u>	1014	143	4 19	93	513
2/4/2013	8	136	78	879	229	120	1	572
14/09/2013	117	88	157	2399	14	295	0	671
5/2/2014	48	54	<u> 280</u>	1820	18	47	0	447
7/9/2014	108	359	117	4456	97	52	5	738
21/01/2015	3	15	43	731	-15	131	1	208

Sumber: PLTA Sutami

Terjadi hubungan antara level oli, temperatur oli dan hasil uji DGA (TDCG), yaitu ketika temperatur dari minyak transformator naik maka level oli akan ikut naik. Semakin tinggi temperatur oli maka gas-gas yang terkandung di dalam minyak transformator juga akan semakin besar. Berikut adalah tabel hubungan antara level oli, temperatur oli dan uji DGA (TDCG) . Untuk fasa R ditunjukkan pada Tabel 4.15, fasa S pada Tabel 4.16 dan fasa T pada Tabel 4.17

Tabel 4. 15 Hubungan Level OLi, Temperatur Oli dan Uji DGA (TDCG) Fasa R

Tanggal	Level Oli (%)	Temperatur Oli (°C)	TDCG (ppm)
15/02/2011	48	44	566
28/07/2011	59	62	2895
3/5/2012	20	38	534
19/08/2012	40	41	583
31/12/2012	45	56	723
2/4/2013	38	47	426
14/09/2013	50	57	810
5/2/2014	43	52	580
7/9/2014	48	55	784
21/01/2015	33	36	211

Tabel 4.16 Hubungan Level OLi, Temperatur Oli dan Uji DGA (TDCG) Fasa S

Tanggal	Level Oli (%)	Temperatur Oli (°C)	TDCG (ppm)
15/02/2011	47	42	480
28/07/2011	50	58	1958
3/5/2012	27	36	566
19/08/2012	47	/52	599
31/12/2012	32 (34	312
2/4/2013	49	55	1023
14/09/2013	37	45	498
5/2/2014	49	488	653
7/9/2014	37	45	765
21/01/2015	31	34	169

Tabel 4. 17 Hubungan Level OLi, Temperatur Oli dan Uji DGA (TDCG) Fasa T

Tanggal	Level Oli (%)	Temperatur Oli (°C)	TDCG (ppm)
15/02/2011	46	41	301
28/07/2011	50	56	1953
3/5/2012	39	41	724
19/08/2012	49	52	853
31/12/2012	39	40	513
2/4/2013	48	54	572
14/09/2013	34	45	671
5/2/2014	46	48	447
7/9/2014	47	50	738
21/01/2015	32	35	208

Jika dilihat pada Tabel 4.15 s/d Tabel 4.17 untuk setiap fasa, nilai level oli dan temperatur oli masih sesuai dengan batas yang diijinkan, tetapi ketika dilakukan pengujian minyak transformator didapatkan hasil TDCG yang tinggi pada waktu tertentu hal ini menandakan bahwa penentuan waktu pemeliharaan terhadap transformator tidak bisa jika hanya dilihat dari data harian penggunaan transformator saja, melainkan juga melibatkan kondisi dari minyak transformator. Sehingga penentuan waktu pemeliharaan di dasarkan pada hasil uji DGA yang dihitung dengan menggunakan metode Markov.

4.4 Pemodelan Markov Untuk Analisis DGA

Dalam analisis DGA digunakan metode Markov, yaitu untuk menentukan nilai keandalan (*Reliability*) dan nilai ketersedian (*availability*).

4.4.1 Pemodelan Markov untuk menentukan nilai keandalan (Reliability)

Pemodelan markov untuk mendapatkan kurva keandalan menerapakan fungsi laju kegagalan. Laju kegagalan merupakan laju perubahan gas hasil pengujian DGA dari kondisi baik ke kondisi buruk. Misal dari K1 ke K2. Laju kegagalan disimbolkan dengan λ , untuk perhitungan laju kegagalan (λ) di dapatkan dari perhitungan MTTF (*mean time to failure*) pada persamaan (2.11), yaitu dengan :

λ = 1/MTTF, MTTF: Waktu Peubahan kondisi (hari)/ banyaknya perubahan kondisi

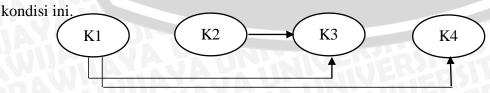
 λ_{H_2} =1/MTTF, untuk perubahan kondisi 1 ke kondisi 2 (1-2)

MTTF = (134+165)/2 = 149.5

 $\lambda_{H_2} = 1/149.5$

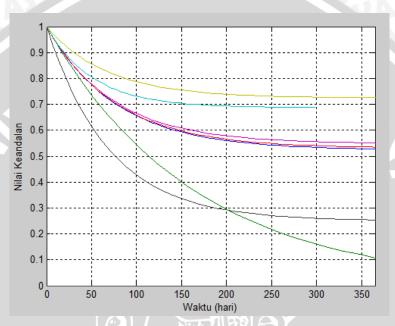
=0.006689, cara ini juga diterapkan untuk melakukan perhitungan pada gas-gas lain. Untuk cara perhitungannya dapat dilihat pada bagian lampiran 3. Setelah di dapatkan nilai λ , maka dapat disusun menjadi tabel sesuai dengan Tabel 4.18.

Tabel 4.	18 La	iu Kega	agalan (Gas E	asa R
I do or 1.	I U Lu	I T T T T	·_uuui ·	Jub I	ubu I L


Jenis Gas (ppm)	Perubahan Kondisi Gas (K)	λ
H_2	1-2	0.0067
AYAMAUN	1-3	0.0061
CH_4	1-2	0.0069
	1-3	0.0061
CO	1-2	0.0074
SPEARAM	1-3	0.0061
CO_2	1-2	0.0036
	1-3	0.0108
C_2H_4	1-2	0.0061
	1-3	0.0079
C_2H_6	1-2	0.0061
	1-3	0.0081
	1-4	0.0061
C_2H_2	1-2	0.0108
	€ 1-3 ₀	0.0041

Dari perubahan kondisi gas pada Tabel 4.18 dapat dibuat rantai markov sesuai dengan perubahan kondisi yang terjadi. Untuk perubahan kondisi gas dari K1-K2, K1-K3 rantai markov ditunjukkan pada Gambar 4.13, sedangkan untuk perubahan kondisi K2-K3, K1-K3 rantai markov ditunjukkan pada Gambar 4.14.

Gambar 4. 13 Rantai Markov Untuk Kondisi K1-K2, K1-K3


Gambar 4.13 merupakan gambar rantai markov yang menggambarkan perubahan kondisi gas, yaitu gas saat kondisi 1 (K1) yang kemudian berubah menjadi kondisi 2 (K2), dan juga kondisi 1 (K1) yang berubah menjadi kondisi 3 (K3). Sedangkan untuk kondisi 2 (K2) ke kondisi 3 (K3) tidak dihubungkan garis karena tidak ada perubahan gas pada

Gambar 4.14 Rantai Markov Untuk Kondisi K1-K2, K1-K3, K1-K4 Gambar 4.14 merupakan gambar rantai markov yang menggambarkan perubahan kondisi gas, yaitu gas saat kondisi 2 (K2) yang kemudian berubah menjadi kondisi 3 (K3), dan

juga kondisi 1 (K1) yang berubah menjadi kondisi 3 (K3). Sedangkan untuk kondisi 1 (K1) ke kondisi 2 (K2) tidak dihubungkan garis karena tidak ada perubahan gas pada kondisi ini.

Setelah di dapatkan nilai λ untuk setiap gas sesuai dengan Tabel 4.18, maka selanjutnya melakukan perhitungan dengan program matlab untuk mendapatkan nilai keandalan pada kurun waktu tertentu. Dari hasil perhitungan didapatkan nilai keandalan untuk gas-gas pada fasa R sesuai Gambar 4.15.

