
BAB IV HASIL DAN PEMBAHASAN

Pada penelitian kali ini, *combustor* memiliki *double fuel inlet* dan *triple wire mesh* yang bertujuan untuk memperluas daerah *flammability limit* dengan munculnya dua nyala api stabil pada dua *down stream wire mesh* yang berbeda. Sehingga di dalam satu *combustor* terdapat dua aliran reaktan yang berbeda saluran. Saluran reaktan tersebut dibedakan menjadi *fuel inlet* primer dan *fuel inlet* sekunder, dimana ke-2 *fuel inlet* tersebut berbeda perlakuannya. Reaktan yang masuk melalui *fuel inlet* primer tetap dijaga pada kondisi rasio ekuivalen $\Phi = 1$ dan kecepatan reaktan pada *fuel inlet* primer (V_{primer}) sebesar 26, 36, dan 42 cm/detik. V_{primer} tersebut ditentukan berdasarkan diagram *flammability limit* untuk *combustor* dengan *single wire mesh* dan *single fuel inlet*. Penentuan ke-3 titik tersebut berdasarkan pada daerah *flammability limit* seperti ditunjukan pada Gambar 4.1.

Gambar 4.1 Diagram kestabilan api untuk *combustor* dengan *single wire mesh* dan *single fuel inlet*.

Setelah menentukan kecepatan reaktan pada $fuel\ inlet$ primer, maka selanjutnya menentukan debit udara dan bahan bakar pada masing-masing V_{primer} . Berikut contoh perhitungannya.

Menentukan debit bahan bakar dan udara untuk V_{primer} yang berbeda dengan rasio ekuivalen (Φ) = 1. Contoh : Perhitungan untuk menentukan Q_{udara} dan Q_{bb} pada V_{primer} sebesar 26 cm/detik dan rasio ekuivalen Φ = 1

$$V_{\text{primer}} = \frac{(Q_{\text{bb}} + Q_{\text{udara}})_{\text{act}}}{60 (\pi \cdot \frac{r^2}{100})}$$

$$26 = \frac{(Q_{bb} + Q_{udara})_{act}}{60 (3,14 \cdot \frac{1,68^2}{100})}$$

$$139,21 = (Q_{bb} + Q_{udara})_{act}$$
 (4-1)

Untuk bahan bakar gas, perbandingan mol juga dapat diyatakan perbandingan volume, sehingga didapatkan :

$$\Phi = \frac{AFR_s}{AFR_a}$$

$$\Phi = \frac{(Q_{udara}/Q_{bb})_s}{(Q_{udara}/Q_{bb})_{act}}$$

$$\Phi = \frac{27,37}{(Q_{udara}/Q_{bb})_{act}}$$

$$\Phi = \frac{Q_{bb_{act}}.\ 27,37}{Q_{udara_{act}}}$$

Untuk rasio ekuivalen $\Phi = 1$, maka :

$$Q_{udara act} = Q_{bb act} \cdot 27,37 \tag{4-2}$$

Dari persamaan (4-2) disubsitusikan ke persamaan (41), didapatkan :

$$139,21 = Q_{bb \, act} + 27,37 \, Q_{bb \, act}$$

$$Q_{bb_{act}} = \frac{139,21}{28,37}$$

$$Q_{bb}_{act} = 4.92 \text{ (mL/menit)} \approx 5 \text{ (ml/menit)}$$

$$Q_{udara_{act}} = 4,92.28,37$$

$$Q_{udara_{act}} = 135,11 \text{ (mL/menit)}$$

Dalam penelitian, secara aktual Qbb primer dikondisikan pada 5 mL/menit sebab pada 4,92 mL/menit sangat sulit untuk dicapai, begitu pula untuk Q_{udara primer} 135,11 mL/menit dibulatkan menjadi 135 mL/menit. Cara yang sama berlaku untuk menentukan Q_{udara} dan Q_{bb} pada V_{primer} sebesar 36 dan 42 cm/detik dengan rasio ekuivalen $\Phi = 1$. Sehingga didapatkan nilai pengambilan data debit udara Q_{udara} dan bahan bakar Q_{bb} seperti pada Tabel 4.1.

Tabel 4.1 Nilai Q_{bb} dan Q_{udara} pada V_{primer} yang berbeda dan $(\Phi) = 1$

No	V _{primer} (cm/detik)	Q _{bb} (mL/menit)	Q _{udara} (mL/menit)
1	26	4,92	135,11
2	36	6,96	189,37
3	42	8,01	217.86

Kemudian untuk reaktan yang masuk pada fuel inlet sekunder kecepatan reaktannya (V_{sekunder}) divariasikan dengan mengatur jumlah debit udara yang masuk dengan debit bahab bakar tetap dalam range yang sekecil-kecilnya hingga sebesarbesarnya dengan kenaikan 1 mL/menit dari debit semula, dimana api masih dapat menyala stabil di dalam combustor. Jumlah antara V_{primer} dan V_{sekunder} yang masuk pada masing-masing fuel inlet dinamakan V_{total}, yang menunjukkan kecepatan total reaktan pada fuel inlet primer dan sekunder.

4.1 Data Hasil Penelitian

Bedasarkan penelitian yang telah dilakukan pada meso-scale combustor dengan menggunakan double fuel inlet dan triple wire mesh maka didapatkan sejumlah data awal berupa Q_{udara Min} sekunder, Q_{udara Max} sekunder dan Q_{bahan bakar} sekunder, data ini didapatkan pada kondisi dimana api stabil di dalam meso-scale combustor. Data awal tersebut selanjutnya akan diolah menjadi beberapa data yang nantinya dapat menjadi grafik flammability limit dan titik acuan yang menggambarkan bentuk api berupa visualisasi. Khusus untuk grafik *flammability limit*, dari grafik tersebut dapat ditunjukan batas-batas kestabilan nyala api yang disimbolkan oleh rasio ekuivalen (Φ). Ada dua batas yang terdapat pada rasio ekuivalen, yaitu rasio ekuivalen minimum (Φ_{Min}) dan rasio ekuivalen maksimum (Φ_{Max}) atau biasa disebut lower limit dan upper limit. Lower limit dan upper limit merupakan suatau kondisi dimana api dapat menyala stabil pada konsentrasi reaktan tertentu. Perbedaan keduanya berada pada debit udara yang disuplai. Lower limit merupakan daerah dengan konsentrasi udara tertinggi, sedangkan upper

limit pada konsentrasi udara terendah untuk debit bahan bakar yang sama. Atau dengan kata lain lower limit merupakan suatu keadaan atau daerah dimana api dapat menyala stabil di dalam *combustor* pada campuran debit udara maksimal dengan debit bahan bakar tertentu, sedangkan upper limit adalah keadaan atau daerah dimana api dapat menyala stabil di dalam *combustor* pada campuran debit udara minimal dengan debit bahan bakar tertentu.

