ANALISIS PENYERAPAN ENERGI DAN DEFORMASI CRASH **BOX DENGAN VARIASI DIAMETER DAN PANJANG PADA UJI** DROPPED WEIGHT IMPACT

SKRIPSI KONSENTRASI TEKNIK KONSTRUKSI

Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik

NAJMI YAHYA TALIB NIM. 0810620083-62

őð

Disusun oleh :

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK MALANG 2013

LEMBAR PERSETUJUAN

ANALISIS PENYERAPAN ENERGI DAN DEFORMASI CRASH BOX DENGAN VARIASI DIAMETER DAN PANJANG PADA UJI DROPPED WEIGHT IMPACT

SKRIPSI konsentrasi teknik konstruksi

Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik

Disusun oleh :

NAJMI YAHYA TALIB NIM. 0810620083-62

Telah diperiksa dan disetujui oleh :

Dosen Pembimbing I

Dosen Pembimbing II

UN L

Dr.Eng. Moch. Agus Choiron, ST.,MT. NIP. 19720817 200003 1 001 Ir. Erwin Sulistyo, MT. NIP. 19661213 199802 1 001

LEMBAR PENGESAHAN

ANALISIS PENYERAPAN ENERGI DAN DEFORMASI CRASH BOX DENGAN VARIASI DIAMETER DAN PANJANG PADA UJI DROPPED WEIGHT IMPACT

SKRIPSI KONSENTRASI TEKNIK KONSTRUKSI

Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik

Disusun oleh :

NAJMI YAHYA TALIB NIM. 0810620083-62

Skripsi ini telah diuji dan dinyatakan lulus pada tanggal 30 Januari 2013

Skripsi I

Skripsi II

Dr. Slamet Wahyudi, ST.,MT. NIP. 19720903 199702 1 001 <u>Sugiarto, ST.,MT.</u> NIP. 19690417 199512 1 001

Komprehensif

Dr. Eng. Eko Siswanto, ST.,MT. NIP. 19701017 199802 1 001

> Mengetahui, Ketua Jurusan Teknik Mesin

<u>Dr. Slamet Wahyudi, ST., MT.</u> NIP. 19720903 199702 1 001

BRAWIJAY

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat, berkah dan hidayah-Nya sehingga penulis dapat menyelesaikan Skripsi dengan judul "Analisis Penyerapan Energi Dan Deformasi Crash Box Dengan Variasi Diameter dan Panjang Pada Uji Dropped Weight Impact".

Pada kesempatan ini penulis tidak lupa mengucapkan terima kasih yang sebesarbesarnya kepada :

- 1. Bapak Dr. Slamet Wahyudi, ST.,MT. selaku Ketua Jurusan Teknik Mesin Universitas Brawijaya.
- 2. Bapak Ir. Endi Sutikno, MT. selaku Ketua Kelompok Konsentrasi Konstruksi Jurusan Teknik Mesin Universitas Brawijaya.
- 3. Bapak Dr.Eng. Moch. Agus Choiron, ST.,MT. selaku Dosen Pembimbing I yang telah memberikan arahan, bimbingan, dan saran dalam penyusunan skripsi.
- 4. Bapak Ir. Erwin Sulistyo, MT. selaku Dosen Pembimbing II yang telah memberikan masukan, bimbingan, dan saran dalam penyelesaian skripsi.
- 5. Seluruh dosen pengajar dan staff jurusan Teknik Mesin Universitas Brawijaya yang telah membantu proses perkuliahan dan administrasi penulis.
- 6. Kedua orang tua serta keluarga penulis yang telah memberikan segalanya yang terbaik dalam penyusunan skripsi ini.
- 7. Rekan-rekan mahasiswa khususnya Mesin 2008 yang senantiasa memberikan masukan dan dukungan selama penyusunan skripsi ini.
- 8. Semua pihak yang telah membantu dalam kelancaran penyelesaian skripsi ini yang tidak mungkin dapat disebutkan satu per satu.

Penulis menyadari bahwa skripsi ini masih banyak kekurangan. Oleh karena itu kritik dan saran sangat diharapkan kesempurnaan skripsi ini. Akhir kata semoga skripsi dapat memberi manfaat bagi semua pihak baik sebagai sumber informasi maupun referensi lanjutan.

Malang, Februari 2013

BRAWIJAY

Penulis

DAFTAR ISI

Halaman

КАТА	PENGANTAR	i
DAFTA	i ISI	i
DAFTA	R TABELiv	,
DAFTA	AR GAMBARv	
DAFTA	R LAMPIRANvi	i
RINGK	ASANvii	i
BAB I	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Batasan Masalah	2
1.4	Tujuan Penelitian	2
1.5	Manfaat Penelitian	3
BAB II	TINJAUAN PUSTAKA	4
2.1	Penelitian Sebelumnya	4
2.2	Collapsible Impact Energy Absorber	4
	2.2.1 Crash Box	4
	2.2.2 Jenis-jenis Crash Box	5
2.3	Material Crash Box	6
2.4	Tekuk (Buckling)	6
2.5	Tinjauan Umum Pengujian Destruktif Crash Box	9
	2.5.1 Dropped Weight Impact test	9
	2.5.2 Energi Regangan	0
	2.5.3 Beban Impak	3
2.6	Teori Tegangan dan Regangan10	6
	2.6.1 Prinsip Analisis Tegangan	6
	2.6.2 Konsep Tegangan dan Regangan	6
	2.6.3 Hubungan Tegangan dan Regangan Plastis	0
2.7	Metode Elemen Hingga2	1
	2.7.1 Sistem Koordinat	1
	2.7.2 Prosedur Perhitungan Metode Elemen Hingga	2

	2.7.3 Tipe Elemen untuk Analisis Tiga Dimensi				
2.8	Software ANSYS	28			
2.9	Hipotesis				
BAB II	II METODOLOGI PENELITIAN				
3.1	Metode Penelitian				
3.2	2 Variabel Penelitian				
3.3	Data Material dan Dimensi Spesimen				
3.4	Langkah Simulasi pada Software ANSYS				
3.5	Tempat dan Waktu Penelitian				
3.6	Rancangan Penelitian				
3.7	Verifikasi Penelitian				
3.8	Diagram Alir Pelaksanaan Penelitian				
BAB IV	V ANALISIS DAN PEMBAHASAN				
4.1	Perbandingan Hasil Simulasi dengan Eksperimen				
4.2	Pemodelan				
4.3	Data Hasil Simulasi	50			
	4.3.1 Hubungan Gaya Kontak dan Deformasi Crash Box	51			
	4.3.2 Hubungan Diameter dan Panjang Crash Box				
	terhadap Energi yang diserap	55			
	4.3.3 Hubungan Rasio (D/L) dan Penyerapan Energi pada Crash Bo	ox57			
	4.3.4 Hubungan Rasio (D/L) dengan Energi yang Diserap				
	Per Satuan Panjang (E/L)	58			
	4.3.5 Hubungan Efisiensi Perpindahan dengan Rasio (D/L)	59			
	4.3.5 Hubungan Efisiensi Gaya Tabrak dengan Rasio (D/L)	60			
	4.3.6 Perilaku Deformasi Crash Box	61			
BAB V	PENUTUP	64			
5.1.	Kesimpulan	64			
5.2.	Saran				
DAFTA	AR PUSTAKA				
LAMPI	IRAN				