Gambar 4.15 Kurva Keandalan Gas Pada Minyak Tranformator Fasa R

Dari hasil perhitungan di peroleh kurva keandalan seperti pada Gambar 4.15, terdapat tujuh macam warna garis yang menunjukkan tujuh jenis gas yang berbeda yang terkadung pada minyak transfomator untuk fasa R. Dari hasil perhitungan dengan program juga di dapatkan nilai keandalan untuk setiap indikator gas. Nilai keandalan yang dihasilkan berubah sesuai dengan lamanya waktu. Untuk mengetahui perubahan nilai keandalan diambil selisih perubahan waktu yang kemudian di transformasikan dalam satuan persen (%) sehingga terlihat berapa persen perubahan nilai keandalan untuk tiaptiap gas. Dan ditetapkan waktu yang diambil adalah saat 30 hari dan 365 hari, hasil dapat dilihat pada Tabel 4.19.

Nilai Keandalan Untuk Waktu Tertentu Jenis Gas Indikator Warna Garis 30 Hari 365 hari 0.8702 0.5275 H_2 0.8379 CH_4 0.5348 CO0.8493 0.5513 0.2537 0.7409 CO_2 C_2H_4 0.8090 0.1201 0.8528 C_2H_6 0.6881 0.7259 C_2H_2 0.8868

Tabel 4. 19 Nilai Keandalan Untuk Setiap Kandungan Gas Pada Fasa R

Setelah di dapatkan nilai keandalan untuk 30 hari dan 365 hari, maka kita dapat menghitung penurunan nilai keandalan untuk setiap gas. Penurunan nilai keandalan dalam kuruan waktu t dapat dihitung dengan menggunakan rumus laju keandalan $\mathcal{R}(t)$ sesuai dengan persamaan (2.4), untuk penurunan nilai keandalan gas H_2 dapat dihitung dengan:

$$\begin{split} \Re_{H_2} &= \frac{\textit{Nilai keandalan (30hari)-Nilai keandalan (365)hari}}{\textit{Nilai Keandalan (30hari)}} \times 100\% \ . \\ &= \frac{0.8702 - 0.5275}{0.8702} \times 100\% = 39.38\% \end{split}$$

Untuk gas-gas lain dapat dihitung nilai penurunan keandalannya dengan cara yang sama, hingga di dapatkan nilai penurunan keandalan pada Tabel 4.20, perhitungan lengkap terdapat pada lampiran 4.

Tabel 4. 20 Penurunan N	Vilai	Keandalan	Fasa R	Dari 30	Hari k	e-365 Hari

Gas	Penurunan Nilai Keandalan (%)			
H_2	39.38			
CH ₄	36.17			
СО	35.08			
CO_2	65.76			
C_2H_4	85.15			
C_2H_6	19.31			
C_2H_2	18.14			

Maka dari adanya penurunan nilai keandalaan ini dapat disimpulkan bahwa jika suatu gas dioperasikan terus-menerus tanpa adanya perawatan maka keandalan gas akan semakin menurun, tergantung dari lamanya waktu penggunaan.

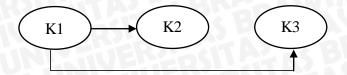
Untuk mencari nilai keandaalan fasa S perlu dilakukan perhitungan laju kegagalan (λ) di dapatkan dari perhitungan MTTF (*mean time to failure*) pada persamaan (2.11), yaitu dengan :

λ = 1/MTTF, MTTF: Waktu Peubahan kondisi (hari)/ banyaknya perubahan kondisi

 $\lambda_{H_2} = 1/\text{MTTF}$, untuk perubahan kondisi 1 ke kondisi 2 (1-2)

MTTF = (165)/1 = 165

 $\lambda_{H_2} = 1/165$

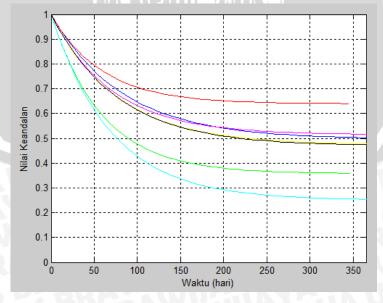

= 0.00606, cara ini juga diterapkan untuk melakukan perhitungan pada gas-gas lain. Untuk cara perhitungannya dapat dilihat pada bagian lampiran.3. Setelah di dapatkan nilai λ , maka dapat disusun menjadi tabel sesuai dengan Tabel 4.21

Tabel 4. 21 Laju Kegagalan Gas Fasa S

Jenis Gas (ppm) Perubahan Kondisi Gas (K)

Jenis Gas (ppm)	Perubahan Kondisi Gas (K)	λ
H_2	1-2	0.0060
	1-3	0.0061
CH ₄	1-2	0.0108
Y_k	9 / 3 3 8 9	0.0061
CO	1-2	0.0061
	1-3	0.0108
CO_2	1-2	0.0073
	1-3	0.0069
C_2H_4	1-3	0.0036
	1-4	0.0108
C_2H_6	1-2	0.0061
	1-3	0.0069
C_2H_2	1-2	0.0061
H	1-3	0.0069

Dari perubahan kondisi gas dapat dibuat rantai markov sesuai dengan perubahan kondisi yang terjadi. Untuk perubahan kondisi gas dari K1-K2, K1-K3 rantai markov ditunjukkan pada Gambar 4.16, sedangkan untuk perubahan kondisi K1-K3, K1-K4 rantai markov ditunjukkan pada Gambar 4.17.


Gambar 4.16 Rantai Markov Untuk Kondisi K1-K2, K1-K3

Gambar 4.16 merupakan gambar rantai markov yang menggambarkan perubahan kondisi gas, yaitu gas saat kondisi 1 (K1) yang kemudian berubah menjadi kondisi 2 (K2), dan juga kondisi 1 (K1) yang berubah menjadi kondisi 3 (K3). Sedangkan untuk kondisi 2 (K2) ke kondisi 3 (K3) tidak dihubungkan garis karena tidak ada perubahan gas pada kondisi ini.

Gambar 4.17 Rantai Markov Untuk Kondisi K1-K3, K1-K4

Gambar 4.17 merupakan gambar rantai markov yang menggambarkan perubahan kondisi gas, yaitu gas saat kondisi 1 (K1) yang kemudian berubah menjadi kondisi 3 (K3), dan juga kondisi 1 (K1) yang berubah menjadi kondisi 4 (K4). Sedangkan untuk kondisi 3 (K3) ke kondisi 4 (K4) tidak dihubungkan garis karena tidak ada perubahan gas pada kondisi ini. Setelah di dapatkan nilai λ untuk setiap gas sesuai pada Tabel 4.21, maka selanjutnya melakukan perhitungan dengan program matlab untuk mendapatkan nilai keandalan pada kurun waktu tertentu. Dari hasil perhitungan didapatkan nilai keandalan untuk gas-gas pada fasa S sesuai Gambar 4.18 berikut.

