BAB III METODOLOGI PENELITIAN

3.1 Lokasi Daerah Penelitian

Sangatta, Kabupaten Kutai Timur Provinsi Kalimantan Timur merupakan tempat bernaung PT. Kaltim Prima Coal. Terletak pada koordinat lintang 1° 52′ 39′′ LU, 0° 20′ 10′′ LS dan koordinat bujur 118° 58′ 19′′ BT, 115° 56′ 26′′. Memiliki sekitar 35.747 km² atau 17 % luas wilayah Kalimantan Timur. Curah hujan pertahun antara 2000 mm – 3000 mm, banyaknya kawasan hutan hujan tropis mengakibatkan hari hujan lebih dominan. PT. Kaltim Prima Coal merupakan perusahaan tambang terbesar di Indonesia di bawah naungan PT. Bumi Resources. Tbk yang memiliki luas 90.938 ha terbagi diwilayah Sangatta dan Bengalon.

Gambar 3.1. Foto Udara Kawasan Tambang PT. Kaltim Prima Coal

Sumber: http://dunia tambang.com, diakses 28 November 2013

3.2 Tahapan Penyelesaian

Rencana tahapan penyelesaian dalam kajian ini adalah sebagai berikut,

Pengumpulan Data Lapangan

Data-data yang dibutuhkan dalam kajian diperoleh langsung dari lapangan dan data historik (tercatat) oleh alat ukur yang sudah dipasang. Data pokok yang dibutuhkan dalam kajian ini antara lain Data Topografi, Data Curah hujan dan data eksisting yang sudah ada.

Diskusi Intensif

Melakukan diskusi tentang kajian dengan pembimbing lapangan dan dosen pembimbing terkait proses perencanaan dan prosedur pengerjaan. Pendekatan praktis lapangan dipadukan dengan konsep teoritis akan menghasilkan model perencanaan yang tepat guna.

Analisis Data

Data yang telah diperoleh akan diolah berdasarkan fungsi data dan keterkaitan data satu sama lain yang saling mendukung dalam perencanaan. Pendekatan praktis yang selama ini ada dalam *Guideline of Mine Water Management* KPC 2013 akan digunakan untuk membantu proses analisa.

• Proses Perencanaan

Perencaan dilakukan berdasarkan data yang sudah dianalisis. Cakupan desain adalah sistem drainase tambang terbuka antara lain pengolahan data hujan , analisis debit Sungai Kenyamukan Kanan sebelum ada kolam Angsoka , analisa debit limpasan hujan sebelum dan pada masa penambangan, analisa dimensi sump, optimalisasi jumlah pompa, penelusuran banjir Kolam Angsoka sebelum dan sesudah ada penambangan, komparasi debit release kolam angsoka dengan kapasitas maksimum gorong-gorong pembawa, dan kebutuhan RPH per hari serta upaya penaggulangan jika terjadi kelebihan debit *release*.

3.3 Pengumpulan Data

Data adalah replika kondisi yang dapat menggambarkan dan menjelaskan suatu kondisi, tempat atau kejadian yang berguna dalam perencanaan teknis. Data yang didapat dapat berupa peta, grafik, tabel dan data tematik lainnya. Cara memperoleh data biasanya melalui collecting data, interview, observasi laborat atau melalui survei secara langsung. Data yang didapat secara langsung dilapangan dengan pengamatan visual maupun pengamatan dengan alat bantu ukur disebut data primer. Sedangkan data yang didapat dari rekapitulasi yang

sebelumnya telah dilakukan audit dalam skala waktu tertentu tanpa harus melakukan pengambilan secara langsung dilapangan disebut data sekunder.

Tabel 3.1. Tabulasi Data yang Diperlukan

No	Nama Data	Jenis	Sumber
1	Peta Topografi	Sekunder	Dept. Mine Planning Section Civil
2	Data Curah Hujan	Sekunder	Dept. Mine Planning Section Civil
3	Data Eksisting	Sekunder	Dept. Mine Planning Section Civil
4	Foto Dukumentasi	Primer	Dept. Mine Planning Section Civil