DAFTAR TABEL

No.	Judul	Halamar
Tabel 3.1	Variasi diameter dan ketebalan crash box	30
Tabel 3.2	Material properties crash box	31
Tabel 3.3	Material properties impactor	32
Tabel 3.4	Tabel rencana analisa data antara perpindahan dengan gaya yang	
	dialami oleh masing-masing crash box	35
Tabel 3.5	Tabel rencana analisa data variasi alur pada crash box dengan	
	besar energi yang diserap	36
Tabel 4.1	Data perbandingan variabel dan hasil eksperimental nyata	
	dengan simulasi software.	39
Tabel 4.2	Data gaya kontak dan deformasi pada crash box dengan ukuran	
	D = 106.46 mm dan L = 105 mm	50
Tabel 4.3	Data gaya kontak dan deformasi pada crash box dengan ukuran	
	D = 75 mm dan L = 150 mm	51
Tabel 4.4	Energi yang diserap pada setiap variasi diameter dan panjang	
	crash box.	53
Tabel 4.5	Energi dan rasio (D/L) yang dihasilkan pada setiap variasi	
	diameter dan panjang crash box.	54
Tabel 4.6	Perilaku deformasi pada crash box pada setiap variasi diameter	
	dan panjang <i>crash box</i> .	62

DAFTAR GAMBAR

No.	Judul	Halaman
Gambar 2.1	Crash Box	5
Gambar 2.2	Jenis-jenis Crash Box	5
Gambar 2.3	Perbandingan diagram tegangan-regangan antara material	6
	ductile dan brittle.	
Gambar 2.4	Buckling pada struktur kolom	7
Gambar 2.5	Teori dasar buckling pada crash box	7
Gambar 2.6	Dropped weight impact machine	10
Gambar 2.7	Diagram beban-perpindahan	11
Gambar 2.8	Energi regangan elastis dan plastis	12
Gambar 2.9	Diagram beban-perpindahan elastis	12
Gambar 2.10	Beban impak pada batang prismatik	14
Gambar 2.11	Tegangan akibat gaya pada material	16
Gambar 2.12	Tegangan geser pada material	17
Gambar 2.13	Regangan akibat pembebanan	18
Gambar 2.14	Regangan geser pada elemen material	18
Gambar 2.15	Grafik hubungan tegangan dan regangan	19
Gambar 2.16	Kurva tegangan-regangan pemodelan material	20
Gambar 2.17	Hubungan sistem koordinat global dengan koordinat elemen	22
Gambar 2.18	Hubungan sistem koordinat lokal dengan koordinat natural	
	elemen	22
Gambar 2.19	Elemen <i>Tetrahedral</i>	26
Gambar 2.20	Elemen solid Heksahedron	27
Gambar 3.1	Pemodelan Crash box	32
Gambar 3.2	Pemodelan proses dropped weight impact test	34
Gambar 3.3	Crash box (Verifikasi)	36
Gambar 3.4	Diagram alir penelitian	37
Gambar 4.1	Perbandingan crash box (a) hasil eksperimen	
	dan crash box (b) hasil simulasi software.	38
Gambar 4.2	Pemodelan proses dropped weight impact test	40
Gambar 4.3	Perbandingan antara kondisi awal crash box dan kondisi	

	akhir setelah terdeformasi	49
Gambar 4.4 rafik hubungan deformasi dengan gaya kontak <i>crash box</i>		52
Gambar 4.5	(a) Grafik hubungan diameter <i>crash box</i> dan energi yang	
	diserap crash box.	55
	(b) Grafik hubungan panjang crash box dan energi yang	
	diserap crash box.	
Gambar 4.6	Grafik hubungan rasio (D/L) dengan energi yang diserap	
	crash box	57
Gambar 4.7	Grafik hubungan rasio (E/L) dengan rasio (D/L)	58
Gambar 4.8	Grafik hubungan rasio (δ /L) dengan rasio (D/L)	59
Gambar 4.9	Grafik hubungan efisiensi gaya tabrak dengan rasio (D/L)	60
Gambar 4.10	Diagram prosentase bentuk deformasi crash box	63

35

DAFTAR LAMPIRAN

INERSITAS BRAWING

No.	Judul
Lampiran 1	Data Gaya dan Deformasi
Lampiran 2	Data Energi per Satuan Panjang
Lampiran 3	Data Efisiensi Perpindahan
Lampiran 4	Data Efisiensi Gaya Tabrak

RINGKASAN

Najmi Yahya Talib, Jurusan Teknik Mesin, Fakultas Teknik Universitas Brawijaya, Januari 2013, Analisis Penyerapan Energi Dan Deformasi Crash Box Dengan Variasi Diameter dan Panjang Pada Uji Dropped Weight Impact, Dosen Pembimbing: Moch. Agus Choiron dan Erwin Sulistyo.

Perkembangan teknologi di bidang otomotif menuntut sistem keamanan yang lebih baik pada kendaraan. Seiring dengan pesatnya perkembangan proses manufaktur menghasilkan material dengan kualitas yang lebih baik namun dengan biaya perbaikan kerusakan yang semakin tinggi. Oleh karena itu dimulailah penelitian mengenai struktur tambahan pada kendaraan untuk meminimalisasi kerusakan akibat kecelakaan yaitu *crash box* sebagai penyerap energi.

Pada penelitian ini dilakukan proses simulasi dengan bantuan *software* elemen hingga *ANSYS Workbench 13* dengan tipe pengujian *dropped weight impact*, variasi yang digunakan dalam penelitian ini adalah variasi diameter dan panjang dengan rentang $50.53 \text{mm} \le D \le 111.7 \text{mm}$ dan 100 mm $\le L \le 225 \text{ mm}$, material yang digunakan adalah AISI 1340 *Steel, annealed at* 910°C.

Dari penelitian ini diperoleh *crash box* yang memiliki penyerapan energi, efisiensi perindahan, efisiensi gaya tabrak, dan deformasi yang baik adalah *crash box* dengan ukuran (D) dan (L) masing-masing 97.34 mm dan 115 mm dengan penyerapan energi sebesar 6177 J, efisiensi perpindahan sebesar 76%, efisiensi gaya tabrak sebesar 55%, dan mode deformasi memiliki pola *Concertina*.

Kata kunci : Crash Box, Energi, Perilaku Deformasi, Weight Dropped Impact Test, Diameter dan panjang

PENDAHULUAN

1.1 Latar Belakang

Seiring perkembangan teknologi, perkembangan sistem keamanan pada alat transportasi sangat diperlukan dikarenakan semakin meningkatnya kebutuhan akan kendaraan untuk menunjang mobilitas masyarakat. Berbicara mengenai alat transportasi maka tidak lepas dengan kemungkinan kecelakaan lalu lintas yang akan terjadi, tentunya hal ini merupakan sesuatu yang tidak diharapkan sehingga para produsen alat transportasi selalu berpikir untuk memberikan solusi terhadap hal tersebut dengan cara menambahkan beberapa sistem keamanan pada produknya agar dapat meminimalisasi efek yang ditimbulkan akibat kecelakaan.

Dalam perkembangannya banyak sekali sistem keamanan yang diterapkan oleh para produsen kendaraan bermotor khususnya kendaraan roda empat, salah satunya adalah *crash box*, perangkat ini merupakan sistem keamanan pasif (*passive safety system*) dan merupakan salah satu bagian dari *crashworty system* yang digunakan untuk mengurangi tingkat keparahaan kecelakaan yang dialami penumpang atau bagian kendaraan yang vital seperti mesin akibat *frontal crash*.

Crash box yang diletakkan diantara bumper dan rangka pada bagian depan kendaraan merupakan bagian yang sangat penting sebagai penyerap energi impak dalam hal ini tabrakan depan *frontal crash. Crash box* ini diharapkan mengalami deformasi dengan menyerap energi impak sebelum mengenai bagian kendaraan yang lain seperti *frame* dan kabin sehingga deformasi yang terjadi dapat diminimalisasi.

Velmurugan *and* Muralikannan (2009) meneliti karakteristik penyerapan energi pada *crash box* dengan melakukan pengujian statik dan dinamik dari beberapa macam bentuk penampang diantaranya lingkaran (*circle*), persegi (*square*), dan persegi panjang (*rectangular*) masing-masing *crash box* memiliki keliling, ketebalan, dan tinggi yang sama, hasil penelitian tersebut menunjukkan penyerapan energi spesifik pada penampang lingkaran (*circle*) lebih tinggi dari penampang persegi (*square*) dan persegi panjang (*rectangular*) sedangkan penampang persegi (*square*) lebih baik dari persegi panjang (*rectangular*).