Gambar 4. 18 Kurva Keandalan Gas Pada Minyak Tranformator Fasa S

Dari hasil perhitungan di peroleh kurva keandalan gas pada minyak transformator fasa S seperti pada Gambar 4.18, terdapat tujuh macam warna garis yang menunjukkan tujuh jenis gas yang berbeda yang terkadung pada minyak transfomator untuk fasa S. Dari hasil perhitungan dengan program juga di dapatkan nilai keandalan untuk setiap indikator gas. Nilai keandalan yang dihasilkan berubah sesuai dengan lamanya waktu. Untuk mengetahui perubahan nilai keandalan diambil selisih perubahan waktu yang kemudian di transformasikan dalam satuan persen (%) sehingga terlihat berapa persen perubahan nilai keandalan untuk tiap-tiap gas. Jika diperhatikan untuk garis yang berwarna merah dan garis yang berwarna hijau garis terlihat terpotong sebelum batas hari yang ditentukan, hal ini menyatakan bahwa nilai keandalan dari kedua garis tersebut sudah steady state sebelum 365 hari. Seperti halnya pada fasa R untuk menentukan perbedaan nilai keandalan dalam (%) maka ditetapkan nilai keandalan diambil saat 30 hari dan 365 hari. Data keandalan dapat dilihat pada Tabel 4.22

Tabel 4. 22 Nilai Keandalan Untuk Setiap Kandungan Gas Pada Fasa S

Jenis Gas	Indikator Warna Garis	Nilai Keandalan Untuk Waktu Tertentu		
		30 Hari	365 hari	
H_2		0.8258	0.5018	
CH_4		0.8515	0.6401	
СО		0.7365	0.3590	
<i>CO</i> ₂		0.8001	0.5168	
C_2H_4		0.6915	0.2537	
C_2H_6		0.8566	0.4773	
C_2H_2		0.8166	0.4737	

Setelah di dapatkan nilai keandalan untuk 30 hari dan 365 hari, maka kita dapat menghitung penurunan nilai keandalan untuk setiap gas. Penurunan nilai keandalan dalam kuruan waktu t dapat dihitung dengan menggunakan rumus laju keandalan $\mathcal{H}(t)$ sesuai dengan persamaan (2.5), untuk penurunan nilai keandalan gas H_2 fasa S dihitung dengan:

$$\begin{split} \mathcal{R}_{H_2} &= \frac{\textit{Nilai keandalan (30hari)-Nilai keandalan (365)hari}}{\textit{Nilai Keandalan (30hari)}} \ge \frac{0.8285-0.5018}{0.8285} \ge 100\% = 39.24\% \end{split}$$

Untuk gas-gas lain dapat dihitung nilai penurunan keandalannya dengan cara yang sama, hingga di dapatkan nilai penurunan keandalan pada Tabel 4.23, perhitungan lengkap terdapat pada lampiran 4

Penurunan Nilai Keandalan (%) Gas 39.24 H_2 24.86 CH_4 CO51.26 CO_2 35.41 C_2H_4 63.32 C_2H_6 44.27 C_2H_2 41.99

Tabel 4. 23 Penurunan Nilai Keandalan Fasa S Dari 30 Hari ke-365 Hari

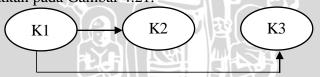
Maka dari adanya penurunan nilai keandalaan ini dapat dilihat bahwa jika suatu gas dioperasikan terus-menerus tanpa adanya perawatan maka keandalan gas akan semakin menurun, tergantung dari lamanya waktu penggunaan.

Untuk mencari nilai keandaalan fasa T perlu dilakukan perhitungan laju kegagalan (λ) di dapatkan dari perhitungan MTTF (*mean time to failure*) pada persamaan (2.11), yaitu dengan :

λ = 1/MTTF, MTTF: Waktu Peubahan kondisi (hari)/ banyaknya perubahan kondisi

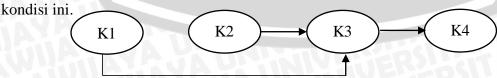
 λ_{H_2} = 1/MTTF, untuk perubahan kondisi 1 ke kondisi 2 (1-2)

MTTF = (165+214)/2 = 189.5


 $\lambda_{H_2} = 1/189.5$

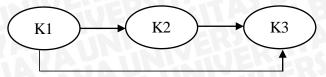
=0.0052, cara ini juga diterapkan untuk melakukan perhitungan pada gasgas lain. Untuk cara perhitungannya dapat dilihat pada bagian lampiran 3. Setelah di dapatkan nilai λ , maka dapat disusun menjadi tabel sesuai dengan Tabel 4.24.

Jenis Gas (ppm)	Perubahan Kondisi Gas (K)	λ
H_2	1-2	0.0052
JAYTIN	1-3	0.0061
CH_4	1-2	0.0065
	1-3	0.0065
CO	1-2	0.0069
SOANNE	1-3	0.0061
CO_2	1-2	0.0092
	1-3	0.0061
C_2H_4	1-3	0.0074
	2-3	0.0035
	3-4	0.0180
C_2H_6	1-2 6 8	0.0035
, A	1-3	0.0087
	2-3	0.0092
C_2H_2	1-2	0.0035
	1_3	0.0074


Tabel 4. 24 Laju Kegagalan Gas Fasa T

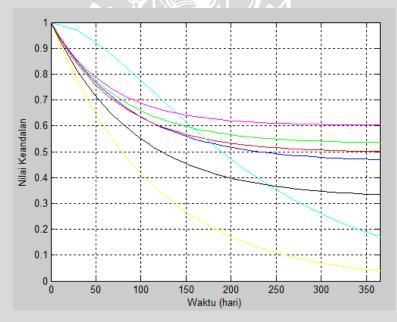
Dari perubahan kondisi gas dapat dibuat rantai markov sesuai dengan perubahan kondisi yang terjadi. Untuk perubahan kondisi gas dari K1-K2, K1-K3 rantai markov ditunjukkan pada Gambar 4.19, untuk perubahan kondisi K1-K3, K2-K3, K3-K4 rantai markov ditunjukkan pada Gambar 4.20, sedangkan untuk perubahan kondisi K1-K2, K1-K3, K2-K3 ditunjukkan pada Gambar 4.21.

Gambar 4.19 Rantai Markov Untuk Kondisi K1-K2, K1-K3


Gambar 4.19 merupakan gambar rantai markov yang menggambarkan perubahan kondisi gas, yaitu gas saat kondisi 1 (K1) yang kemudian berubah menjadi kondisi 2 (K2), dan juga kondisi 1 (K1) yang berubah menjadi kondisi 3 (K3). Sedangkan untuk kondisi 2 (K2) ke kondisi 3 (K3) tidak dihubungkan garis karena tidak ada perubahan gas pada

Gambar 4. 20 Rantai Markov Untuk Kondisi K1-K3, K2-K3, K3-K4

Gambar 4.20 merupakan gambar rantai markov yang menggambarkan perubahan kondisi gas, yaitu gas saat kondisi 1 (K1) yang kemudian berubah menjadi kondisi 3 (K3),


kondisi 3 (K3) yang berubah menjadi kondisi 4 (K4). Sedangkan untuk kondisi 1 (K1) ke kondisi 2 (K2) tidak dihubungkan garis karena tidak ada perubahan gas pada kondisi ini.

Gambar 4. 21 Rantai Markov Untuk Kondisi K1-K3, K1-K3, K2-K3

Gambar 4.21 merupakan gambar rantai markov yang menggambarkan perubahan kondisi gas, yaitu gas saat kondisi 1 (K1) yang kemudian berubah menjadi kondisi 2 (K2), kondisi 2 (K2) yang berubah menjadi kondisi 3 (K3), dan kondisi 1 (K1) yang berubah menjadi kondisi 3(K3).

Setelah di dapatkan nilai λ untuk setiap gas sesuai pada Tabel 4.16, maka selanjutnya melakukan perhitungan dengan program matlab untuk mendapatkan nilai keandalan pada kurun waktu tertentu. Dari hasil perhitungan didapatkan nilai keandalan untuk gas-gas pada fasa T sesuai Gambar 4.22 berikut.