Pada penelitian ini, data yang diambil adalah debit reaktan sekunder (dalam mL/menit) dengan tiga kondisi yang berbeda yaitu pengambilan data pada combustor dengan V_{primer}: 26, 36, dan 42 cm/detik. Setelah didapatkan data debit reaktan sekunder maka data tersebut diolah. Semua data pada combustor dengan V_{primer} yang berbeda dapat dilihat pada Tabel 4.2 - 4.4.

Tabel 4.2 Data debit bahan bakar dan udara pada *fuel inlet* sekunder dimana api dapat menyala dalam meso-scale combustor dengan V_{primer}: 26 cm/detik

Fuel	<i>inlet</i> Primer		Fuel inlet Sekunder						
Q_{bb}	Q _{udara}	Q_{bb}	Qudara min	Qudara max					
		6	120	240					
	(4)	J 7 K	137.5	260					
		8	150	285					
	FEX.	9 [175	315					
		10	187.5	335					
		11	200	367.5					
5	135	12	207.5	400					
		13	227.5	417.5					
		14	247.5	457.5					
		15	250	497.5					
		16	272.5	527.5					
		17	282.5	540					
	VA	18	300	600					

Tabel 4.3 Data debit bahan bakar dan udara pada fuel inlet sekunder dimana api dapat menyala dalam meso-scale combustor dengan V_{primer} : 36 cm/detik

Fuel in	<i>nlet</i> primer	HI	Fuel inlet sekunder						
Q_{bb}	Q _{udara}	Q_{bb}	Q _{udara min}	Q _{udara max}					
		6	165	297.5					
		7	197.5	310					
		8	187.5	325					
		9	192.5	347.5					
	_G	10	200	382.5					
	K2	11	205	405					
7	189	12	200	442.5					
		13	212.5	485					
		14	227.5	500					
	100	15	242.5	530					
		16	262.5	580					

Tabel 4.4 Data debit bahan bakar dan udara pada *Fuel inlet* sekunder dimana api dapat menyala dalam *meso-scale combustor* dengan V_{primer}: 42 Cm/detik

Fuel in	<i>ılet</i> primer	Fuel inlet sekunder							
Q_{bb}	$Q_{ m udara}$	Q_{bb}	Q _{udara min}	Q _{udara max}					
		6	170	335					
		7	185	350					
		8	187.5	347.5					
		9	195	380					
	46	10	202.5	392.5					
	N -	11	215	422.5					
8	218	12	225	460					
		13	227.5	497.5					
	A	14	240	530					
	{	(8) (15)	252.5	550					
		16	277.5	580					
	R G	17	290	600					

Pada penelitian ini peneliti mengalami keterbatasan pengambilan data dikarenakan *flow meter* untuk *fuel inlet* sekunder yang digunakan hanya dapat membaca debit udara sampai 600 mL/menit saja. Kemungkinan untuk kondisi dimana api masih dapat stabil didalam *combustor* pada debit udara diatas 600 mL/menit dapat terjadi. Sehingga dalam proses pengambilan data pada *combustor* dengan V_{primer} 26, 36 dan 42 cm/detik sebenarnya api masih mungkin dapat stabil pada kecepatan reaktan yang lebih besar.

4.2 Perhitungan Data Penelitian

4.2.1 Menentukan rasio ekuivalen (Φ)

Untuk menentukan rasio ekuivalen, sebelumnya dicari dulu total debit reaktan dengan cara menjumlah debit bahan primer dengan bahan bakar sekunder begitu pula dengan debit udara. Kemudian dapat menentukan Φ baik *lower* maupun *upper limit*. Contoh : (Φ) *lower limit* pada kecepatan reaktan primer sebesar $V_{primer} = 26$ cm/detik dan untuk $Q_{bb \ sekunder} = 6$ ml/menit

$$\Phi_{\text{lower}} = \frac{\left(Q_{\text{bb primer}} + Q_{\text{bb sekunder}}\right) 27.37}{\left(Q_{\text{udara primer}} + Q_{\text{udara sekunder Max}}\right)}$$

$$\Phi = \frac{(5+6)27.37}{(135+240)}$$

$$\Phi = 0.802$$

ntoh: (Φ) Upper lim $_{P}$.

n untuk $Q_{bb \text{ sekunder}} = 6 \text{ ml/menit}$ $\Phi_{Upper} = \frac{\left(Q_{bb \text{ primer}} + Q_{bb \text{ sekunder}}\right) 27,37}{\left(Q_{udara \text{ primer}} + Q_{udara \text{ sekunder Min}}\right)}$ $\leq 27,37$ Contoh: (Φ) Upper limit pada kecepatan reaktan primer sebesar V_{primer} = 26 cm/detik dan untuk Q_{bb sekunder} = 6 ml/menit

$$\Phi_{\text{Upper}} = \frac{\left(Q_{\text{bb primer}} + Q_{\text{bb sekunder}}\right) 27,37}{\left(Q_{\text{udara primer}} + Q_{\text{udara sekunder Min}}\right)}$$

$$\Phi = \frac{(5+6)27,37}{(135+120)}$$

$$\Phi = 1,1806$$

4.2.2 Menentukan kecepatan total reaktan (V_{total})

Dalam V_{total}, terdapat V_{total minimal} dan V_{total maksimal}.

Contoh: V_{total min} pada kecepatan reaktan pada fuel inlet primer sebesar V_{primer} = 26 cm/detik

$$V_{\text{total Min}} = \frac{(Q_{\text{bb total}} + Q_{\text{udara total Min}})}{60 (\pi \cdot \frac{r^2}{100})}$$

$$V_{\text{total Min}} = \frac{(11 + 255)}{60 (3,14 \cdot \frac{1,68^2}{100})}$$

 $V_{\text{total Min}} = 50.0244 \text{ cm/detik}$

Contoh: $V_{total\ max}$ untuk kecepatan reaktan pada fuel inlet primer sebesar $V_{primer} = 26$ cm/detik

$$V_{\text{total Max}} = \frac{(Q_{\text{bb total}} + Q_{\text{udara total Max}})}{60 (\pi \cdot \frac{r^2}{100})}$$

$$V_{\text{total Max}} = \frac{(11 + 375)}{60 (3,14 \cdot \frac{1,68^2}{100})}$$

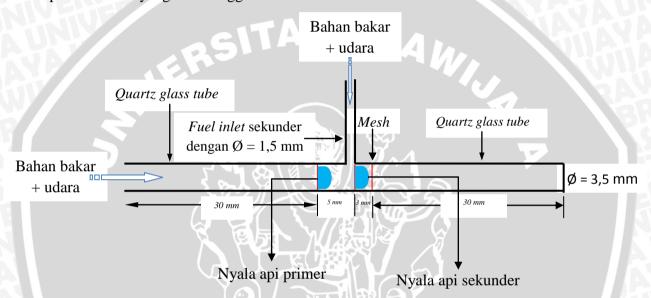
 $V_{\text{total Max}} = 72.591 \text{ cm/detik}$

Setelah didapatkan hasil perhitungan Φ dan V_{total} reaktan pada V_{primer} 26 cm/detik kemudian dilanjutkan pada kondisi 36, dan 42 cm/detik. Tabel 4.5 – 4.7 berikut merupakan data hasil perhitungan pada V_{primer} 26, 36, dan 42 cm/detik.

