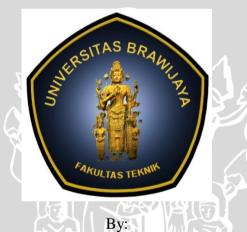
FINAL PROJECT

Has been submitted in partial fulfillment of the requirements for the degree of Bachelor in Engineering (*Sarjana Teknik*)

MUHAMAD IRHAM MA'RUF

NIM. 115060301111003


MINISTRY OF EDUCATION AND CULTURE BRAWIJAYA UNIVERSITY FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING MALANG 2015

APPROVAL SHEET

VISIBLE LIGHT COMMUNICATION (VLC) SYSTEM FOR AUDIO TRANSMISSION

FINAL PROJECT ELECTRICAL ENGINEERING DEPARTMENT

Has been submitted in partial fulfillment of the requirements for the degree of Bachelor in Engineering (*Sarjana Teknik*)

MUHAMAD IRHAM MA'RUF

NIM. 115060301111003

Approved by :

Co-Supervisor

Supervisor

Dr. Ir. Sholeh Hadi Pramono, M.S. NIP. 19580728 198701 1 001 Dr. Maisara Binti Othman Staff Number. 01420 (UTHM)

BRAWIJAYA

"Dedicated with love my lovely mom, Mrs. Siti Khuzaimah, my dearest dad, Mr. Suyudi, My brother, Ahmad Ajibun Novi and Muhammad Sigit Wahyudin...

... to my teachers, lecturers, especially Dr. Sholeh and Dr. Maisara...

...all my friends, assistant of Telecommunication Laboratory, INVERTER 2011, students of Telecommunication engineering UB 2011, BEB UTHM family and all my seniors...

...special dedication to student mobility, Rezki, Mirza, Surya, Nurrotul, Asai and Akira....

for their love, attention, endurance, determination and encouragement this project implementation in innumerable ways...

...Thank you for given me a best guidance to make this project become more successful...

... Thank you for all, may Allah bless you all ... "

ACKNOWLEDGEMENT

Thanks to Allah S.W.T that finally I can complete my final project as it is today.

First and foremost, I would like to express my appreciation and gratitude to my supervisory committe, Dr. Ir. Sholeh Hadi Pramono, M.S and Dr. Maisara Binti Othman. for their continuous trust and support throughout my project research. I would also like to thank for their careful review, corrections and suggestions for the improvement of this project report. I also would like to share my great feelings of thankful and a very high dense of appreciation to family members who have always stand by me and never stay back.

Last but not least, credit goes to every single person in this world, either directly or indirectly for their concern of each and every single assist I asked, person who had given me a treasured points of view and lots of self motivational support.

ABSTRACT

Limited radio frequency spectrum (or bandwidth) is one of the major issues in wireless communication. Visible light communication (VLC) should be considered as the medium for wireless transmission because it has a few advantages over other standard wireless transmissions. The advantages of VLC are low power consumption and can avoid interference occurs. The visible light spectrum have 10,000 times larger than the entire radio frequency spectrum which ranges from 428 THz to 750 THz. In this project the performance of visible light communication have been tested on the variation of distance between transmitter and receiver. Besides that the influence of the additional amplifier at the transmitter and receiver on the VLC system are also been characterized. Based on the results and analysis the implementation of the amplifier circuit at the transmitter and receiver helps to improve the signal quality of the audio signal in the VLC system. However the amplifier also increased the noise in this system. Moreover, the distance between transmitter and receiver can influence the system performance too. The longer the distance means that the signal strength and voltage which has been received by the receiver decreased and cause the optical power loss in the system. As a conclusion this audio transmission in the VLC system are working properly and have been successfully demonstrated. However the maximum of distance between transmitter and receiver is limited to 20 cm. We believe this VLC technology has many potential to be explore and implemented in the next generation access network, in-home network, and transportation network.

TABLE OF CONTENTS

	TITLI	E	i			
	APPR	OVAL SHEET	ii			
	DEDICATION					
	ACKNOWLEDGEMENT					
	ABST	RACT	v			
	TABL	RACT E OF CONTENTS OF TABLE OF FIGURES	vi			
	LIST	OF TABLE	ix			
	LIST	OF FIGURES	x			
	LIST	OF ABBREVIATIONS	xii			
		OF APPENDIX	xiii			
			лш			
CHAPTER 1	INTR	ODUCTION	1			
	1.1	Background	1			
	1.2	Formulation of Problem	2			
	1.3	Scope of Problem	2			
	1.4	Objectives	3			
	1.5	Systematic of Writing	3			
CHAPTER 2	CHAPTER 2 BASIC THEORY 4					
	2.1	Free Space Optic	4			
	2.2	Introduction to Visible Light Communication	5			
	2.3	Visible Light Communication System	6			
	2.4	Light Emiting Diode (LED) as Transmitter	6			
	2.5	Photodiode as Receiver	7			
	2.6	PIN Photodiode	10			