Gambar 4. 22 Kurva Keandalan Gas Pada Minyak Tranformator Fasa T

Dari hasil perhitungan di peroleh kurva keandalan gas pada minyak transformator fasa T seperti pada Gambar 4.21, terdapat tujuh macam warna garis yang menunjukkan tujuh jenis gas yang berbeda yang terkadung pada minyak transfomator untuk fasa T. Dari hasil perhitungan dengan program juga di dapatkan nilai keandalan untuk setiap indikator gas. Nilai keandalan yang dihasilkan berubah sesuai dengan lamanya waktu. Untuk mengetahui perubahan nilai keandalan diambil selisih perubahan waktu yang kemudian di transformasikan dalam satuan persen (%) sehingga terlihat berapa persen perubahan

nilai keandalan untuk tiap-tiap gas. Seperti halnya pada fasa R dan fasa S untuk menentukan perbedaan nilai keandalan dalam (%) maka ditetapkan nilai keandalan diambil saat 30 hari dan 365 hari . Data keandalan dapat dilihat pada Tabel 4.25

Tabel 4. 25 Nilai Keandalan Untuk Setiap Kandungan Gas Pada Fasa T

Jenis Gas	Indikator Warna Garis	Nilai Keandalan Untuk Waktu Tertentu		
DAWKI	MALLUAUL	30 Hari	365 hari	
H_2		0.8135	0.4688	
CH_4	38	0.8259	0.5005	
СО		0.8379	0.5348	
CO_2		0.8360	0.6028	
C_2H_4	STA	0.9694	0.2553	
C_2H_6		0.7396	0.0374	
C_2H_2		0.7654	0.3346	

Setelah di dapatkan nilai keandalan untuk 30 hari dan 365 hari, maka kita dapat menghitung penurunan nilai keandalan untuk setiap gas. Penurunan nilai keandalan dalam kuruan waktu t dapat dihitung dengan menggunakan rumus laju keandalan $\mathcal{R}(t)$ sesuai dengan yang terdapat pada persamaan (2.4), untuk penurunan nilai keandalan gas

$$\begin{split} \mathcal{R}_{H_2} &= \frac{\textit{Nilai keandalan (30hari)-Nilai keandalan (365)hari}}{\textit{Nilai Keandalan (30hari)}} \ge 100\% \ . \\ &= \frac{0.8135-0.4688}{0.8135} \ge 100\% = 42.37\% \end{split}$$

Untuk gas-gas lain dapat dihitung nilai penurunan keandalannya dengan cara yang sama, hingga di dapatkan nilai penurunan keandalan pada Tabel 4.26, perhitungan lengkap terdapat pada lampiran.4.

Tabel 4. 26 Penurunan Nilai Keandalan Fasa T Dari 30 Hari ke-365 Hari

Gas	Penurunan Nilai Keandalan (%)
H_2	42.37
CH_4	39.39
CO	36.17
CO_2	27.89
C_2H_4	73.62
C_2H_6	94.94
C_2H_2	56.28

Maka dari adanya penurunan nilai keandalaan ini dapat dilihat bahwa jika suatu gas dioperasikan terus-menerus tanpa adanya perawatan maka keandalan gas akan semakin menurun, tergantung dari lamanya waktu penggunaan.

4.4.2 Pemodelan Markov untuk menentukan nilai ketersediaan (*Availability*)

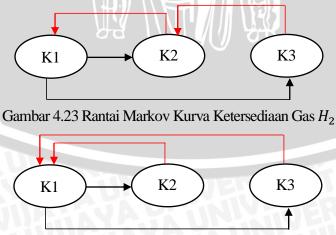
Pemodelan markov untuk mendapatkan kurva ketersediaan menerapakan fungsi laju kegagalan (λ) dan juga laju perbaikan (μ) . Seperti dijelaskan sebelumnya laju kegagalan merupakan laju dimana terjadi perubahan kondisi dari kondisi baik ke kondisi buruk, sedangkan untuk laju perbaikan adalah sebaliknya yaitu perubahan kondisi dari kondisi buruk ke kondisi baik. Untuk cara perhitungan antara laju kegagalan (λ) di dapatkan dari perhitungan MTTF (*mean time to failure*) pada persamaan (2.11), yaitu dengan :

 $\lambda = 1/MTTF$, MTTF: Waktu Peubahan kondisi (hari)/ banyaknya perubahan kondisi

Sedangkan untuk perhitungan laju perbaikan (μ) di dapatkan dari perhitungan MTTR (mean time to repair) pada persamaan (2.12), yaitu dengan :

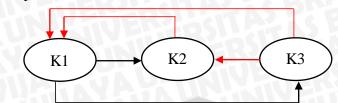
 $\mu = 1/MTTR$, MTTR : Waktu Peubahan kondisi (hari)/ banyaknya perubahan kondisi

 $\lambda_{H_2} = 1/((134+165)/2) = 0.00668$ (untuk kondisi 1-2)

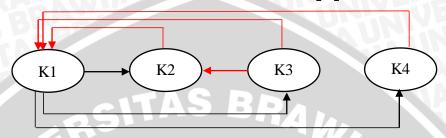

 $\lambda_{H_2} = 1/((108+92+144)/3) = 0.0087$ (untuk kondisi 2-1)

Selanjutnya perhitungan untuk setiap perubahan kondisi dan gas dapat dihitung dengan menggunakan cara yang sama, perhitungan lengakap dapat dilihat pada bgian lampiran 3. Dan di dapatkan nilai ketersediaan untuk fasa R pada Tabel 4.27.

Tabel 4. 27 Laju Kegagalan dan Laju Perbaikan Gas Pada Minyak Tranformator Fasa R

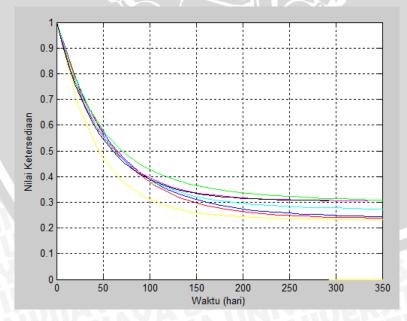

Jenis Gas	Perubahan Kondisi Gas	λ	Perubahan Kondisi Gas	μ
(ppm)	(Laju Kegagalan)		(Laju Perbaikan)	
H_2	1-2	0.0067	2-1	0.0087
VALITITA	1-3	0.0061	3-2	0.0035
CH_4	1-2	0.0069	2-1	0.0046
& BRASI	1-3	0.0061	3-1	0.0035
CO	1-2	0.0074	2-1	0.0108
LETAS	1-3	0.0061	3-1	0.0035
CO_2	1-2	0.0036	2-1	0.0060
THEFT	1-3	0.0108	3-1	0.0073
C_2H_4	1-2	0.0061	2-1	0.0053
	1-3	0.0079	3-1	0.0074
C_2H_6	1-2	0.0061	2-1	0.0035
	1-3	0.0081	3-1	0.0074
	1-4	0.0061	4-1	0.0069
C_2H_2	1-2	0.0108	2-1	0.0064
	1-3	0.0041	3-1	0.0073
	7.19/0		3-2	0.0093

Dari perubahan kondisi gas untuk tabel ketersediaan dapat dibuat rantai markov sesuai dengan perubahan kondisi yang terjadi. Untuk perubahan kondisi gas laju kegagalan dan perubahan kondisi gas laju perbaikan. Rantai markov untuk laju kegagalan dan laju perbaiakn dari gas H_2 ditunjukkan pada Gambar 4.23. Karena nilai laju kegagalan dan laju perbaikan untuk gas H_4 , CO, CO_2 , C_2H_6 , C_2H_2 sama maka rantai markovnya dapat dilihat pada Gambar.4.24



Gambar 4.24 Rantai Markov Kurva Ketersediaan Gas CH_4 , CO, CO_2 , C_2H_4 Fasa R

Sedangkan rantai markov laju kegagalan dan laju perbaikan untuk gas C_2H_2 dan gas C₂H₆, dapat dilihat pada Gambar 4.25 dan Gambar 4.26



Gambar 4. 25 Rantai Markov Kurva Ketersediaan Gas C_2H_2 Fasa R

Gambar 4. 26 Rantai Markov Kurva Ketersediaan Gas C_2H_6 Fasa R

Setelah diketahui nilai dari (λ) dan (μ) dari Tabel 4.22 maka dapat dibuat matriks transisi sesuai dengan matriks markov. Untuk ukuran matriks trasisi bergantung pada kondisi yang terjadi pada masing-masing gas. Untuk matriks transisi dapat dilihat pada bagian lampiran. dari matriks transisi ini kemudian dapat di perhitungankan denggan menggunakan program komputer untuk mendapatkan kurva ketersediaan pada masingmasing gas. Kurva ketersediaan ditunjukkan pada Gambar 4.27