Tabel 4.5 Data hasil perhitungnan rasio ekuivalen (Φ) dan kecepatan total reaktan (Vtotal) dengan V_{primer}: 26 Cm/detik

Fuel inlet primer		F	Fuel inlet sekunder			TOTAL			Φ		$\mathbf{V}_{ ext{total}}$	
Qbb (ml/menit)	Qudara (ml/menit)	Qbb (ml/menit)	Qudara min (ml/menit)	Qudara max (ml/menit)	Qbb (ml/menit)	Qudara min (ml/menit)	Qudara max (ml/menit)	Lower limit	Upper limit	Vmin (cm/detik)	Vmax (cm/detik)	
	HIT	6	120	240	11	255	375	0.80285333	1.18066667	50.02443	72.59185	
	PAU	7	137.5	260	12	272.5	395	0.83149367	1.2052844	53.50358	76.54114	
	338	8	150	285		285	<u>420</u>	0.84716667	1.24845614	56.04241	81.43075	
	2	9	175	315	14	310	450	0.85151111	1.23606452	60.93202	87.26067	
	180	10	187.5	335	15	322.5	470	0.87351064	1.27302326	63.47085	91.20996	
	HT.	11	200	367.5	16	335	502.5	0.87148259	1.30722388	66.00968	97.51003	
5	135	12	207.5	400	17	342.5	535	0.86970093	1.35851095	67.60821	103.8101	
	MA	13	227.5	417.5	18	362.5	552.5	0.89169231	1.35906207	71.55751	107.2892	
	MIA	14	247.5	457.5	<u>a</u> 19	382.5	592.5	0.87768776	1.35955556	75.5068	114.9998	
		15	250	497.5	20	385	632.5	0.86545455	1.42181818	76.16502	122.7103	
	San	16	272.5	527.5	21	407.5	662.5	0.86757736	1.41047853	80.58447	128.5402	
	PAS	17	282.5	540	22	417.5	675	0.89205926	1.4422515	82.65315	131.0791	
	431	18	300	600	23	435	735	0.85647619	1.44714943	86.13229	142.5508	

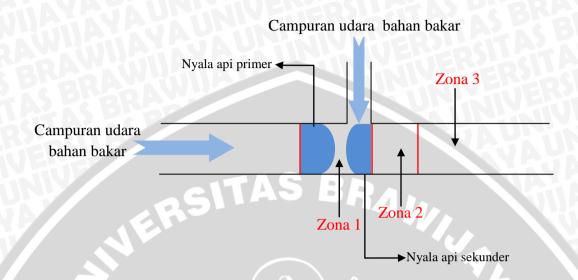
Tabel 4.6 Data hasil perhitungnan rasio ekuivalen (Φ) dan kecepatan total reaktan (Vtotal) dengan V_{primer} : 36 Cm/detik


Fuel inlet primer		Fuel inlet sekunder			TOTAL			Φ		$\mathbf{V_{total}}$	
Qbb (ml/menit)	Qudara (ml/menit)	Qbb (ml/menit)	Qudara min (ml/menit)	Qudara max (ml/menit)	Qbb (ml/menit)	Qudara min (ml/menit)	Qudara max (ml/menit)	Lower limit	Upper limit	Vmin (cm/detik	Vmax (cm/detik)
	1	6	165	297.5	13	354	486.5	0.73136691	1.00511299	69.01867	93.93686
	R	7	197.5	310	14	386.5	499	0.76789579	0.99141009	75.31874	96.47569
	S	8	187.5	325	15	376.5	514	0.79873541	1.09043825	73.62619	99.48468
		9	192.5	347.5	16	381.5	536.5	0.81625349	1.14788991	74.75456	103.9041
		10	200	382.5	17	389	571.5	0.81415573	1.19611825	76.35308	110.6744
		11	205	405	18	394	594	0.82939394	1.25040609	77.48145	115.0938
7	189	12	200	442.5	19	389	631.5	0.82348377	1.33683805	76.72921	122.3342
		13	212.5	485	20	401.5	674	0.81216617	1.3633873	79.26804	130.5149
	J	14	227.5	500	21	416.5	689	0.834209	1.38	82.27703	133.5239
	2	15	242.5	530	22	431.5	719	0.83746871	1.39545771	85.28602	139.3538
		16	262.5	580	23	451.5	769	0.81860858	1.39426357	89.23531	148.9449

Tabel 4.7 Data hasil perhitungnan rasio ekuivalen (Φ) dan kecepatan total reaktan (Vtotal) dengan V_{primer} : 42 Cm/detik

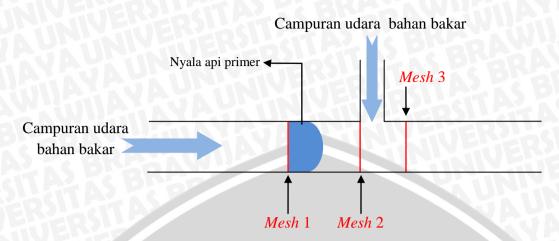
Fuel inl	Fuel inlet prim <mark>er</mark>		Fuel inlet sekur	nder		TOTAL		Ф		$\mathbf{V}_{ ext{total}}$	
Qbb (ml/menit)	Qudara (ml/menit)	Qbb (ml/menit)	Qudara min (ml/menit)	Qudara max (ml/menit)	Qbb (ml/menit)	Qudara min (ml/menit)	Qudara max (ml/menit)	Lower limit	Upper limit	Vmin (cm/detik)	Vmax (cm/detik)
		6	170	335	14	388	553	0.69291139	0.98757732	75.60083	106.631
	1	7	185	350	15	403	568	0.7227993	1.01873449	78.60982	109.64
	R	8	187.5	347.5	16	405.5	565.5	0.77439434	1.07995068	79.26804	109.3579
	Š	9	195	380	17	413	598	0.77807692	1.12661017	80.86656	115.658
		10	202.5	392.5	18	420.5	610.5	0.80697789	1.17160523	82.46509	118.1968
		11	215	422.5	19	433	640.5	0.81191257	1.20099307	85.00392	124.0267
8	218	12	225	460	20	443	678	0.80737463	1.23566591	87.0726	131.2671
		13	227.5	497.5	21	445.5	715.5	0.80331237	1.29016835	87.73082	138.5075
		14	240	530	22	458	748	0.805	1.31471616	90.26965	144.8076
		15	252.5	550	23	470.5	768	0.81967448	1.33795962	92.80849	148.7569
		16	277.5	580	24	495.5	798	0.82315789	1.32569122	97.69809	154.5868
		17	290	600	25	508	818	0.83649144	1.34694882	100.2369	158.5361