Dari latar belakang inilah perlu dilakukan penelitian lebih lanjut mengenai besar pengaruh variasi diameter dan panjang *crash box* berpenampang lingkaran (*circle*) agar didapatkan penyerapan energi dan perilaku deformasi yang baik, hal ini dilakukan untuk mendukung hasil penelitian sebelumnya.

1.2 Rumusan Masalah

Berdasarkan latar belakang masalah di atas, maka rumusan masalah pada penelitian ini adalah :

Seberapa besar pengaruh variasi diameter dan panjang *crash box* terhadap kemampuanya dalam menyerap energi impak dan perilaku deformasi yang terjadi pada pengujian (*Dropped weight impact*).

1.3 Batasan Masalah

Agar permasalahan tidak terlalu luas, maka perlu adanya batasan masalah sebagai berikut :

- 1. Simulasi uji bumper dilakukan dengan software ANSYS Workbench 13.
- 2. Material *crash box* yang digunakan AISI 1340 *Steel, annealed at 910°C* dan diasumsikan isotropis.
- 3. Penelitian difokuskan pada energi dan deformasi pada crash box.
- 4. *Impactor* dianggap sebagai *rigid body* dan *crash box* dianggap sebagai *deformable body*.
- 5. Ukuran diameter (*D*), panjang (*L*), dan tebal (*t*) *crash box* dibatasi dengan batasan sebagai berikut berdasarkan penelitian sebelumnya:
 - 50 mm $\leq D \leq 150$ mm
 - $100 \text{ mm} \le L \le 300 \text{ mm}$
 - $1 \text{ mm} \le t \le 3 \text{ mm}$

1.4 Tujuan Penelitian

Tujuan yang ingin dicapai dalam penelitian ini adalah untuk mengetahui seberapa besar pengaruh variasi diameter dan panjang *crash box* agar memiliki kemampuan menyerap energi dan perilaku deformasi yang baik pada pengujian (*Dropped weight impact*).

1.5 Manfaat Penelitian

JVERS

Manfaat yang diharapkan dari penelitian ini antara lain adalah :

- 1. Dapat memberikan prediksi diameter dan panjang *crash box* agar memiliki kemampuan penyerapan energi dan perilaku deformasi yang baik pada pengujian (*Dropped weight impact*).
- 2. Sebagai desain awal untuk mencegah terjadinya *trial and eror* apabila akan dilakukan eksperimental nyata.

AS

BRAWIUAL

BAB II

TINJAUAN PUSTAKA

2.1 Penelitian Sebelumnya

Velmurugan dan Muralikannan (2009) meneliti karakteristik penyerapan energi pada *crash box* dengan melakukan pengujian statik dan dinamik dari beberapa macam bentuk penampang di antaranya lingkaran (*circle*), persegi (*square*), dan persegi panjang (*rectangular*) masing-masing *crash box* memiliki keliling, ketebalan, dan tinggi yang sama, hasil penelitian tersebut menunjukkan penyerapan energi spesifik pada penampang lingkaran (*circle*) lebih tinggi dari penampang persegi (*square*) dan persegi panjang (*rectangular*) sedangkan penampang persegi (*square*) lebih baik dari persegi panjang (*rectangular*).

Berdasarkan penelitian di atas perlu dilakukan penelitian lebih lanjut mengenai bagaimana pengaruh variasi diameter dan panjang *crash box* berpenampang lingkaran (*circle*) agar didapatkan ukuran yang baik dalam penyerapan energi dan perilaku deformasinya, hal ini dilakukan untuk mendukung hasil penelitian sebelumnya

2.2 Collapsible Impact Energy Absorber 2.2.1 Crash Box

Crash box adalah salah satu jenis penyerap energi impak (*Impact energy absorber*) yang diletakkan diujung rangka depan kendaraan yang berfungsi sebagai penyerap energi impak akibat tabrakan pada bagian depan, pada saat terjadi tabrakan depan (*frontal crash*) *crash box* diharapkan dapat terdeformasi dengan menyerap energi tabrakan sebelum mengenai bagian yang dilindungi sehingga kerusakan pada rangka kabin utama dapat diminimalisasi dan penumpang dapat selamat. Energi yang diterima oleh *crash box* saat terjadi tabrakan diserap melalui deformasi plastis pada *crash box* itu sendiri, *crash box* menyerap energi impak dan mengurangi gaya maksimalnya diamana seluruh energi tabrakan didistribusikan secara merata dan besar gayanya tidak melebihi nilai yang diizinkan agar struktur yang lain terlindung dari kerusakan yang parah. Agar *crash box* dapat memproteksi struktur dengan baik maka desain *crash box* harus mengikuti kriteria sebagai berikut :

- Energi impak akibat tabrakan sebanyak mungkin harus dapat didistribusikan menjadi deformasi *irreversible* atau energi tabraknya diubah menjadi deformasi plastis.
- Crash box adalah peralatan sekali pakai sehingga harus mudah diproduksi dan biayanya rendah serta mudah pemasangan dan pelepasannya.
- Crash box harus cukup panjang agar jalur deformasi untuk penyerapan energi tabrakan semakin panjang pula, tetapi tidak mengambil terlalu banyak ruang pada bagian depan kendaraan.

Gambar 2.1 *Crash box* pada struktur rangka kendaraan Sumber : Liu Yanjie (2008)

2.2.2 Jenis-jenis Crash box

Crash box sebagai system keamanan pasif pada kendaraan memiliki beragam jenis diantaranya adalah tabung berpenampang lingkaran(*circular tubes*), tabung berpenampang persegi (*square tubes*), *corrugated tubes, multicorner columns, frusta, struts ,honeycomb cells, sandwich plates* dan bentuk-bentuk khusus lain yang sesuai dengan kegunaannya sebagai penyerap energi impak akibat tabrakan depan. Contoh jenis *crash box* dapat dilihat pada (Gambar 2.2).

Gambar 2.2 Jenis-jenis *Crash box* Sumber : Jiayao Ma and Zhong You (2008)

2.3 Material Crash box

Bahan atau material yang memiliki performa baik dalam menyerap beban kejut (*Impact*) merupakan material yang ideal untuk *crash box* karena fungsi *crash box* adalah untuk menyerap energi impak yang diakibatkan karena tabrakan pada bagian depan kendaraan, material yang paling sering digunakan pada *crash box* adalah Aluminium, *mild steel* dan baja yang memiliki kandungan karbon (C) dari rendah sampai menengah, dimana kandungan karbon (C) dari masing-masing jenis baja tersebut sebesar (0.05–0.15%) (C) untuk baja karbon rendah kemudian (0.16–0.29%) (C) untuk *mild steel* dan (0.30–0.59%) (C) untuk baja karbon menengah, karena material tersebut memiliki sifat yang relatif lunak (*ductile*), material yang lunak (*ductile*) digunakan pada *crash box* karena material ini memiliki deformasi plastis dan penyerapan energi yang besar atau memiliki ketangguhan (*Toughness*) yang besar sebelum terjadi fraktur.

Gambar 2.3 Perbandingan diagram tegangan-regangan antara material *ductile* dan *brittle*.
Sumber : Kalpakjian (2001:2)

2.4 Tekuk (Buckling)

Buckling merupakan suatu jenis dari kegagalan struktur yang terjadi pada struktur kolom atau struktur berbentuk tiang, hal ini terjadi akibat pembebanan secara aksial pada struktur tersebut, jika suatu tiang yang tipis diberi tekanan maka tiang tersebut akan membengkok dan terdefleksi secara lateral sehingga dapat dikatakan struktur tersebut mengalami *buckling*. Dengan bertambahnya beban aksial pada struktur kolom maka defleksi lateral juga akan bertambah dan pada akhirnya kolom akan benarbenar terdeformasi plastis. Ilustrasi *buckling* dapat dilihat pada (Gambar 2.4).