Gambar 4. 27 Kurva Ketersediaan Gas Fasa R

Dari Gambar 4.27 didapatkan kurva ketersedian gas untuk fasa R. Terdapat tujuh garis dengan warna yang berbeda untuk setiap jenis gas. Dari hasil perhitungan dengan

program komputer didapatkan nilai steady state setiap kondisi (K1, K2, K3,dan K4) dalam gas, tergantung dari perubahan kondisi untuk masing-masing gas. Kurva ketersediaan menggambarkan peluang kondisi suatu gas semenjak tranfomator ini dioperasikan hingga waktu yang tidak ditentukan. Untuk kurva ketersediaan gas fasa R didapatkan nilai steady state untuk setiap kondisi, terlihat pada Tabel 4.28

Tabel 4. 28 Nilai *Steady State* Setiap Kondisi Gas Fasa R

Jenis Gas	Indikator Warna	Nilai Steady State Setiap Kondisi Gas			
DEABRE	Garis	K1	K2	K3	K4
H_2		0.2373	0.3491	0.4136	0
CH_4		0.3680	0.4880	0.1440	0
CO	CITAS	0.2824	0.2235	0.4923	0
CO_2		0.3049	0.5489	0.1462	0
C_2H_4		0.2531	0	0.5269	0.2200
C_2H_6		0.3065	0.3912	0.3023	0
C_2H_2		0.3940	0.3476	0.2584	0

Pada Tabel 4.28 terdapat nilai steady state untuk setiap kondisi pada masing-masing gas hingga waktu tertentu. Nilai steady state ini juga brelaku untuk fasa S.

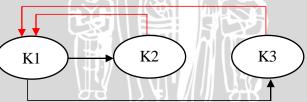
Untuk cara perhitungan antara laju kegagalan (λ) di dapatkan dari perhitungan MTTF (mean time to failure) pada persamaan (2.11), yaitu dengan:

 $\lambda = 1/MTTF$, MTTF: Waktu Peubahan kondisi (hari)/ banyaknya perubahan kondisi

Sedangkan untuk perhitungan laju perbaikan (µ) di dapatkan dari perhitungan MTTR (mean time to repair) pada persamaan (2.12), yaitu dengan:

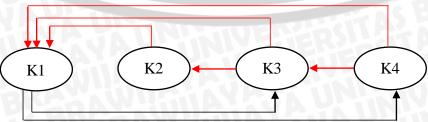
> μ = 1/MTTR, MTTR: Waktu Peubahan kondisi (hari)/ banyaknya perubahan kondisi

 $\lambda_{H_2} = 1/((165)/1) = 0.00606$ (untuk kondisi 1-2)

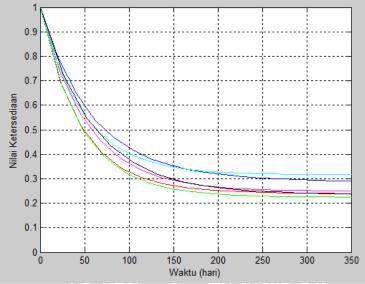

 $\lambda_{H_2} = 1/((214)/1) = 0.0046$ (untuk kondisi 2-1)

dengan tabel ketersediaan masing-masing gas pada fasa S ditunjukkan pada Tabel 4.29.

Tabel 4. 29 Laju Kegagalan dan Laju Perbaikan Gas Pada Minyak Tranformator Fasa S


Jenis Gas	Perubahan Kondisi Gas	λ	Perubahan Kondisi	μ
(ppm)	(Laju Kegagalan)		Gas (Laju Perbaikan)	
H_2	1-2	0.0060	2-1	0.0073
WHETTA	1-3	0.0061	3-1	0.0035
CH_4	1-2	0.0108	2-1	0.0069
BRAS	1-3	0.0061	3-1	0.0035
СО	1-2	0.0061	2-1	0.0035
LATAS	1-3	0.0108	3-1	0.0060
CO_2	1-2	0.0073	2-1	0.0048
HIVELET	1-3	0.0069	3-1	0.0046
C_2H_4	1-3	0.0036	2-1	0.0092
	1-4	0.0108	3-1	0.0061
	The state of the s		4-1	0.0060
C_2H_6	1-2	0.0061	2-1	0.0035
	1-3	0.0069	3-1	0.0046
C_2H_2	1-2	0.0061	2-1	0.0035
	1-3	0.0069	3-1	0.0046

Dari perubahan kondisi gas untuk tabel ketersediaan dapat dibuat rantai markov sesuai dengan perubahan kondisi yang terjadi. Untuk perubahan kondisi gas laju kegagalan dan perubahan kondisi gas laju perbaikan. Karena nilai laju kegagalan dan laju perbaikan untuk gas H_2 , CH_4 , CO, CO_2 , C_2H_6 , C_2H_2 sama maka rantai markovnya dapat dilihat pada Gambar 4.28


Gambar 4. 28 Rantai Markov Kurva Ketersediaan Gas H_2 , CH_4 , CO, CO_2 , C_2H_6 , C_2H_2 Fasa S

Sedangkan rantai markov laju kegagalan dan laju perbaikan untuk gas C_2H_4 dapat dilihat pada Gambar 4.29

Gambar 4. 29 Rantai Markov Kurva Ketersediaan Gas C_2H_4 Fasa S

Dari data yang terdapat pada Tabel 4.28 maka dapat dibuat matriks transisi sesuai dengan matriks markov. Untuk ukuran matriks trasisi bergantung pada kondisi yang terjadi pada masing-masing gas. Matriks transisi dapat dilihat pada bagian lampiran. kemudian dapat di perhitungankan denggan menggunakan program komputer untuk mendapatkan kurva ketersediaan pada masing-masing gas. Kurva ketersediaan ditunjukkan pada Gambar 4.30

Gambar 4. 30 Kurva Ketersediaan Gas Fasa S

Dari Gambar 4.30 didapatkan kurva ketersedian gas untuk fasa S. Terdapat tujuh garis dengan warna yang berbeda untuk setiap jenis gas. Dari hasil perhitungan dengan program komputer didapatkan nilai steady state setiap kondisi (K1, K2, K3,dan K4) dalam gas, tergantung dari perubahan kondisi untuk masing-masing gas. Kurva ketersediaan menggambarkan peluang kondisi suatu gas semenjak tranfomator ini dioperasikan hingga waktu yang tidak ditentukan. Untuk kurva ketersediaan gas fasa S didapatkan nilai steady state untuk setiap kondisi, terlihat pada Tabel 4.30.