4.3 Pembahasan


Pada awalnya penelitian ini dimaksudkan untuk mengetahui bagaimana visualisasi nyala api dan *flammability limit* pada *meso-scale combustor* dengan *double fuel inlet* dan *triple wire mesh*, baik *combustor* jenis 1 ataupun jenis 2 seperti ditunjukan pada Gambar 4.2. Tujuan dari penggunaan *double fuel inlet* adalah suatu upaya untuk meningkatkan laju pembangkitan energi setiap satu satuan volume, dengan terbentuknya *double flame* pada zona *combustor* yang berbeda, dengan adanya *double flame* diharapkan interaksi ke-2 *flame* tersebut dapat meningkatkan *flammability limit* ke arah kecepatan reaktan yang lebih tinggi.

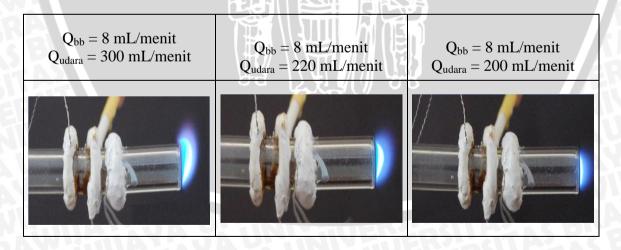
Gambar 4.2 Ilustrasi terbentuknya *double flame* pada zona yang berbeda pada *meso-scale combustor* jenis 1

Namun pada kenyataanya kondisi tersebut tidak bisa didapatkan. Pada saat nyala api primer menyala dengan reaktan yang masuk dari sisi kiri *combustor*, nyala api sekunder tidak dapat menyala dan stabil pada zona dua atau *down stream mesh* yang berbeda meskipun telah dialirkan reaktan dari *fuel inlet* sekunder. Hal ini terjadi karena untuk membentuk nyala api sekunder yang stabil pada zona dua, diperlukan kecepatan pembakaran yang sangat tinggi karena adanya hembusan gas hasil pembakaran dengan kecepatan tinggi dari api primer. Hal ini memerlukan temperatur yang sangat tinggi pula pada *wire mesh* ke-2 atau pada zona dua. Sedangkan pada kenyataannya temperatur pada *wire mesh* ke-2 tidak begitu tinggi meskipun terkena radiasi dari nyala api primer. Akan tetapi semakin besar reaktan yang dialirkan pada *fuel inlet* sekunder maka nyala api sekunder mulai terbentuk tetapi tidak pada zona yang berbeda dengan nyala api

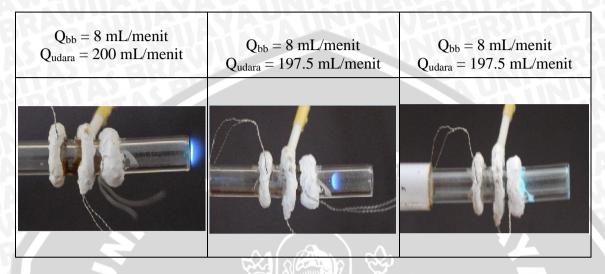

primer melainkan berada pada zona yang sama pada zona nyala api primer seperti terlihat pada Gambar 4.3.

Gambar 4.3 Posisi double flame pada zona yang sama dalam meso-scale combustor jenis 1.

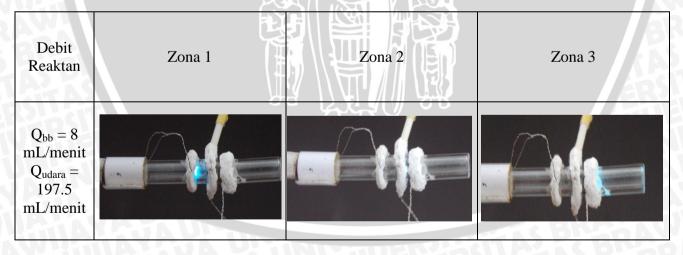
Posisi nyala api sekunder tepat berada di zona 1 dan menempel pada api primer, hal ini diakibatkan karena panas yang dihasilkan oleh api primer menjadi energi aktivasi yang cukup untuk mengaktifkan molekul bahan bakar dari reaktan sekunder, sehingga nyala api sekunder terbentuk dan menempel pada nyala api primer.


Pada *combutor* jenis 2, reaktan dan nyala api yang dikondisikan pada *fuel inlet* sekunder sama seperti perlakuan yang terjadi pada *meso-scale combustor* jenis 1, namun *combustor* pada jenis ini tidak dapat membentuk *double flame*. Hal ini terjadi akibat dari kecepatan pembakaran yang tidak terlalu tinggi pula pada zona 2. Adapun skema dari *meso-scale combustor* jenis 2 seperti yang ditunjukan pada Gambar 4.4.

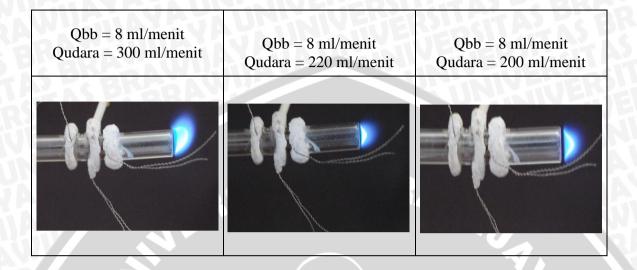
Gambar 4.4 Meso-scale combustor dengan double fuel inlet dan triple wire mesh jenis


Selama penelitian berlangsung penulis telah mengambil visualisasi nyala api yang dapat menyala stabil dalam meso scale combustor jenis 1 pada debit reaktan tertentu baik primer ataupun sekunder. Gambar gambar ini sengaja diambil guna memperkuat penjelasan mengapa nyala api sekunder tidak dapat menyala pada zona yang berbeda sekaligus untuk mengetahui urutan urutan posisi flame dari luar combustor menuju ke dalam.