Gambar 2.4 *Buckling* pada struktur kolom Sumber :.Beer (2006: 635)

Crash box merupakan salah satu jenis komponen yang berfungsi untuk menyerap energi kinetik akibat tabrakan dimana energi tersebut diubah kebentuk lain yaitu deformasi plastis pada struktur dengan bentuk tekukan –tekukan yang disebut *buckling*, sehingga dengan adanya *buckling* pada *crash box* tersebut energi kinetik akibat tabrakan yang diterima oleh kendaraan tidak langsung tersalur ke rangka utama yang akan menyebabkan kerusakan parah dan cidera pada penumpang.

Gambar 2.5 Teori dasar *buckling* pada *crash box* Sumber : Gere (2003 : 765)

Perilaku struktur kolom yang ideal ketika diberi beban secara aksial ada tiga yaitu :

- Jika $P < P_{cr}$, maka struktur kolom dalam keadaan stabil dan setimbang dengan posisi tegak lurus.
- Jika $P = P_{cr}$, maka struktur kolom berada dalam kondisi netral ekuilibrium baik dalam posisi tegak atau sedikit membengkok.

BRAWIJAYA

– Jika $P > P_{cr}$, maka struktur kolom berada dalam kondisi ekulibrium yang tidak stabil pada keadaan tegak dan karena itu terjadi *buckling*.

$$P_{cr} = \frac{\pi^2 EI}{4L^2} \tag{2-1}$$

Dengan :

 P_{cr} = Beban kritis (N)

- E = Modulus Elastisitas (Pa)
- I =Momen inersia penampang (m⁴)
- L = Panjang kolom (m)

Momen inersia penampang yang digunakan adalah momen inersia penampang lingkaran yang ditunjukkan oleh rumus (2-2) :

$$I = \frac{\pi D^4}{64}$$

(2-2)

Dengan :

- D = Diameter penampang kolom (m)
- I = Momen inersia penampang (m⁴)

Pada rumus (2-2) dapat diketahui bahwa besar diameter kolom (*D*) berbanding lurus dengan besar momen inersia luas penampang (*I*), sehingga dapat disimpulkan jika luas penampang semakin besar maka momen inersia penampang juga semakin besar hal ini disebabkan karena besarnya diameter berbanding lurus dengan besar luas penampang.

Bentuk dan jumlah tekukan pada *buckling* berdsasarkan pada persaamaan tekuk :

$$\cos kL = 0 \tag{2-3}$$

Dengan persamaan kurva defleksi pada kolom yang tertekuk :

$$v = \delta(1 - \cos k x) \tag{2-4}$$

Persamaan (2-2) dapat dipenuhi apabila :

$$kL = \frac{n\pi}{2} \tag{2-5}$$

dengan nilai $n = 1, 3, 5, \dots$

Sehingga rumus yang sesuai untuk beban kritis :

$$P_{cr} = \frac{n^2 \pi^2 EI}{4L^2}$$
(2-6)

dengan nilai $n = 1, 3, 5, \dots$

Selain itu diperoleh rumus kurva defleksi bentuk ragam tekukan :

$$v = \delta \left(1 - \cos \frac{n\pi x}{2L} \right)$$
dengan nilai n = 1, 3, 5

2.5 Tinjauan Umum Pengujian Destruktif Crash Box

2.5.1 Dropped Weight Impact Test

Dropped weight impact test merupakan suatu pengujian destruktif yang digunakan untuk menguji kekuatan crash box, prosedur pengujiannya dengan cara spesimen crash box diletakkan di dasar mesin uji dengan tumpuan baja (steel base) sedangkan impactor dengan berat total 103 kg akan dijatuhkan dari ketinggian 3 meter dengan kecepatan ± 7,67 m/s, pengujian ini memanfaatkan grafitasi bumi untuk menghasilkan kecepatan impak (impact velocity) pada impactor agar dapat menumbuk crash box, energi kinetik Impactor akan diserap oleh crash box melalui deformasi plastis yang terjadi pada permukaan dindingnya hal ini akan mengurangi kecepatanya sampai Impactor berhenti. Peralatan Dropped weight impact test dapat dilihat pada (Gambar 2.6).

(2-7)

Gambar 2.6 *Dropped weight impact machine* Sumber : Gunawan (2010)

2.5.2 Energi Regangan

Tumbukan dua buah benda akan menimbulkan konversi energi dari energi kinetik menjadi energi regangan (*strain energy*) pada material dengan mengabaikan perubahan energi ke bentuk lain. Energi regangan merupakan konsep dasar dalam mekanika terapan yang banyak digunakan untuk menentukan respon struktur terhadap beban statik dan dinamik.

Pada kondisi statik tanpa adanya efek dinamik dan inersia, pembebanan diterapkan secara perlahan-lahan sehingga beban bertambah dari nol ke harga maksimum. Pembebanan akan menyebabkan material mengalami pertambahan panjang (perpindahan akibat deformasi) hingga mencapai pertambahan panjang maksimum sesuai besar pembebanan. Fenomena ini umumnya disajikan dalam bentuk diagram beban-perpindahan (*load-displacement diagram*) seperti pada (Gambar 2.7).

Gambar 2.7 Diagram beban-perpindahan Sumber : Gere (2004:116)

Berdasarkan tinjauan geometrik, usaha yang dilakukan oleh beban dalam rentang nilai P dan δ dinyatakan sebagai luas daerah dibawah kurva beban-perpindahan, sehingga dapat dirumuskan usaha total yang dilakukan oleh beban :

$$U = W = \int_0^{\delta} P_1 \, d\delta_1 \tag{2-8}$$

Dengan :

$$U$$
 =Energi regangan (J)

$$W =$$
Usaha (J)

$$P = \text{Beban}(N)$$

 δ = Perpindahan (m)

Energi regangan dibagi menjadi dua yakni energi regangan elastis dan energy regangan inelastis (Gambar 2.8). Saat pembebanan dihilangkan perlahanlahan material akan kembali kebentuk semula. Namun material tidak akan kembali ke bentuk semula bila batas elastic terlampaui. Hanya sebagian dari energi regangan yang dipulihkan bila pembebanan melewati batas elastic. Selama pembebanan dihilangkan, maka diagram akan berubah menurut garis BD. Energi regangan inelastis (*OABDO*) merupakan energi yang hilang dalam proses untuk mengubah bentuk secara permanen.

Gambar 2.8 Energi regangan elastis dan plastis Sumber : Gere (2004:117)

Pada batas elastis, diagram beban – perpindahan mengikuti garis linear (Gambar 2.9). sehingga besar energi regangan yang tersimpan adalah sebesar luas daerah segitiga yang dibentuk oleh garis linear A sejauh sumbu (δ). Besar energi regangan yang tersimpan sama dengan usaha yang dilakukan oleh beban.