Tabel 4. 30 Nilai Steady State Setiap Kondisi Gas Fasa S

Jenis Gas	Indikator Warna	Nilai Steady State Setiap Kondisi Gas			
	Garis	K1	K2	К3	K4
H_2		0.2805	0.2306	0.4889	0
CH_4		0.2321	0.3633	0.4046	0
СО		0.2201	0.3836	0.3962	0
CO_2		0.2487	0.3782	0.3731	0
C_2H_4		0.3144	0.1196	0	0.5660
C_2H_6	TANK THE PARTY OF	0.2357	0.4108	0.3535	0
C_2H_2		0.2357	0.4108	0.3535	0

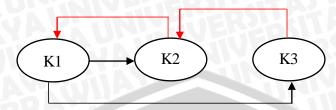
Pada Tabel 4.30 terdapat nilai steady state untuk setiap kondisi pada masingmasing gas hingga waktu tertentu. Nilai steady state ini juga brelaku untuk fasa T, untuk cara perhitungan antara laju kegagalan (λ) di dapatkan dari perhitungan MTTF (mean time to failure) pada persamaan (2.11), yaitu dengan:

> $\lambda = 1/MTTF$, MTTF: Waktu Peubahan kondisi (hari)/ banyaknya perubahan kondisi

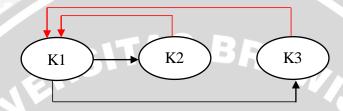
Sedangkan untuk perhitungan laju perbaikan (µ) di dapatkan dari perhitungan MTTR (mean time to repair) pada persamaan (2.12), yaitu dengan:

> $\mu = 1/MTTR$, MTTR: Waktu Peubahan kondisi (hari)/ banyaknya perubahan kondisi

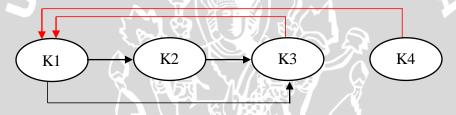
 $\lambda_{H_2} = 1/((165+214)/2) = 0.0052$ (untuk kondisi 1-2)

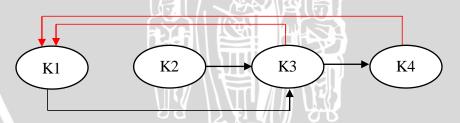

 $\lambda_{H_2} = 1/((108+136+144)/3) = 0.0077$ (untuk kondisi 2-1)

dengan tabel ketersediaan masing-masing gas pada fasa T ditunjukkan pada Tabel 4.31.

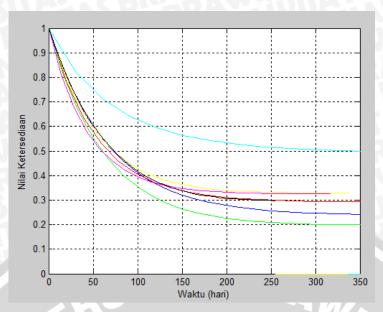

Tabel 4. 31 Laju Kegagalan dan Laju Perbaikan Gas Pada Minyak Tranformator Fasa T

Jenis Gas	Perubahan Kondisi Gas	λ	Perubahan Kondisi	μ
(ppm)	(Laju Kegagalan)		Gas (Laju Perbaikan)	
H_2	1-2	0.0052	2-1	0.0077
	1-3	0.0061	3-2	0.0035
CH_4	1-2	0.0065	2-1	0.0060
	1-3	0.0065	3-1	0.0048
СО	1-2	0.0069	2-1	0.0057
	1-3	0.0061	3-2	0.0035
CO_2	1-2	0.0092	2-1	0.0074
76	1-3	0.0061	3-1	0.0073
C_2H_4	1-3	0.0074	3-1	0.0092
1914	2-3	0.0035	4-1	0.0060
MAREU	3-4	0.0180		151
C_2H_6	1-2	0.0035	3-1	0.0074
	1-3	0.0087	4-1	0.0069
	2-3	0.0092		
C_2H_2	1-2	0.0035	2-1	0.0073
	1-3	0.0074	3-2	0.0092


Dari perubahan kondisi gas untuk tabel ketersediaan dapat dibuat rantai markov sesuai dengan perubahan kondisi yang terjadi. Untuk perubahan kondisi gas laju kegagalan dan perubahan kondisi gas laju perbaikan. Rantai markov untuk laju kegagalan dan laju perbaiakan dari gas ditunjukkan pada Gambar 4.31 s/d Gambar 4.34


Gambar 4. 31 Rantai Markov Kurva Ketersediaan Gas H_2 , CO , C_2H_2 Fasa T

Gambar 4. 32 Rantai Markov Kurva Ketersediaan Gas CH₄, CO₂Fasa T



Gambar 4. 33 Rantai Markov Kurva Ketersediaan $Gas C_2H_4$ dan Fasa T

Gambar 4. 34 Rantai Markov Kurva Ketersediaan Gas \mathcal{C}_2H_6 dan Fasa T

Dari data yang terdapat pada Tabel 4.31 maka dapat dibuat matriks transisi sesuai dengan matriks markov. Untuk ukuran matriks trasisi bergantung pada kondisi yang terjadi pada masing-masing gas. Untuk matriks transisi dapat dilihat pada bagian lampiran. Kemudian dapat di perhitungankan denggan menggunakan program komputer untuk mendapatkan kurva ketersediaan pada masing-masing gas. Kurva ketersediaan ditunjukkan pada Gambar 4.35

Gambar 4. 35 Kurva Ketersediaan Gas Fasa T

Dari Gambar 4.35 didapatkan kurva ketersedian gas untuk fasa T. Terdapat tujuh garis dengan warna yang berbeda untuk setiap jenis gas. Dari hasil perhitungan dengan program komputer didapatkan nilai steady state setiap kondisi (K1, K2, K3,dan K4) dalam gas, tergantung dari perubahan kondisi untuk masing-masing gas. Jika dilihat dari gambar kurva ketersediaan gas fasa T terdapat beberapa garis yang terpotong sebelum hari ke 365, hal ini mengindikasikan bahwa nilai gas tersebut sudah steady state sebelum hari ke 365. Kurva ketersediaan menggambarkan peluang kondisi suatu gas semenjak tranfomator ini dioperasikan hingga waktu yang tidak ditentukan. Kurva ketersediaan gas fasa T didapatkan nilai steady state terlihat pada Tabel 4.32

Tabel 4. 32 Nilai Steady State Setiap Kondisi Gas Fasa T

Jenis Gas	Indikator Warna	Nilai Steady State Setiap Kondisi Gas			
	Garis	K1	K2	K3	K4
H_2	5	0.2375	0.3486	0.4139	0
CH_4		0.2090	0.3152	0.3939	0
СО		0.1991	0.4540	0.3469	0
CO_2		0.33248	0.4038	0.2714	0
C_2H_4		0.4912	0	0.1817	0.3271
C_2H_6	VEZAIN	0.3301	0.1256	0.5443	0
C_2H_2	NIP AV	0.3033	0.4528	0.2429	0

Pada Tabel 4.32 terdapat nilai steady state untuk setiap kondisi pada masing-masing gas hingga waktu tertentu.

4.5 Pemodelan Markov Untuk Analisis TDCG

TDCG (*Total Dissloved Combustible Gas*) merupakan hasil penjumlahan gas-gas berbahaya yang mudah terbakar yang terkandung di dalam minyak transfomator antara lain gas H_2 , C_0 , CH_4 , C_2H_2 , C_2H_6 , C_2H_4 . Dalam analisis TDCG juga dilakukan perhitungan nilai keandalan (*Reliability*) dan ketersediaan (*Availability*), yang kemudian akan dhitung dengan menggunakan program MATLAB. Untuk analisis TDCG juga disertakan perubahan waktu percepatan dan perlambatan untuk mengetahui perubahan nilai keandalan dan ketersediaan, sehingga dapat ditentukan waktu yang tepat untuk dilakukan perawatan.

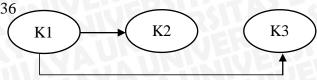
4.5.1 Pemodelan Markov untuk menentukan keandalan TDCG

Perhitungan laju keandalan (λ) pada TDCG sama dengan perhitungan laju keandalan pada gas-gas yang terkandung pada minyak transformator. untuk perhitungan laju kegagalan (λ) di dapatkan dari perhitungan MTTF (*mean time to failure*) pada persamaan (2.11), yaitu dengan :

λ = 1/MTTF,MTTF : Waktu Peubahan kondisi (hari)/ banyaknya perubahan kondisi

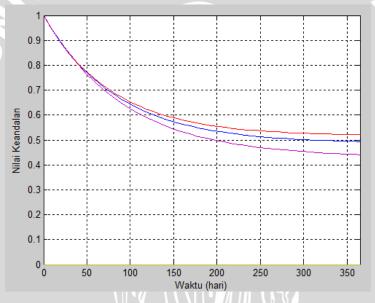
 $\lambda_{TDCG fasa R}$ = 1/MTTF, untuk perubahan kondisi 1 ke kondisi 2 (1-2)

MTTF = (134+214+165)/3 = 171


 $\lambda_{TDCG\ fasa\ R} = 1/171$

= 0.00584, cara ini juga diterapkan untuk melakukan perhitungan pada fasa-fasa lain. Untuk cara perhitungannya dapat dilihat pada bagian lampiran 3. Setelah di dapatkan nilai λ , untuk keandalan dari TDCG seperti pada Tabel 4.33.