Pada Gambar 4.5 sebagai visual pertama meso-scale combustor dengan double fuel inlet dan triple wire mesh dikondisikan dengan mengalirkan sejumlah reaktan pada fuel inlet primer saja.


Gambar 4.5 Posisi awal *flame* berada pada luar *combustor* dengan debit reaktan tertentu. Dari kiri ke kanan pembakaran miskin, stoikiometri, dan kaya.

Terlihat jelas bentuk api pada Gambar 4.5, pada kondisi pembakaran kaya bahan bakar bentuk api lebih besar dibandingkan stoikiometri dan miskin. Api tersebut dapat menyala saat reaktan pada fuel inlet primer disuplai dan pada mulut combustor dipercikan aliran listrik dengan ignitor elektrik. Selanjutnya flame tersebut mulai distabilkan di dalam combustor dengan merubah debit udara secara perlahan-lahan tanpa merubah debit bahan bakar.


Gambar 4.6 Posisi *flame* yang bergerak masuk ke dalam *combustor*

Pada Gambar 4.6 flame dapat menyala stabil dan menempel pada mesh tiga dengan debit reaktan tertentu di dalam zona 3. Kemudian flame juga dapat menyala pada zona 1 dan 2 dengan mengalirkan listirk antara wire mesh pertama dank ke-2 yang telah tersambung pada *mesh*. Seperti yang ditunjukan pada Gambar 4.7.

Gambar 4.7 Posisi *flame* pada setiap zona di dalam *meso scale combustor* dengan reaktan mengalir dari main fuel inlet saja.

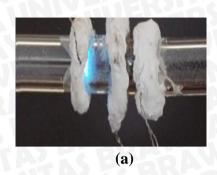
Kemudian meso-scale combustor dengan double fuel inlet dan triple wire mesh dikondisikan dengan mengalirkan sejumlah reaktan pada *fuel inlet* sekunder saja sepeti Gambar 4.8.

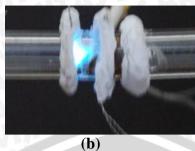
Gambar 4.8 Posisi awal *flame* berada pada luar *combustor* dengan debit reaktan tertentu. Dari kiri ke kanan pembakaran miskin, stoikiometri, dan kaya.

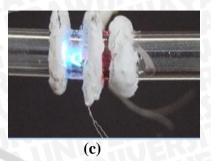
Selanjutnya flame tersebut mulai dimasukan ke dalam combustor dengan merubah debit udara secara perlahan-lahan tanpa merubah debit bahan bakar. Kemudian langkah berikutnya adalah mencoba memposisikan nyala api pada setiap zona seperti Gambar 4.9.

Debit Reaktan	Zona 1	Zona 2	Zona 3
$\begin{aligned} Q_{bb} &= 8 \\ mL/menit \\ Q_{udara} &= \\ 247.5 \\ mL/menit \end{aligned}$			

Gambar 4.9 Posisi *flame* pada setiap zona di dalam *meso scale combustor* dengan reaktan mengalir dari fuel inlet sekunder saja

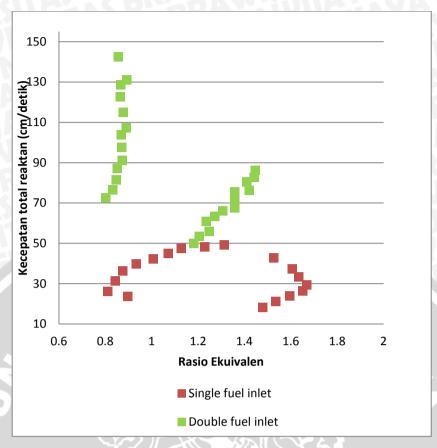

Berikutnya adalah memposisikan nyala api dalam zona 1 dengan mengalirkan reaktan dari fuel inlet primer dan kemudian disusul dengan mengalirkan reaktan dari


fuel inlet sekunder. Setelah itu mencoba manyalakan flame skunder dari luar dengan mengalirkan arus listrik di mulut combustor. Nyala api dari fuel inlet sekunder hanya dapat distabilkan pada ujung *combustor* seperti terlihat pada Gambar 4.10. Nyala api ini memiliki ukuran yang relative panjang dikarenakan adanya hembusan gas buang hasil dari nyala api primer pada zona 1, sehingga reaktan yang masuk pada *fuel inlet* sekunder tidak semua terbakar, melainkan terbuang ke luar combustor. Gas buang tersebut juga yang mengakibatkan posisi nyala api sekunder tidak bisa menyentuh mulut combustor saat nyala api distabilkan di luar *combustor*. Terakhir, dampak dari gas buang dari nyala api primer tersebut adalah nyala api sekunder yang tidak bisa masuk ke dalam zona 2 dan 3 meskipun debit reaktan diubah secara perlahan-lahan.


Fuel inlet	Fuel inlet	Fuel inlet	Fuel inlet	Fuel inlet	Fuel inlet
primer	Sekunder	Primer	Primer Sekunder		Sekunder
$\begin{array}{c} Q_{bb} = 8 \; \& \\ Q_{udara} = 220 \\ mL/menit \end{array}$	$\begin{aligned} Q_{bb} &= 7.5 \ \& \\ Q_{udara} &= 120 \\ mL/menit \end{aligned}$	$\begin{array}{c} Q_{bb}=8~\&\\ Q_{udara}=220\\ mL/menit \end{array}$	Q _{bb} = 9,5 & Q _{udara} = 266 mL/menit	$\begin{aligned} Q_{bb} &= 8 \;\& \\ Q_{udara} &= 220 \\ mL/menit \end{aligned}$	$\begin{aligned} Q_{bb} &= 6 \ \& \\ Q_{udara} &= 100 \\ mL/menit \end{aligned}$

Gambar 4.10 Posisi double flame pada meso scale combustor dengan nyala api sekunder berada di luar combustor.

Kemudian yang terakhir adalah memposisikan nyala api dalam zona 1 dengan mengalirkan reaktan dari fuel inlet primer dan membentuk nyala api primer kemudian disusul dengan mengalirkan debit reaktan dari fuel inlet sekunder. Tanpa mengalirkan arus listrik pada mulut *combustor*, debit reaktan pada *fuel inlet* sekunder diperbesar, sehingga berangsur-angsur nyala api primer mulai memanjang dan akhirnya nyala api sekunder terbentuk walaupun pada zona satu dan menempel pada nyala api primer seperti yang terlihat pada Gambar 4.11.