Gambar 2.9 Diagram beban-perpindahan elastis Sumber : Gere (2004 : 118)

Sehingga rumus energi regangan dalam kondisi elastic dapat ditulis :

$$U = W = \frac{P\delta}{2} \tag{2-9}$$

Hubungan antara *E*, σ , dan ε ditunjukkan dengan rumus:

$$E = \frac{\sigma}{\varepsilon} \tag{2-10}$$

Rumus hubungan antara *E*, σ , dan ε dapat diuraikan menjadi :

$$E = \frac{PL}{A\delta} \tag{2-11}$$

Dimana dapat diperoleh rumus beban yang diuraikan menjadi :

$$P = \frac{EA\delta}{L} \tag{2-12}$$

Dan persamaan energi regangan dapat diperoleh melalui subtitusi rumus (2-22) ke rumus (2-19) sehingga menjadi :

$$U = \frac{EA\delta^2}{2L}$$
(2-13)

Dengan :

- P = Beban(N)
- L = Panjang material (m)
- E = Modulus elastisitas (Pa)
- A = Luas penampang (m²)
- ε = Regangan
- σ = Tegangan (Pa)

2.5.3 Beban Impak

Beban dibagi menjadi dua yaitu beban static dan beban dinamik, beban statik diberikan secara perlahan-lahan, bertahap dari nol menuju nilai maksimalnya kemudian tetap konstan, sedangkan beban dinamik dibebankan/ diberikan secara tiba-tiba hingga menyebabkan getaran pada struktur atau berubah besarnya terhadap waktu, salah satu contoh dari beban dinamik adalah beban impak yaitu beban yang diberikan dan dihilangkan secara tiba-tiba, hal ini terjadi ketika dua benda saling bertumbukan atau ketika sebuah benda dijatuhkan dari ketinggian sehingga menimpa benda atau struktur lain. Ilustrasi dari beban impak dapat dilihat pada (Gambar 2.10).

Gambar 2.10 Beban impak pada batang prismatik Sumber : Gere (2003:97)

Pada (Gambar 2.10) dapat dilihat benda dengan massa M menumbuk batang AB pada bagian B dari jarak ketinggian h. Batang AB mempunyai panjang L, luas penampang A dan modulus elastisitas E, Hasil tumbukan berupa perpanjangan batang sebesar δ . Asumsi yang diperlukan adalah energi kinetik massa seluruhnya diubah menjadi energi regangan batang. Dengan menyamakan energy potensial yang hilang saat massa M jatuh dengan energi regangan yang timbul pada batang diperoleh persamaan.

$$Energi \ Potensial \ M = Energi \ regangan \ AB$$
(2-14)

$$P(h+\delta_{maks}) = \frac{EA\delta_{maks}^2}{2L}$$
(2-15)

Persamaan dapat dipecah untuk mencari akar positif menjadi :

1

$$\delta_{maks} = \frac{PL}{EA} + \left[\left(\frac{PL}{EA} \right)^2 + 2h \left(\frac{PL}{EA} \right) \right]^{\frac{1}{2}}$$
(2-16)

Subtitusi nilai $\frac{PL}{EA} = \delta_{st}$ diperoleh persamaan yang lebih sederhana :

$$\delta_{maks} = \delta_{st} + \left[\delta_{st}^2 + 2h\delta_{st}\right]^{\frac{1}{2}}$$
(2-17)

 δ_{st} adalah perpapanjangan batang akibat berat benda yang jatuh pada kondisi pembebanan statik. Dengan nilai h yang jauh lebih besar dibandingkan perpanjangan statik, kedua suku pertama sisi kanan dapat dihilangkan menjadi:

$$\delta_{st} = \sqrt{2h\delta_{st}} \tag{2-18}$$

Dengan mensubtitusikan $M = \frac{P}{g} \operatorname{dan} v = \sqrt{2gh}$ ke dalam persamaan diatas diperoleh

$$\delta_{st} = \sqrt{\frac{Mv^2L}{EA}} \tag{2-19}$$

Analogi yang sama berlaku untuk memperoleh tegangan maksimum berdasarkan persamaan :

$$\delta = \frac{PL}{EA} = \frac{\sigma L}{E} \tag{2-20}$$

Sehingga keseluruhan persamaan menjadi :

$$\sigma_{maks} = \frac{E\delta_{maks}}{L}$$
(2-21)

$$\sigma_{maks} = \frac{P}{A} + \left[\left(\frac{P}{A} \right)^2 + \frac{2PhE}{AL} \right]^{\frac{1}{2}}$$
(2-22)

$$\sigma_{maks} = \sigma_{st} + \left[\sigma_{st}^2 + \frac{2hE}{L} \delta_{st}\right]^{\frac{1}{2}}$$
(2-23)

$$\sigma_{maks} = \sqrt{\frac{2hE\sigma_{st}}{EA}} = \sqrt{\frac{Mv^2E}{AL}}$$
(2-24)

Dengan :

- P = Berat beban yang dijatuhkan (N)
- h = ketinggian dimana beban dijatuhkan (m)
- δ_{max} = Perpindahan maksimal (m)

 δ_{st} = Perpanjangan statis (m)

 $\sigma_{\rm max}$ = Tegangan maksimal (Pa)

 $\sigma_{\rm st}$ = Tegangan statis (Pa)

2.6.1 Prinsip Analisis Tegangan

Prinsip analisis tegangan selalu berhubungan dengan perilaku benda dalam kondisi mengalami pembebanan atau disebut juga mekanika bahan. Tujuan utama dari analisis tegangan adalah untuk menentukan tegangan dan regangan internal material, mengetahui deformasi dan defleksi yang terjadi serta untuk memperoleh solusi dari permasalahan dinamika dari struktur. Beberapa prinsip dari analisis tegangan antara lain :

• Kesetimbangan gaya dan momen

Persamaan dasar dalam permasalahan statika berlaku dalam analisis tegangan yaitu :

$$\sum F = 0; \quad \sum M = 0 \tag{2-25}$$

- Kompatibilitas perpindahan (*strain-displacement relation*)
- Bagian yang mengalami perpindahan dalam suatu struktur kontinyu akibat deformasi mempunyai hubungan antara satu bagian dengan bagian lainnya.
- Hubungan konstitusif (*stress-strain-displacement*)

Terdapat hubugan yang erat antara tegangan, regangan dan perpindahan. Dimana perlu memperhitungkan kondisi batas yaitu gaya dan perpindahan pada batas dari komponen.

2.6.2 Konsep Tegangan dan Regangan

Tegangan didefinisikan sebagai gaya per satuan luas permukaan dimana gaya bekerja. Secara umum tegangan dibagi menjadi dua yaitu tegangan normal dan tegangan geser. Tegangan normal adalah tegangan yang disebabkan oleh gaya yang bekerja secara tegak lurus luas permukaan benda (Gambar 2.11).

Gambar 2.11 Tegangan akibat gaya pada material Sumber : Beer (2006:5)

$$\sigma = \frac{F}{A} \tag{2-26}$$

Dengan :

 σ = Tegangan normal (N/m²)

F = Gaya normal (N)

A = Luas permukaan dimaan gaya bekerja (m^2)

Sedangkan tegangan geser adalah tegangan yang disebabkan oleh gaya geser yang bekerja sejajar dengan luas permukaan benda. Tegangan geser dapat diilustrasikan seperti pada (Gambar 2.12).

Gambar 2.12 Tegangan geser pada material Sumber : Beer (2006:10)

$$\tau = \frac{F_s}{A}$$

(2-27)

Dengan :

- τ = Tegangan geser (N/m²)
- $F_s = Gaya \text{ geser } (N)$
- A = Luas permukaan benda dimana gaya bekerja (m^2)

Bila suatu benda diberi gaya maka akan terjadi tegangan pada elemen-elemen benda tersebut. Tegangan yang terjadi akan menimbulkan regangan. Regangan didefinisikan sebagai perbandingan antara perubahan panjang dengan panjang awal suatu benda.

Gambar 2.13 Regangan akibat pembebanan Sumber : Beer (2006:61)

Regangan dibagi menjadi dua, yaitu regangan normal dan regangan geser.

$$c = \frac{\delta}{L_0}$$

(2-28)

Dengan :

 ϵ = Regangan normal δ = Perubahan panjang (m) L_0 = Panjang awal (m)

Sedangkan regangan geser adalah perubahan sudut antara dua permukaan tegak lurus dari elemen diferensial benda.