Tabel 4. 33 Laju Kegagalan TDCG


Fasa	Perubahan Kondisi TDCG	λ (Hari/Kali)
R	1-2	0.0058
	1-3	0.0061
S	1-2	0.0065
	1-3	0.0061
T	1-2	0.0046
CULHI	1-3	0.0061

Dari perubahan kondisi gas dapat dibuat rantai markov sesuai dengan perubahan kondisi yang terjadi. Untuk perubahan kondisi gas dari K1-K2, K1-K3 rantai markov ditunjukkan pada Gambar 4.36

Gambar 4. 36 Rantai Markov Untuk Kondisi K1-K2, K1-K3

Karena tidak terjadi perubahan dari kondisi 2 (K2) ke kondisi 3 (K3) maka pada Gambar 4.36, terlihat tidak ada garis yang menghubungkan antara K2 dan K3. Jika telah mendapatkan nilai laju keandalan (λ) setiap fasa untuk TDCG maka kemudian kita perhitungankan kedalam program komputer. Dari program komputer nantinya akan di dapatkan nilai keandalaan serta waktu untuk mencapai nilai keandalan tersebut. Kurva keandalan TDCG ditunjukkan pada Gambar 4.37 berikut

Gambar 4. 37 Kurva Keandalan TDCG

Dari hasil perhitungan di peroleh kurva keandalan TDCG seperti pada Gambar 4.37, terdapat tiga macam warna garis yang menunjukkan fasa R, S dan T. Dari hasil perhitungan dengan program juga di dapatkan nilai keandalan untuk setiap fasa. Nilai keandalan yang dihasilkan berubah sesuai dengan lamanya waktu. Untuk nilai keandalan TDCG dalam kurun waktu 365 hari dapat dilihat pada Tabel 4.34.

Tabel 4. 34 Nilai Keandalan TDCG

Fasa TDCG	Indikator Warna Garis	Nilai Keandalan Untuk (365 Hari)
R		0.4940
S	Direction of the second	0.5210
T		0.4391

Setelah di dapatkan nilai keandalan dari Tabel 4.34 dapat dilihat nilai keandalan untuk masing-masing fasa selama 365 hari. Dan trelihat untuk nilai keandalan pada waktu yang sama fasa S memiliki nilai keandalan yang paling besar yaitu 0.5210, sedangkan fasa R nilai keandalannya paling kecil yaitu 0.4940

4.5.2 Pemodelan Markov untuk menentukan ketersediaan TDCG

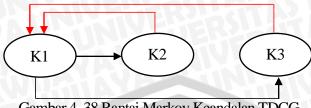
Pemodelan markov untuk mendapatkan kurva ketersediaan menerapakan fungsi laju kegagalan (λ) dan juga laju perbaikan (μ) . Seperti dijelaskan sebelumnya laju kegagalan merupakan laju dimana terjadi perubahan kondisi dari kondisi baik ke kondisi buruk, sedangkan untuk laju perbaikan adalah sebaliknya yaitu perubahan kondisi dari kondisi buruk ke kondisi baik. Untuk cara perhitungan antara laju kegagalan (λ) di dapatkan dari perhitungan MTTF (mean time to failure) pada persamaan (2.11), yaitu dengan:

λ = 1/MTTF, MTTF : Waktu Peubahan kondisi (hari)/ banyaknya perubahan kondisi

Sedangkan untuk perhitungan laju perbaikan (µ) di dapatkan dari perhitungan MTTR (mean time to repair) pada persamaan (2.12), yaitu dengan :

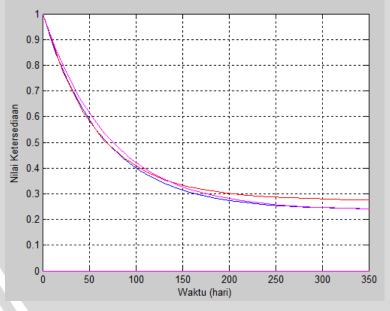
 $\mu = 1/MTTR, MTTR$: Waktu Peubahan kondisi (hari)/ banyaknya perubahan kondisi

 $\lambda_{TDCG \ fasa \ R} = 1/((214+134+165)/3) = 0.00584 \ (untuk \ kondisi \ 1-2)$


 $\mu_{TDCG \ fasa \ R} = 1/((136+92+144)/3) = 0.0074 \ (untuk \ kondisi \ 2-1)$

perhitungan yang sama juga dilakukan pada fasa S dan fasa T untuk mendapatkan nilai laju perusakan (λ) dan laju perbaikan (μ), dengan perhitungan lengkap dapat dilihat pada bagian Lampiran 3. Untuk nilai ketersediaan TDCG setiap fasa dapa dilihat pada Tabel 4.35

Tabel 4. 35 Laju Kegagalan dan Laju Perbaikan TDCG


Jenis Fasa	Perubahan Kondisi Gas	λ	Perubahan Kondisi	μ
TDCG	(Laju Kegagalan)		Gas (Laju Perbaikan)	1746
R	1-2	0.0058	2-1	0.0080
	1-3	0.0061	3-1	0.0035
S	1-2	0.0065	2-1	0.0066
BRADAV	1-3	0.0061	3-1	0.0035
T	1-2	0.0046	2-1	0.0074
STANK	1-3	0.0061	3-2	0.0035

Dari perubahan kondisi gas dapat dibuat rantai markov sesuai dengan perubahan kondisi yang terjadi. Rantai markov ditunjukkan pada Gambar 4.38

Gambar 4. 38 Rantai Markov Keandalan TDCG

Karena tidak terjadi perubahan dari kondisi 2 (K2) ke kondisi 3 (K3) maka pada Gambar 4.35, terlihat tidak ada garis yang menghubungkan antara K2 dan K3. Selain itu dari data pada Tabel 4.35 maka dapat dibuat matriks transisi sesuai dengan matriks markov. Untuk ukuran matriks trasisi bergantung pada kondisi pada tiap fasa TDCG. Matriks transisi dapat dilihat pada bagian lampiran.maka kita dapat membuat kurva ketersediaan dengan menggunakan program komputer. Perhitungan dengah menggunakan program komputer akan menghasilkan nilai steady state untuk setiap fasa, dengan kurun waktu tertentu. Kurva ketersediaan TDCG ditunjukkan pada Gambar 4.39

Gambar 4. 39 Nilai Ketersediaan TDCG

Pada gambar kurva ketersediaan TDCG terdapat tiga warna garis yang berbeda. Untuk garis warna biru menandakan TDCG fasa R, garis berwarna merah adalah TDCG fasa S, dan untuk garis ungu adalah TDCG fasa T. Drai hasil simualsi di dapatkan nilai steady state untuk setiap fasa. Nilai steady state dari TDCG ditunjukkan pada Tabel 4.36

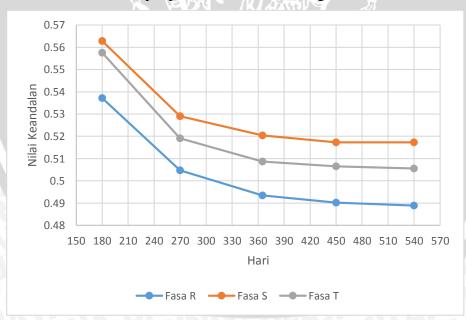
Tabel 4. 36 Nilai Steady State Setiap Fasa TDCG

Fasa	Indikator Warna	Nilai Steady State Setiap Kondisi Gas			
UAULT	Garis	K1	K2	K3	K4
R	VIXELD	0.2364	0.3516	0.4120	0
S	TOAT	0.2683	0.2642	0.4675	0
T		0.2387	0.3452	0.4161	0

Pengaruh Penjadwalan Pemeliharaan

Dalam penelitian ini pengaruh perubahan penjadwalan pemeliharaan dapat dilihat dari hasil perhitungan nilai keandalan dan ketersediaan. Dengan kondisi bila terjadi perubahan standar percepatan dan penundaan waktu pemeliharaan. Untuk nilai standart pemeliharaan yang digunakan sebagai acuan adalah 365 hari atau 1 tahun. Dari hasil perhitungan markov dengan menggunakan program matlab di dapatkan nilai keandalan dan ketersediaan TDCG berdasarkan perubahan waktu. Hasil perhitungan dapat dilihat pada Tabel 4.37.