Gambar 4.11 Proses terbentuknya double flame pada meso scale combustor. (a) First flame, (b) First flame memanjang, (c) Double flame

Dari hasil-hasil diatas, penulis menyimpulkan untuk mengambil data flammability limit dan visualisasi nyala api dengan nyala api sekunder berada pada zona 1 bersama dengan nyala api primer.

4.3.1 Flammability limit

Gambar 4.12 menunjukkan perbandingan diagram flammability limit pada mesoscale combustor dengan double fuel inlet dan triple wire mesh dengan meso-scale combustor dengan single fuel inlet dan single wire mesh, dimana api menyala di dalam combustor pada downstream wire mesh pertama.


Gambar 4.12 flammability limit pada meso-scale combustor dengan double fuel inlet dan single fuel inlet

Dapat dilihat bahwa batas V_{total} dimana nyala api pada conbustor dengan triple wire mesh dan double fuel inlet terlihat lebih tinggi dibandingkan dengan combustor dengan single fuel inlet dan single wire mesh. Pada combustor dengan double fuel inlet api mampu menyala dalam combustor hingga Vtotal di atas 145 cm/detik, kondisi ini tentu saja dapat berubah lebih tinggi jika flow meter yang digunakan dapat membaca debit udara diatas 600 mL/menit. Hal inilah yang membatasi dalam mencari puncak V_{total} yang sebenarnya dalam diagram *flammability limit*. Sedangkan pada *combustor* dengan single fuel inlet, api dapat menyala dalam combustor hanya pada V_{total} tertinggi 50 cm/detik. Hal ini diakibatkan karena pengaruh dari wire mesh di dalam combustor. Fungsi dari wire mesh tersebut sangat sentral, dimana selain sebagai flame holder, wire mesh juga berfungsi sebagai penahan blow off pada kecepatan reaktan yang lebih tinggi dan penahan flashback pada kecepatan reaktan yang lebih rendah. Pada combustor yang menggunakan single wire mesh dan single fuel inlet satu-satunya mesh tersebut hanya memiliki fungsi sebagai flame holder sekaligus penahan flashback. Flashback merupakan suatu fenomena dimana nyala api bergerak masuk ke dalam combustor dikarenakan kecepatan pembakaran lebih besar daripada kecepatan reaktan. Sedangkan

Blow off merupakan fenomena kecepatan pembakaran lebih kecil daripada kecepatan reaktan. Sehingga saat V_{total} ditingkatkan diatas 50 cm/detik, maka api tersebut akan blow off. Dari penjelasan diatas maka dapat disimpulkan bahwa kestabilan nyala api pada combustor yang menggunakan single wire mesh dan single fuel inlet bergantung pada fungsi mesh. Sedangkan pada combustor yang menggunakan triple wire mesh dan double fuel inlet, memiliki lebih dari satu wire mesh yang memiliki fungsi yang berbeda. Wire mesh pertama pada sisi kiri zona 1 mempunyai fungsi sebagai flame holder dan penahan flashback bagi nyala api primer dan untuk wire mesh ke-2 (sisi kanan zona 1) memiliki fungsi sebagai penahan blow-off bagi dua nyala api sekaligus dalam satu zona, yaitu nyala api primer dan nyala sekunder. Sehingga saat V_{total} diperbesar diatas 50 cm/detik nyala api keduanya masih mampu nyala stabil di dalam combustor.

Meskipun memiliki batas V_{total max} yang tinggi, batas V_{total min} pada combustor yang menggunakan triple wire mesh dan double fuel inlet jauh lebih tinggi yaitu 50 cm/detik daripada combustor yang menggunakan single wire mesh dan single fuel inlet yang memiliki V_{total min} 12 cm/detik. Artinya untuk *combustor* yang menggunakan *triple* wire mesh dan double fuel inlet mengalami pergeseran daerah Vtotal min, dimana untuk bisa membuat nyala api sekunder yang stabil di dalam *combustor* diperlukan sedikitnya V_{total} yang jauh lebih tinggi dari pada 12 cm/detik. Hal ini diakibatkan karena hembusan gas buang dari nyala api primer yang mengakibatkan reaktan pada fuel inlet sekunder terhembus sebagian keluar dari zona pembakaran. Semakin besar V_{primer} maka hembusan yang dialami pada reaktan sekunder juga akan semakin besar dan hal ini akan berujung pada pergesaran daerah *flammability limit*. Dampak lain dari gas buang yang dihasilkan pada nyala primer yaitu terjadi lagi pergeseran pada daerah rasio ekuivalen (Φ) kearah yang lebih kecil atau pembakaran yang terjadi pada kondisi campuran lebih miskin. Sehingga dari penjelasan diatas kestabilan nyala api sekunder dipengaruhi oleh wire mesh sebagai penahan blow-off dan keberadaan nyala api primer sebagai pemicu terbentuknya nyala api sekunder, meskipun pada kenyataannya nyala api primer menghembuskan gas buang yang menyulitkan untuk membuat nyala api sekunder stabil.

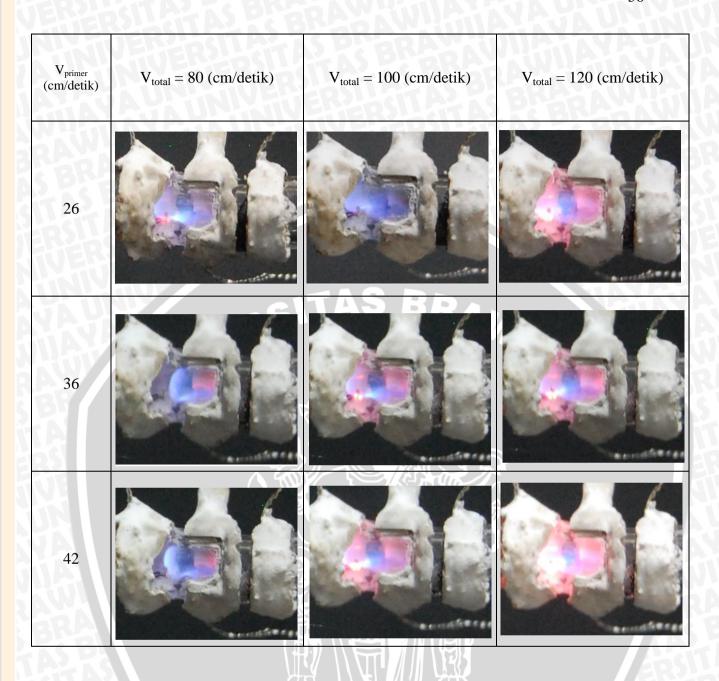
Selanjutnya akan dibahas tentang perbedaan daerah *flammability limit* untuk masing-masing *combustor* pada kondisi dengan V_{primer} 26, 36 dan 42 cm/detik. Grafik *flammability limit* untuk setiap *combustor* dengan V_{primer} 26, 36 dan 42 cm/detik ditunjukan pada Gambar 4.13.