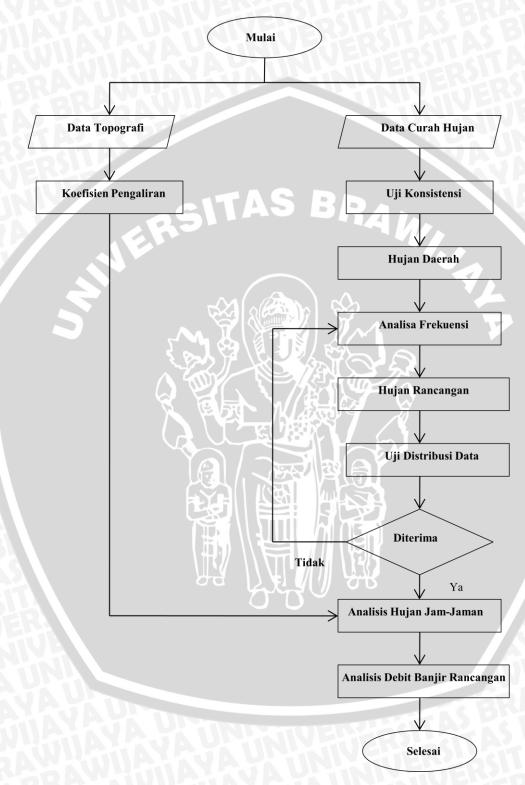
Sumber: Mine Planning Department

3.4 Rancangan Analisa

Dalam kajian ini rancangan analisa ditampilkan dalam tabel 3.2. Rancagan Tahapan Analisa.

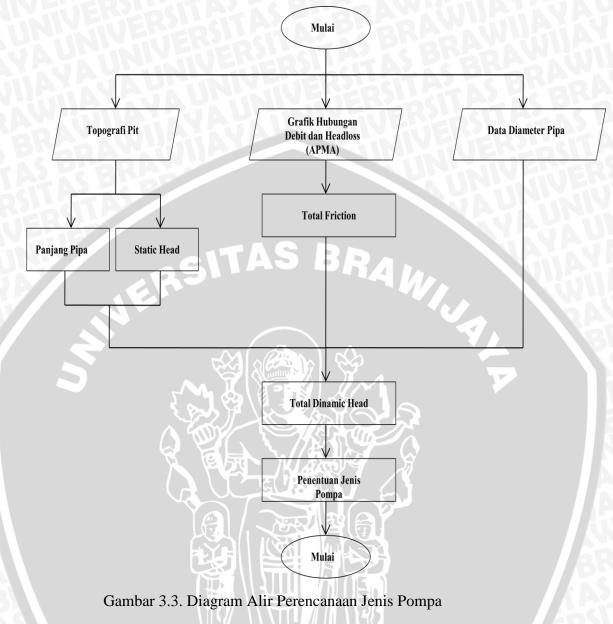
Tabel 3.2. Rancangan Tahapan Analisa

No.	Tahap Analisa	Metode Pendekatan
1	Pengolahan data hujan	• Uji konsistensi varian data
		menggunakan metode lengkung masa
	[A]/2	ganda.
		Analisis hujan daerah (faktor)
		pengaruh stasiun hujan terhadap
		daerah cakupan) menggunakan
	Ag []	metode poligon Thiesen.
		Analisa frekuensi menggunnakan
H		metode Gumbel, Log pearson III,
H	M	Distribusi Normal dan Distribusi log
		Normal.
	AVAN DEGICE	• Hujan Rancangan yang sudah
	MAKAYAYAUN	didapat dilakukan uji distribusi
	RAWKINIAKAYA	kcocokan dengan metode uji Chi-
	S BRARAWILLIA	Square dan Smirnov-Kolmogorof.