	2.7	On Of	f Keying Modulation	11
2.8		Previo	us Study	12
		2.8.1	A Fully Integrated Audio, Video, and	12
			Data VLC Transceiver System for	
			Smartphones and Tablets	
		2.8.2	Designs of VLC Transceiver Circuits for	12
			Reading Light Transmission of High-Quality	
			Audio Signals on Commercial Airliners	
		2.8.3	The Analysis of Variable Length	13
			Codes-Coded Efficiency Based on	
			MPEG-I Layer III Audio	
		2.8.4	Summary of Previous Study	14
CHAPTER 3	METI	HODS		17
	3.1	Project	t Plan	17

	5.1	Tiojee		1 /
	3.2	The M	lethod of Device Development	17
		3.2.1	VLC Transmitter System	18
		3.2.2	VLC Receiver System	22
	3.3	Analy	sis Method	24
		3.3.1	Amplifier Effect to VLC System	25
		3.3.2	Distance Effect to VLC System	26
	3.4	Summ	ary D)	27
CHAPTER 4	4 RESU	JLT AN	ID DISCUSSION	28

.1	Amplifier Effect to VLC System		
	4.1.1	Measurement Before The Amplifier	28
	4.1.2	Characteristic of The Signal Waveform	29
		Before The Amplifier	
	4.1.3	Measurement After The Amplifier	30
	4.1.4	Characteristic of The Signal Waveform	30
		After The Amplifier	
	4.1.5	Summary of The Measurement Before and	31

BRAWIJAYA

			After The Amplifier	
	4.2	Distar	nce Effect to VLC System	32
		4.2.1	Measurement of The VLC Performance	32
		4.2.2	Characteristic of The Signal Waveforms	34
		4.2.3	Summary of The Distance Effect	36
			to VLC System	
CHAPTER S	5 CON	CLUSI	ON AND RECOMMENDATION	38
	5.1	Concl	usion TAS RD	38
	5.2	Recor	usion nmendation	38
REFERENC	ES			39
APPENDIX				
			MELEN	
		, k		

BRAWIJAY

LIST OF TABLE

TABLE NO.	TITLE	PAGE
2.1	Bandgap energy and possible wavelength ranges	7
	in various materials	
2.2	Operating wavelength ranges for several different	11
	photodetector materials	
4.1	Power and loss measurement (a) before amplifier, and	32
	(b) after amplifier at the transmitter and receiver	
4.2	Characteristic of signal waveforms on distance effect	34
	to VLC system	
4.3	Power and loss measurement on transmitter and	36
	receiver with variation of distance	

LIST OF FIGURE

FIGURE NO	. TITLE	PAGE
2.1	Visible light communication system	6
2.2	Simplified theory of LED operation	6
2.3	Current-voltage characteristic for a photodiode	8
2.4	Photodiode structures: (a) Planar diffused photodiode;	9
	(b) Schottky photodiode	
2.5	Responsivity as a function of wavelength for	10
	typical silicon photodiodes BRA	
2.6	typical silicon photodiodes Simplified principle of photodiode	10
2.7	an On Off Keying signal	11
2.8	Block diagram of integration between the video	12
	and audio modules	
2.9	Basic circuit and constructed prototype for airline	13
	entertainment VLC audio transmission system	
2.10	Sketch of MP3 audio encoding	14
3.1	Project plan	17
3.2	Visible light communication block diagram	18
3.3	Visible light communication system overview	18
3.4	3.5 mm audio jack cable	19
3.5	Transmitter system overview	19
3.6	Schematic of VLC transmitter system	20
3.7	LM386N amplifier	20
3.8	9 V Battery	20
3.9	5 mm Super bright white LED	21
3.10	Variable resistor 10 kΩ	21
3.11	VLC receiver system overview	22
3.12	Schematic of VLC receiver system	22
3.13	Vishay BPW41N photodiode	23
3.14	Arduino UNO rev 3	23
3.15	Apple green SP-158 speaker	24
3.16	Steps to doing the experiment	24

25
26
28
29
29
30
31
31
37

Ш

	VLC
	IC
	cm
	Km
	m
	nm
	OOK
	RF

THz

GHz

MHz

GND

QAM

PSK

PC

LED

MPEG

	Visible Light Communication
	Integrated Circuit
	Centimeter
	Kilometer
	Meter
	Nanometer
	On-Off Keying
51 I A	Radio Frequency
	Tera Hertz
	Giga Hertz
	Mega Hertz
n I ()	Ground
	Quadrature Amplitude Modulation
	Phase Shift Keying
R ST	Personal Computer
	Light Emitting Diode
(A) / J	Moving Picture Experts Group

LIST OF APPENDIX

APPENDIX A APPENDIX B APPENDIX C 5 mm LED Superbright Light DatasheetVishay BPW41N Photodiode DatasheetLM386 Amplifier Datasheet

INERSITAS BRAWING

BRAWIIAYA