Gambar 4.13 Flammability limit dalam meso-scale combutor dengan double fuel inlet dan triple wire mesh dan variasi V_{primer}

Pada Gambar 4.13 terlihat semakin besar V_{primer}, maka terjadi pergeseran dua daerah flammability limit dimana daerah Vtotal min yang semakin tinggi dan daerah rasio ekuivalen yang smakin sempit ke arah pembakaran pada campuran yang lebih miskin. Kecenderungan ini terjadi diakibatkan karena waktu reaktan yang masuk pada fuel inlet sekunder dalam daerah pembakaran terbatas akibat pengaruh dari hembusan gas buang dari nyala api primer. Sehingga tidak semua bahan bakar pada fuel inlet sekunder dapat terbakar sempurna. Sehingga semakin banyak debit reaktan yang disuplai dari fuel inlet sekunder, maka semakin banyak juga reaktan yang belum terbakar sempurna dan terhembus keluar dari daerah reaksi pembakaran. Sebagai contoh pada V_{primer} 26 cm/detik memiliki V_{total min} sebesar 50 cm/detik lebih kecil dibandingkan V_{primer} 36 cm/detik yaitu V_{total min} 70 cm/detik. Artinya pada saat reaktan pada fuel inlet sekunder dialirkan dengan jumlah tertentu dan V_{primer} dikondisikan pada 26 cm/detik maka sebagian kecil saja reaktan tersebut akan dihembuskan oleh gas buang pada nyala api primer, namun jika pada nyala api primer dikondisikan pada 36 cm/detik, maka hembusan yang dialami oleh reaktan dari fuel inlet sekunder akan lebih besar. Hal ini mungkin mengakibatkan sejumlah reaktan dari fuel inlet sekunder terbuang dari zona pembakaran sebelum mengalami proses pembakaran. Sehingga untuk membuat nyala api sekunder dapat menyala dan stabil di dalam combustor pada V_{primer} 36 cm/detik dibutuhkan kecepatan reaktan yang lebih tinggi pula daripada combustor pada V_{primer} 26

cm/detik. Fenomena ini juga berlangsung pada V_{primer} 42 cm/detik, dimana untuk membuat nyala api sekunder dapat menyala dan stabil di dalam combustor dibutuhkan kecepatan reaktan yang lebih tinggi daripada combustor pada V_{primer} 26 dan 36 cm/detik.

Pada Gambar 4.13 terlihat combustor dengan V_{primer} 26 cm/detik batas V_{total} berada pada 50 hingga 140 cm/detik, dengan Φ_{min} berada pada $\Phi = 0.8$ dan Φ_{max} pada $\Phi = 1.45$. Kemudian combustor dengan V_{primer} 36 cm/detik batas V_{total} berada pada 70 hingga 150 cm/detik dengan $\Phi_{min} = 0.7$ dan Φ_{max} berada pada = 1.4. Dan yang terakhir *combustor* dengan V_{primer} 42 cm/detik batas V_{total} berada pada 73 hingga 160 cm/detik dengan Φ_{min} berada pada $\Phi = 0.7$ dan Φ_{max} pada $\Phi = 1.3$. Jadi *combustor* dengan V_{primer} 26 cm/detik memiliki batas daerah flammability limit yang lebih luas daripada daerah flammability limit pada 36 dan 42 cm/detik. Hal ini diakibatkan karena waktu tinggal reaktan dari fuel inlet sekunder dalam daerah reaksi pembakaran cukup lama, meskipun gas buang dari nyala api primer menghembuskan sebagian kecil debit reaktan dari fuel inlet sekunder, sehingga jumlah reaktan yang masuk pada fuel inlet sekunder masih lebih banyak terbakar daripada combustor dengan V_{primer} 36 dan 42 cm/detik.


4.3.1 Visualisasi nyala api

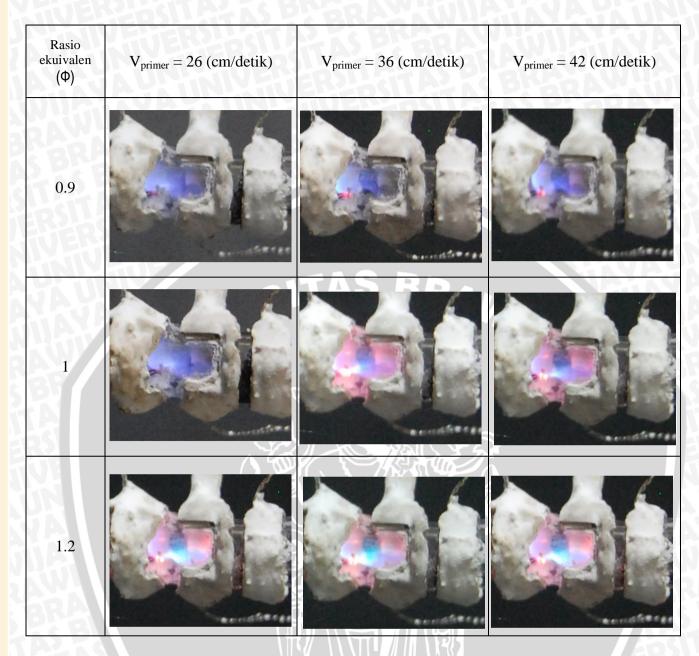
Untuk mengambil data berupa visualisasi nyala api, langkah awal adalah menentukan titik-titik pengukuran berdasarkan data dari Tabel 4.5, 4.6, dan 4.7. Dari data tersebut, diambil beberapa titik pengukuran untuk mengetahui karakteristik visualisasi nyala api dimana kesemua titik pengukuran yang diambil harus berada didalam ketiga area batas kestabilan api dari tiga kecepatan total reaktan dari fuel inlet primer yang berbeda. Kemudian ditentukan tiga titik pada rasio ekuivalen $(\phi) = 1$ dengan kecepatan total reaktan yang berbeda dan tiga titik pada kecepatan total reaktan yang sama (100 cm/detik) dengan rasio ekuivalen yang berbeda. Total pengambilan data ada lima titik. Tabel 4.8 menunjukan rincian titik pengukuran visualisasi nyala api.