 S_0

Gambar 2.14 Regangan geser pada elemen material Sumber : Gere (2004: 32)

Dengan :

- γ = Regangan geser
- S_S = Perubahan sudut (°)
- $S_0 =$ Sudut awal (°)

BRAWIJAYA

Rasio antara tegangan normal dan regangan normal disebut Modulus Elastisitas atau Modulus Young. Modulus ini berlaku pada garis lurus sebelum batas proporsional atau daerah elastis material. Rasio antara tegangan geser dengan regangan geser disebut Modulus Geser atau Modulus Kekakuan. Hubungan antara tegangan dan regangan ditampilkan dalam kurva tegangan dan regangan seperti pada (Gambar 2.15).

Gambar 2.15 Grafik hubungan tegangan dan regangan Sumber : Gere (2004 : 15)

Sehingga dapat ditulis rumusan untuk Modulus Elastisitas dan Modulus Kekakuan :

 $E = \frac{\sigma}{\varepsilon}$

Dengan :

- E = Modulus Elastisitas (N/m²)
- $\sigma = \text{Tegangan} (\text{N/m}^2)$
- $\epsilon = \text{Regangan}$

$$G = \frac{\tau}{\gamma} \tag{2-31}$$

Dengan :

- $G = Modulus geser (N/m^2)$
- τ = Tegangan geser (N/m²)
- γ = Regangan geser

(2-30)

BRAWIJAYA

Material yang mengalami pembebanan secara aksial akan mengalami regangan searah maupun tegak lurus arah pembebanan. Konstanta yang menyatakan hubungan regangan tegak lurus arah pembebanan (lateral) ini dengan regangan aksial disebut rasio Poisson (Poisson's ratio).

$$\nu = -\frac{regangan \ lateral}{regangan \ aksial}$$
(2-32)

v = Poisson's Ratio

Sehingga dapat diperoleh hubungan antara Modulus Elastisitas, Modulus Kekakuan, dan Poisson's Ratio :

$$=\frac{E}{2(1+\nu)}$$

2.6.3 Hubungan Tegangan dan Regangan Plastis

G

Material dalam kondisi plastis mengalami deformasi yang terjadi secara permanen (*irreversible*) dan hukum Hooke tidak berlaku pada area ini. Salah satu karakteristik dari deformasi plastis adalah logam sebenarnya bersifat tidak mampu tekan (*incompressible*) sehingga pada deformasi plastis dapat diasumsikan volum material adalah konstan.

Untuk memperoleh solusi dari permasalahan deformasi maka diperlukan idealisasi hubungan tegangan dan regangan. Idealisasi dari permasalahan plastisitas dapat dijelaskan dalam (Gambar 2.16) berikut.

Gambar 2.16 Kurva tegangan-regangan pemodelan material Sumber : Chung (1988 : 48)

(2-33)

a. Rigid perfectly plastic

Permodelan dimana material tidak mengalami deformasi elastis terlebih dahulu melainkan langsung mengalami deformasi plastis saat diberi pembebanan sampai batas tertentu. Deformasi akan terus terjadi jika pembebanan terus dilakukan walaupun besar pembebanan tidak ditambahkan.

b. Rigid linear strain hardening

Material tidak mengalami deformasi elastis sehingga hanya mengalami deformasi plastis. Deformasi plastis akan terus bertambah seiring dengan penambahan pembebanan secara linier.

c. Elastic perfectly plastic.

Permodelan dimana material mengalami deformasi elastis dilanjutkan dengan deformasi plastis. Deformasi plastis yang terjadi tidak dipengaruhi oleh penambahan pembebanan.

d. Elastic linear strain hardening

Permodelan dimana material mengalami deformasi elastis dilanjutkan dengan deformasi plastis. Penambahan pembebanan akan menimbulkan peningkatan deformasi pada material.

2.7 Metode Elemen Hingga

2.7.1 Sistem Koordinat

Sistem koordinat dalam analisis dengan metode elemen hingga dibagi menjadi tiga macam, yaitu:

- a. Sistem koordinat global adalah kerangka dari acuan untuk bagian keseluruhan. Semua titik diletakkan pada penggunaan jarak sistem koordinat global, hanya ada satu sistem global dalam sebuah analisa khusus seperti pada (Gambar 2.17).
- b. Sistem koordinat lokal adalah pendekatan terhadap elemen. Orientasinya relatif terhadap elemen yang tidak mempedulikan perubahan dari

orientasi relatif elemen ke sistem global. Dapat dijelaskan seperti pada (Gambar 2.17).

c.

Gambar 2.17 Hubungan sistem koordinat global dengan koordinat elemen. Sumber : Moaveni (1999 : 131)

 d. Sistem koordinat alamiah (natural). Sistem ini terdiri dari koordinat dimensi yang letaknya ditandai pada elemen tanpa memperdulikan ukuran atau bentuk elemennya seperti pada (Gambar 2.18).

Gambar 2.18 Hubungan sistem koordinat lokal dengan koordinat natural elemen. Sumber : Moaveni (1999 : 132)

2.7.2 Prosedur Perhitungan Metode Elemen Hingga

Metode elemen hingga merupakan suatu prosedur numerik dengan konsep dasar adalah pembagian (diskretisasi) suatu kontinum menjadi elemen-elemen kecil yang berhingga dan memiliki bentuk geometri yang lebih sederhana dari kontinumnya yang disebut elemen hingga. Analisa metode elemen hingga dilakukan untuk mendapatkan suatu nilai pendekatan (bukan eksak) berdasarkan asumsi perpindahan atau asumsi tegangan atau dapat juga berdasarkan kombinasi keduanya.

1. Diskretisasi dan pemilihan elemen

Diskretisasi adalah proses membagi suatu struktur menjadi elemenelemen kecil yang berhingga dan memiliki geometri yang lebih sederhana. Elemen-elemen ini berhubungan pada titik-titik simpul (node) membentuk rangkaian yang secara bersama dan keseluruhan mendekati bentuk struktur sebenarnya. Jadi bentuk geometri struktur yang kompleks dapat disederhanakan dengan diskretisasi untuk lebih mempermudah penganalisaan.

Pemilihan jenis elemen tergantung pada karakteristik rangkaian kesatuan dan idealisasi yang dipilih. Idealisasi struktur dua dimensi dapat menggunakan elemen segitiga, segiempat maupun kuadrilateral, sedangkan struktur tiga dimensi dapat menggunakan elemen heksahedron.

2. Memilih fungsi pendekatan

Variasi perpindahan pada suatu elemen didekati dengan fungsi interpolasi yang didasarkan pada harga simpul yang mengitari. Fungsi yang umum digunakan adalah polinomial. Pendekatan dengan fungsi interpolasi ini disebabkan sulitnya mencari jawaban tertutup, sehingga dipilih suatu bentuk jawaban, yaitu distribusi perpindahan yang merupakan besaran yang tidak diketahui dengan memakai fungsi yang harus memenuhi hukum, prinsip dan syarat batas yang menjadi sifat persoalan.

3. Menurunkan persamaan matrik kekakuan

Prinsip usaha virtual menghasilkan persamaan matrik kekakuan elemen, yang dinyatakan sebagai:

$[k] = \int [B]^T [C] [B] dV$

Dengan:

[k] = matrik kekakuan elemen

[B] = matrik konstitutive hubungan regangan-perpindahan

[*C*] = matrik konstitutive hubungan tegangan-regangan

V = volume

(2-34)

4. Menghitung matrik beban total

Beban yang bekerja didefinisikan menjadi tiga macam, sehingga beban total adalah:

$$F = Q_{NF} + Q_{BF} + Q_T$$
 (2-35)

Dengan:

 Q_{NF} = beban pada konsentrasi node

 Q_{BF} = beban akibat beban sendiri (*body force*)

 Q_T = beban traksi (*surface traction*)

5. Merakit elemen menjadi struktur

Perakitan persamaan elemen dibawa ke bentuk persamaan global. Prosesnya harus memenuhi sifat konvergen dan sifat sinambung, yaitu titik-titik yang semula bersebelahan harus tetap bersebelahan setelah elemen dikenai beban. Bentuk persamaan global elemen:

$$[K]{q} = {R}$$
(2-36)

BRAN

Dengan:

[K] = matrik kekakuan global

 $\{q\}$ = vektor perpindahan node

 $\{R\}$ = matrik beban total

Setelah matrik kekakuan global diperoleh dan syarat-syarat batasnya dimasukkan maka perpindahan simpul (q) dapat dicari. Suatu syarat batasmemberikan informasi bagaimana struktur ditopang dalam ruang, dengan memasukkan nilai perpindahan yang telah ditetapkan sesuai kondisi pada struktur.