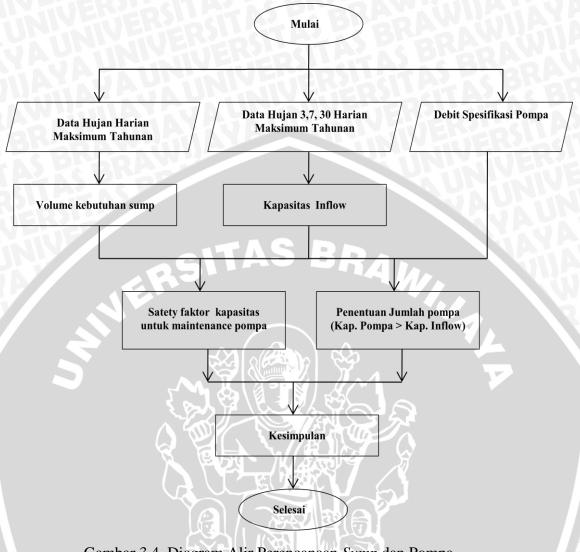

2	Analisa hujan jam-jaman	• Analisa hujan jam-jaman
	INIXTUER 2651	menggunakan pendekatan tercantum
	VAUTINIVATUE	dalam water management manual
	MAY AUA UN'IN	draft KPC berupa prosentase hujam
	AWII AYAYAY	setiam jam dalam kurun 5 jam hujan.
3	Perhitungan debit banjir rancangan	• perhitungan debit banjir rancangan
	ASBIBB	menggunakan metode Hidrograf
	311	satuan sintetik Nakayasu dengan 2
	ti-	kondisi yaitu kondisi sebelum dan
	SITA	sesudah ada penambangan dengan
	En	pengaruh luasan basin area yang
		berbeda.
4	Perencanaan sistem drainase	• perencanaan sistem drainase meliputi
	tambang terbuka.	perencanaan kolam sump, optimalisasi
		pompa tambang, pengendalian aliran
		terbuka berdasarkan prinsip-prinsip
		hidrolika.
5	Analisa pengaruh perubahan	Analisa dilakukan dengan metode
	kondisi Basin South Pinang	penelusuran banjir Muskingum pada
	terhadap debit release Kolam	waduk dengan mempertimbangkan
	Angsoka.	faktor tampungan, inflow yang masuk
3.1		dan waktu pengaliran. Pada kondisi
		sebelum dan sesudah ada
	σ	penambangan.
6	Upaya penanggulangan jika terjadi	• Analisa dilakukan dengan
	banjir atau debit release melebihi	optimalisasi pompa sebagai alat
	kapasiatas maksimum gorong-	pengendali debit berlebih dan menjaga
	gorong Jl. Sangatta-Bengalon	elevasi tampungan.
	Km.26 .	INTUER 2531TA2 A
7	Analisa kebutuhan air Rumah	Analisa dilakukan dengan optimasi
15 1		
	Potong Hewan sebesar 10000	debit keluaran sesuai kebutuhan dan

	IVERERS LATAS	pada kondisi aman.
8	Analisa pengaruh pemompaan	Analisa dilakukan dengan
	Kolam Angsoka pada Catchment	penjumlahan debit banjir Catchment
	kenyamukan Kanan I, dengan	Kenyamukan Kanan I dengan debit
	indikator gorong-gorong Jl.	buangan Kolam Angsoka dengan kala
	Provinsi Km. 45	ulang tertentu dengan komparasi
	ASBUS	kapasitas maksimum gorong-gorong.

Untuk lebih memudahkan pemahaman dapat dilihat sub bab 3.5 Flow Chart Perencanaan.

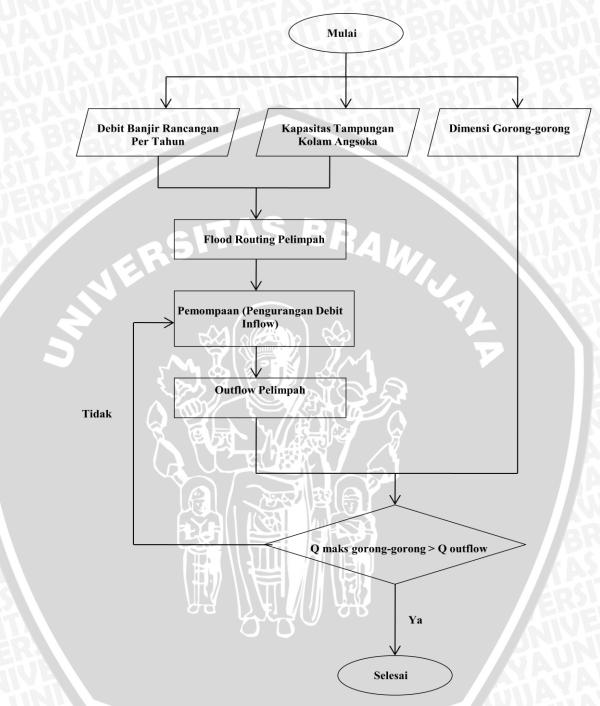


3.5 Diagram Alir Pengerjaan



Gambar 3.2. Diagram Alir Perencanaan Debit Rancangan

Sumber: Perencanaan



Sumber : Perencanaan

Gambar 3.4. Diagram Alir Perencanaan Sump dan Pompa

Sumber: Perencanaan

Gambar 3.5. Diagram Alir Perencanaan Debit Outflow Kolam Angsoka

Sumber: Perencanaan