Tabel 4.8 Titik pengukuran visualisasi nyala api

	Ratio	V teoritis	Pri	mer	Sek	under	WITH	Γotal
No.	teoritis	(cm/detik)	Q bb (ml/menit)	Q udara (ml/menit)	Q bb (ml/menit)	Q udara (ml/menit)	Q bb (ml/menit)	Q udara (ml/menit)
1	1	80	5	135	10	278.55	15	413.55
2	1	80	7	189	8	224.55	15	413.55
3	1	80	8	218	7	195.55	15	413.55
4	1	100	5	135	14	385.03	19	520.03
5	1	100	7	189	12	331.03	19	520.03
6	1	100	8	218	11	302.03	19	520.03
7	1	120	5	135	18	494.51	23	629.51
8	1	120	7	189	16	440.51	23	629.51
9	1	120	8	218	15	411.51	23	629.51
10	0.9	100	5	135	12	382.29	17	516.988889
11	0.9	100	7	189	10	328.29	17	516.988889
12	0.9	100	8	218	9	298.29	17	516.988889
13	1.2	100	5	135	18	389.51	23	524.591667
14	1.2	100	7	189	16	335.51	23	524.591667
15	1.2	100	8	218	15	306.51	23	524.591667

Gambar 4.14 menunjukan visualisasi nyala api didalam meso-scale combustor dengan double fuel inlet dan triple wire mesh pada V_{primer} 26, 36, dan 42 cm/detik dimulai dengan $\Phi = 1$ (stoikiometri) dengan V_{total} 80, 100 dan 120 cm/detik.

Gambar 4.14 Visualisasi nyala api dalam *meso-scale combustor* dengan *double fuel* inlet pada $\Phi = 1$.


Pada gambar 4.14 terlihat bahwa warna api untuk setiap kenaikan V_{total} dengan V_{primer} yang sama pada *meso-scale combustor* cenderung memiliki warna api yang bewarna biru. Hal ini menunjukan bahwa pembakaran terjadi pada saat kondisi stoikiometri atau pada rasio ekuivalen Φ =1 bahan bakar dapat terbakar sempurna. Warna biru juga menunjukan tidak ada proses pembentukan jelaga yang dihasilkan dalam pembakaran di dalam *meso-scale combustor*. Bertambahnya V_{total} juga mempengaruhi warna nyala api, semakin tinggi V_{total} dengan V_{primer} tetap maka warna

nyala api menjadi biru dan semakin terang diikuti dengan perubahan warna dinding combustor yang awalnya tidak bewarna menjadi semakin memerah. Hal ini dikarenakan semakin tinggi V_{total}, maka jumlah reaktan yang terbakar semakin besar pula, sehingga energi yang dihasilkan juga akan besar dan temperaturnya semakin meningkat pula. Dengan semakin besarnya energi yang dihasilkan oleh ke-2 nyala api maka wire mesh ke-2 yang berada pada zona 1 semakin banyak menyerap kalor dari ke-2 nyala api tersebut sehingga wire mesh ke-2 menjadi berwarna merah dan memancarkan radiasi ke setiap bagian kaca combustor. Selain itu warna merah tersebut juga diakibatkan oleh efek pantulan cahaya dari *mesh*. Sehingga warna dinding *combustor* menjadi kemerahan juga. Itulah alasan mengapa dengan semakin tingginya V_{total} warna dinding *combustor* menjadi merah, tetapi warna api tetap bewarna biru. Sebagai contoh Gambar 4.14 menunjukan warna api pada V_{reaktan} 100 cm/s dengan V_{primer} 36 cm/s.

Gambar 4.15 Warna nyala api dalam meso-scale combustor dengan double fuel inlet dan triple wire mesh.

Pada gambar 4.14 juga terlihat warna api untuk V_{primer} yang semakin besar pada masing-masing V_{total} juga memiliki kecenderungan warna nyala api dalam meso-scale combustor terlihat semakin terang tetapi berangsur angsur nyala api sekunder semakin menipis. Hal ini diakibatkan karena waktu tinggal reaktan pada fuel inlet sekunder semakin sebentar akibat dari pengaruh gas buang hasil dari proses pembakaran pada nyala api primer. Sehingga tidak semua reaktan yang masuk melalui fuel inlet sekunder dapat terbakar sempurna, melainkan terbuang ke luar daerah pembakaran. Selain itu pada kondisi yang sama bentuk nyala api primer semakin melebar, hal ini dikarenakan semakin banyak jumlah reaktan yang terbakar pada nyala api primer dan mengakibatkan pertambahan luas penampang dari bentuk api tersebut.

Gambar 4.16 Visualisasi nyala api dalam *meso-scale combustor* dengan $V_{total} = 100$ cm/detik

Kemudian Gambar 4.15 menunjukan visualisasi nyala api didalam *meso-scale* combustor dengan double fuel inlet pada $\Phi=0.9$, $\Phi=1$ dan $\Phi=1.2$ pada masing V_{total} sebesar 100 cm/detik. Pada Gambar 4.15 diketahui bahwa secara keseluruhan warna api hampir sama untuk $\Phi=0.9$ dan $\Phi=1$ yaitu berwarna biru dan semakin diikuti dengan perubahan warna dinding combustor yang awalnya tidak bewarna menjadi semakin memerah. Hal ini dikarenakan semakin tinggi V_{primer} , maka jumlah reaktan yang terbakar semakin besar pula, sehingga energi yang dihasilkan juga akan besar dan temperaturnya semakin meningkat pula. Dengan semakin besarnya energi yang dihasilkan oleh ke-2 nyala api maka *wire mesh* ke-2 yang berada pada zona 1 semakin

banyak menyerap kalor dari ke-2 nyala api tersebut sehingga wire mesh ke-2 menjadi berwarna merah dan memancarkan radiasi ke setiap bagian kaca combustor. Selain itu warna merah tersebut juga diakibatkan oleh efek pantulan cahaya dari mesh. Sehingga warna dinding *combustor* menjadi kemerahan juga.

Kemudian semakin tinggi Φ dengan V_{primer} tetap maka warna api yang dihasilkan akan berwarna biru dan semakin terang, kondisi ini terjadi pada $\Phi = 0.9$ dan $\Phi = 1$. Hal ini diakibatkan karena semakin banyak debit reaktan yang terbakar sehingga energi yang dihasilkan semakin besar dan warna api semakin terang. Namun pada kondisi yang terjadi pada $\Phi = 1,2$ warna api tidak lagi bewarna biru terang, melainkan berwarna biru kehijau hijauan, warna hijau tersebut mengindikasikan energi dan temperatur yang dihasilkan menurun, hal ini terjadi karena kekurangan udara (O₂) yang berperan sebagai oksidator yang mengakibatkan tidak semua bahan bakar terbakar. Pembakaran yang tidak sempurna ini akan menghasilkan C2 yang memancarkan warna hijau terang pada nyala api (Turn 2000:256).