6. Mendapatkan perpindahan global

Persamaan global yang mendapatkan syarat batas merupakan sekumpulan persamaan linier yang dapat diselesaikan dengan cara eliminasi Gauss untuk mendapatkan besaran-besaran primer, yaitu $q_1, q_2, q_3, \dots q_n$.

BRAWIJAYA

$$k_{1.1} q_1 + k_{1.2} q_2 + \dots + k_{1.n} q_n = R_1$$

$$k_{2.1} q_1 + k_{2.2} q_2 + \dots + k_{2.n} q_n = R_2$$

$$\dots$$

$$k_{n.1} q_1 + k_{n.2} q_2 + \dots + k_{n.n} q_n = R_n$$
(2-37)

Persamaan diatas akan diselesaikan dengan cara eliminasi Gauss untuk mendapatkan besaran-besaran rimer yaitu $q_1, q_2, q_3, \ldots, q_n$.

7. Mendapatkan besaran sekunder dan interpretasi hasil

Dari besaran pertamanya yang berupa perpindahan, dapat dicari besaran sekunder yang berupa tegangan atau regangan, dengan menggunakan hubungan antar keduanya. Hubungan tegangan-regangan pada kondisi 3D daat dinyatakan dalam bentuk matrik sebagai berikut :

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{cases} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix} \begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{pmatrix}$$
(2-38)

Hubungan tegangan-regangan:

$$\{\sigma\} = [C]\{\varepsilon\}$$
(2-39)

Hubungan regangan-perpindahan:

$$\{\varepsilon\} = [B]\{d\}$$
(2-40)

Sehingga tegangan dapat dirumuskan sebagai:

$$\{\sigma\} = [C][B]\{d\}$$
(2-41)

Dengan :

 $\{d\}$ = matrik perpindahan

Hasil akhir dari perhitungan dengan metode elemen hingga ini berupa harga distribusi tegangan yang akan ditampilkan di sepanjang struktur untuk dianalisa sesuai dengan rumusan masalah.
2.7.3 Tipe Elemen untuk Analisis Tiga Dimensi

Analisa elemen hingga pada dasarnya dikembangkan untuk kondisi 2-D struktur 3-D menyebabkan penambahan persamaan berganda dalam jumlah besar, tetapi dengan menggunakan elemen dengan orde lebih tinggi dan komputer yang lebih cepat, maka masalah tersebut dapat diatasi.

Macam- macam Tipe Elemen Hingga :

Elemen Tetrahedral 1.

Elemen tetrahedral didefinisikan dalam tiga sumbu koordinat , x, y, z, sehingga memiliki tiga komponen perpindahan yaitu u, v, w. Skema elemen tetrahedral dalam sumbu koordinat dapat dilihat pada (Gambar 2.19) di bawah ini.

Sumber : Nentchev (1997 : 21)

Untuk mendapatkan volume tetrahedral, V, daat diperoleh dengan menggunakan fungsi determinan dari matriks tetrahedral.

$$6V = \det \begin{vmatrix} 1 & x_i & y_i & z_i \\ 1 & x_j & y_j & z_j \\ 1 & x_m & y_m & z_m \\ 1 & x_p & y_p & z_p \end{vmatrix}$$
(2-42)

Persamaan diatas akan menghasilkan nilai dari volume tetrahedral. Persamaan diatas diselesaikan dengan menggunakan kofaktor dari determinan matriks tersebut, sehingga diperoleh nilai a_i , b_i , c_i sebagai komonen untuk memperoleh besarnya perpindahan dengan menggunakan persamaan :

$$N_i = \frac{a_i + b_y + c_z}{6V} \tag{2-43}$$

Dengan menggunakan persamaan tersebut, akan diperoleh besarnya perpindahan sebagai besaran primer. Hasil akhir dari perhitungan dengan metode elemen hingga ini berupa harga distribusi tegangan yang akan diplot disepanjang struktur untuk dianalisis sesuai dengan rumusan masalah yang ada.

2. Elemen Heksahedron

Elemen *heksahedron* didefinisikan dalam tiga sumbu koordinat x, y, z sehingga memiliki tiga komponen perpindahan yaitu u, v, w. skema elemen *heksahedron* dalam sumbu koordinat dapat dilihat ada (Gambar 2.20) dibawah ini.

Hubungan antara regangan-peralihan dapat lebih disederhanakan menjadi:

$$\in_t = B_i q_i \ (i = 1, 2, \dots, 8)$$
(2-44)

Dimana :

BRAWIJAYA

$$B_{1} = df_{i} \begin{bmatrix} f_{i,x} & 0 & 0 \\ 0 & f_{i,y} & 0 \\ 0 & 0 & f_{i,z} \\ f_{i,y} & f_{i,x} & 0 \\ 0 & f_{i,z} & f_{i,y} \\ f_{i,z} & 0 & f_{i,x} \end{bmatrix} = \begin{bmatrix} D_{G1i} & 0 & 0 \\ 0 & D_{G2i} & 0 \\ 0 & 0 & D_{G3i} \\ D_{G2i} & D_{G1i} & 0 \\ 0 & D_{G3i} & D_{G2i} \\ D_{G3i} & 0 & D_{G1i} \end{bmatrix}$$
(2-45)

Sehingga dari hubungan antara regangan dan peralihan dapat dieliminasi sehingga akan mendaatkan tegangan dan regangan dalam metode elemen hingga.

2.8 Software ANSYS

Software yang berbasis elemen hingga ini mempunyai kelebihan yaitu kemampuan untuk mendiskritisasi model dengan sangat halus, mamu bekerja dengan elemen lebih banyak dan menghasilkan output dengan ketelitian tinggi. *ANSYS* dapat digunakan untuk menganalisis antara lain: struktural, termal, elektris, magnetis, dan fluida.

Secara umum langkah-langkah analisis dengan menggunakan ANSYS dibagi menjadi tiga, yaitu :

1. Preprocessing (Proses Awal)

Tahap-tahap penting dalam *Preprocessing* :

- Pemodelan geometri : disini dilakukan proses modeling geometri baik 1D, 2D maupun 3D.
- Pemilihan tipe elemen : digunakan untuk mendiskritisasikan model yang dibuat.
- *Material properties* : input data material yang digunakan.
- *Meshing* : pembagian struktur menjadi elemen-elemen kecil/elemen diskrit.
- 2. Solution (Proses Solusi)

Tahap-tahap penting dalam Solution :

- Mendefinisikan analisis solusi yang dipakai (Analysis Type).
- Memasukkan kondisi batas (constrain).
- Menerapkan pembebanan.
- Penyelesaian (Solving).

- 3. General Postprocessing (Proses Pembacaan Hasil)
 - Plot Result

Dengan menggunakan *contour plot* akan tampak distribusi tegangan atau variabel lain pada model sehingga mudah dalam menginterpretasikan informasi yang disajikan. Disini model digambarkan dengan sebaran warna yang menunjukkan besarnya tegangan yang terjadi.

• List Result

Hasil analisis dalam bentuk *List Result* berupa tabel yang memberikan informasi secara detil mengenai perindahan, tegangan dan regangan yang terjadi pad tiap node mauun elemennya.