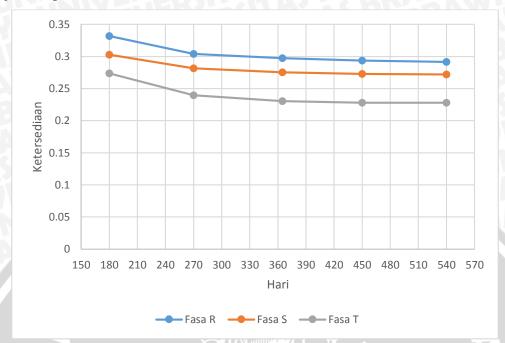
Tabel 4. 37 Hasil Perhitungan Keandalan dan Ketersediaan TDCG


Waktu	Nilai Keandalan Tiap Fasa			Nilai Ketersediaan Tiap Fasa			
(Hari)	R	R Se	Ty	LR	S	T	
1	1	1	*		1	1	
7	0.9485	0.9513	0.9501	0.8022	0.7703	0.8362	
30	0.8229	0.8327	0.8287	0.6620	0.6145	0.7074	
60	0.7315	0.7233	0.7403	0.5622	0.5086	0.5262	
90	0.6472	0.6516	0.6587	0.4400	0.3872	0.4139	
120	0.6037	0.6146	0.6166	0.3766	0.3535	0.3441	
150	0.5720	0.5805	0.5777	0.3571	0.3302	0.3008	
180	0.5372	0.5629	0.5576	0.3321	0.3027	0.2737	
210	0.5236	0.5467	0.5356	0.3240	0.2947	0.2568	
240	0.5138	0.5360	0.5270	0.3131	0.2890	0.2462	
270	0.5047	0.5291	0.5191	0.3039	0.2818	0.2395	
300	0.5000	0.5255	0.5139	0.3019	0.2795	0.2352	
330	0.4965	0.5229	0.5105	0.3002	0.2778	0.2325	
360	0.4934	0.5204	0.5087	0.2976	0.2753	0.2307	
390	0.4917	0.5192	0.5075	0.2957	0.2744	0.2292	
420	0.4909	0.5178	0.5079	0.2949	0.2736	0.2283	
450	0.4902	0.5173	0.5065	0.2936	0.2730	0.2281	
480	0.4895	0.5173	0.5061	0.2930	0.2725	0.2278	
510	0.4889	0.5173	0.5057	0.2921	0.2720	0.2278	
540	0.4889	0.5173	0.5055	0.2914	0.2720	0.2278	

Jika dilihat dari hasil perhitungan pada Tabel 4.37 Terlihat bahwa nilai keandalan semakin lama semakin menurun bergantung dari lamanya waktu (hari). Terlihat ketika hari ke 1 nilai keandalaan dan ketersediaanya masih tinggi yaitu bernilai 1. Sedangkan ketika 30 hari berikutnya nilainya semakin menurun hingga hari ke 540. Sesuai dengan standar pemeliharaan yang ditentukan di awal adalah 1 tahun 365 hari. Pengaruh perubahan jadwal pemeliharaan dapat dilihat pada Tabel 4.38.

Tabel 4. 38 Perubahan Jadwal Pemeliharaan

Standar waktu	Ni	lai Keanda	lan	Nilai Ketersediaan			
Perawatan (Hari)	Fasa R	Fasa S	Fasa T	Fasa R	Fasa S	Fasa T	
180 hari	0.5372	0.5629	0.5576	0.3321	0.3027	0.2737	
270 hari	0.5047	0.5291	0.5191	0.3039	0.2818	0.2395	
365 hari	0.4934	0.5204	0.5087	0.2976	0.2753	0.2307	
450 hari	0.4902	0.5173	0.5065	0.2936	0.2730	0.2281	
540 hari	0.4889	0.5173	0.5055	0.2914	0.2720	0.2278	


Dari Tabel 4.38 dapat dibuat grafik perubahan jadwal pemeliharaan dari segi keandalan dan ketersediaan. Grafik terdapat pada Gambar 4.40 dan gambar 4.41.

Gambar 4. 40 Pengaruh Perubahan Pejadwalan Pemeliharaan Terhadap Nilai Keandalan

Dari gambar grafik keandalann terlihat bahwa terjadi penurunan yang signifikan, semakin lama penjadwalan pemeliharaan maka nilai keandalannya semakin menurun. Sebaliknya jika semakin cepat perawatan maka nilai keandalan juga semakin tinggi.

Sedangkan untuk grafik pengaruh perubahan penjadwalan terhadap nilai ketersediaan ditunjukkan pada Gambar 4.38

Gambar 4. 41 Pengaruh Perubahan Pejadwalan Pemeliharaan Terhadap Nilai Ketersediaan

Sama seperti halnya keandalan, semakin lama nilai ketersediaan dari TDCG semakin menurun. Sehingga untuk menjaga kualitas dari minyak transformator perlu dilakukan perawatan dengan kurun waktu yang cepat. Untuk menentukan kapan waktu yang tepat dilakukan perawatan maka dilaukan perhitungan untuk data pada Tabel 4.29 dengan menghitung penurunan nilai keandalan. Yaitu dengan:

Penurunan nilai keandalan fasa R, $\Re s(t)$ 180hari ke 365hari = $\frac{0.5372 - 0.4934}{0.5372}$ x 100% = 8.1534%

Untuk perhitungan nilai keandalan dan ketresedian setiap fasa dapat dilakukan perhitungan dengan cara yang sama, untuk perhitungan lengkap dapat dilihat pada bagian Lampiran 4. Sehingga didapatkan penurunan nilai keandalan dan ketersediaan dalam kurun waktu tertentu yaitu seperti pada Tabel 4.39

Tabel 4. 39 Penurunan Nilai Keandalan dan Ketersediaan TDCG

Fasa	Penurunan Nilai Keandalan (%)				Penurunan Nilai Ketersediaan (%)			
	180 hari ke	270 hari ke	365 hari ke	365 hari ke	180 hari ke	270 hari ke	365 hari ke	365 hari ke
	365 hari	365 hari	450 hari	540 hari	365 hari	365 hari	450 hari	540 hari
R	8.1534	2.2389	0.6485	0.9120	10.3885	2.07305	1.3441	2.0834
S	7.5502	1.6443	0.5956	0.5956	9.0519	2.3066	0.8354	1.1986
T	8.7697	2.0034	0.4325	0.6290	15.7106	3.6743	1.1247	1.2570

Dengan melihat hasil perhitungan penurunan nilai keandalan dan ketersediaan maka dapat dilihat bahwa penurunan nilai keandalan dan ketersedian yang paling besar adalah saat hari 180 ke 365 untuk semua fasa sama. Sehingga dapat disimpulkan bahwa perawatan yang tepat bisa di lakukan saat hari ke 180 penggunaan transformator dalam kurun waktu satu tahun. Maka dalam satu tahun sebaiknya dilakukan perawatan terhadap transformator khususnya bagi minyak transformator sebanyak minimal 2x, yaitu setiap 6 bulan sekali