• Animation

Hasil analisa yang diperoleh juga ditampilkan dalam bentuk simulasi (animasi).

2.9 Hipotesis

Semakin besar luas penampang *crash box* maka deformasi yang terjadi semakin kecil, karena kekakuannya yang semakin meningkat sedangkan semakin panjang *crash box* maka jalur deformasi untuk penyerapan energi tabrakan juga semakin panjang sehingga energi yang diserap juga semakin besar.

METODOLOGI PENELITIAN

3.1 Metode Penelitian

Metode penelitian yang digunakan dalam peneltian ini adalah eksperimenal semu dengan simulasi komputer menggunakan *software ANSYS 13.0* yang berbasis metode elemen hingga. Untuk mendapatkan informasi tambahan diperoleh melalui studi literatur dari buku pustaka, jurnal peneltian dan internet unuk memperoleh informasi tambahan yang diperlukan dalam penelitian. Tujuan dari penelitian ini adalah mendapatkan data-data berupa energi dan deformasi pada *crash box*.

3.2 Variabel Penelitian

1. Variabel Bebas

Variabel bebas adalah variabel yang besarnya ditentukan sebelum dilakukan penelitian dan tidak dipengaruhi oleh varabel lain. Variabel bebas dalam penelitian ini adalah diameter dan ketebalan *crash box* yang ditunjukkan pada tabel berikut :

No	Crash box	L (mm)	D (mm)	No	Crash box	L (mm)	D (mm)
1	Crash box 1	100	111.7	14	Crash box 14	165	68.33
2	Crash box 2	105	106.46	15	Crash box 15	170	66.36
3	Crash box 3	1100 0	101.69	16	Crash box 16	175	64.51
4	Crash box 4	115	97.34	17	Crash box 17	180	62.77
5	Crash box 5	120	93.35	18	Crash box 18	185	61.11
6	Crash box 6	125	89.68	19	Crash box 19	190	59.55
7	Crash box 7	130	86.29	20	Crash box 20	195	58.06
8	Crash box 8	135	83.16	21	Crash box 21	200	56.65
9	Crash box 9	140	80.24	22	Crash box 22	205	55.3
10	Crash box 10	145	77.53	23	Crash box 23	210	54.03
11	Crash box 11	150	75	24	Crash box 24	215	52.81
12	Crash box 12	155	72.63	25	Crash box 25	220	51.65
13	Crash box 13	160	70.41	26	Crash box 26	225	50.53

Tabel 3.1 Variasi diameter dan ketebalan crash box

2. Variabel Terikat

Variabel terikat adalah variabel yang besar nilainya tergantung oleh variabel bebas dan nilainya diperoleh setelah pelaksanaan penelitian. Dalam penelitian ini yang menjadi variabel terikat adalah energi dan deformasi yang terjadi pada *crash box* akibat uji impak *Impactor*.

3. Variabel Terkontrol

Variabel terkontrol adalah variabel yang besarnya dikendalikan atau dibuat tetap selama penelitian, yaitu :

- a. Ketebalan *crash box* yang digunakan 1.6 mm dan massa 0.447 kg.
- b. Kecepatan jatuh impactor 7,67 m/s.
- c. Massa impactor 103 kg.
- d. Material *crash box* yang digunakan adalah AISI 1340 *Steel, annealed at* 910°C.
- e. Material impactor yang digunakan adalah structural Steel.

3.3 Data Material dan Dimensi Spesimen

Material *crash box* yang digunakan dalam penelitian ini berdasarkan penelitian sebelumnya oleh (Velmurugan : 2009) adalah AISI 1340 *Steel, annealed at* 910°C dengan kandungan karbon (C) sebesar (0.380-0.430 %) dengan material *properties* sebagai berikut :

Tabel 3.2 Material properties crash box

AISI 1340 Steel, annealed at 910°C	
Density (kg/m ³)	7870
Poisson's Ratio	0.29
Modulus Elastisitas (GPa)	205
Yield Strength (MPa)	266.94
Shear Modulus (GPa)	76
Tangent Modulus (GPa)	2.67

Tabel 3.3 Material properties impactor

Structural Steel	BRARAW
Density (kg/m^3)	7850
Poisson's Ratio	0.3
Modulus Elastisitas (GPa)	200
Yield Strength (MPa)	250
Shear Modulus (GPa)	76
Tangent Modulus (GPa)	1.45

Untuk pemodelan spesimen *crash box* digunakan pipa dengan penampang lingkaran dengan ketebalan dinding 1.6 mm dan massa 0.447 kg yang dapat dilihat pada (gambar 3.1) berikut :

Gambar 3.1 Pemodelan Crash box.

Spesifikasi Impactor untuk Dropped weight impact test pada Crash box :

Material *impactor* = *Structural Steel*

Massa *impactor* = 103 kg

Jarak *impactor* = 5 mm

Kecepatan uji = 7,67 m/s

BRAWIJAYA

3.4 Langkah Simulasi pada Software ANSYS

- 1. Menggambar/ memodelkan uji *dropped weight impact* secara tiga diemesi yang terdiri dari *crash box, fixed support* dan *impactor* pada fitur *Design Modeler* yang terdapat pada *software ANSYS* 13.
- 2. Setelah memodelkan *crash box, fixed support* dan *impactor* pada fitur *design modeler* selanjutnya memasukkan material properties dari *crash box, fixed support*, dan *impactor* serta menentukan pemodelan material yang akan digunakan pada simulasi pada fitur *engineering data*.
- 3. Setelah memasukan *material properties* dan pemodelan material langkah selanjutnya yaitu mentransfer model yang telah dibuat dari *Design Modeler* menuju *system explicit dynamics* yang digunakan untuk melakukan simulasi pengujian *dropped weight impact*.
- 4. Setelah pemodelan uji *dropped weight impact* berhasil ditransfer menuju *system explicit dynamics* langkah selanjutnya adalah menetukan perliaku kekakuan (*stiffness behavior*) dari masing-masing komponen uji *dropped weight impact*, pada simulasi ini *crash box* dimodelkan sebagai *deformable body* yaitu objek yang mengalami deformasi sedangkan *impactor*, dan *fixed support* dimodelkan sebagai *rigid body* atau objek yang tidak mengalami deformasi.
- 5. Setelah menentukan perilaku kekakuan pada masing-masing komponen uji langkah selanjutnya adalah menentukan jenis koneksi pada masing-masing komponen, pada simulasi ini jenis koneksi (*connection type*) yang digunakan adalah *bonded* dan *frictionless*, koneksi *bonded* digunakan untuk menyambungkan antara *crash box* dan *fixed support* sedangkan *frictionless* merupakan jenis koneksi antar objek yang tidak tersambung yaitu antara *impactor* dan *crash box*.
- 6. Setelah menentukan jenis koneksi langkah selanjutnya yaitu meshing, meshing adalah proses membagi obyek yang semula adalah elemen tak hingga (infinite) menjadi elemen-elemen tertentu dengan jumlah yang berhingga (finite). Semakin kecil elemen yang dibentuk akan diperoleh hasil analisis yang semakin akurat namun beban komputer semakin berat karena banyaknya persamaan yang harus diselesaikan, pada simulasi ini digunakan meshing secara otomatis dengan jenis elemen explicit dan tipe elemen quadrilateral.

- 7. Setelah proses *meshing* selesai langkah berikutnya yaitu melakukan pengaturan analisis pada *analysis setting* yaitu memasukkan jumlah siklus (*Number of cycles*) dan *end time* yang akan digunakan pada simulasi, semakin banyak jumlah siklus maka hasil simulasi yang diperoleh akan semakin akurat, sedangkan *end time* digunakan untuk menentukan lamanya proses simulasi semakin besar *end time* maka proses simulasi akan berjalan lama tetapi hasil yang didapatkan semakin akurat.
 - 8. Setelah pengaturan analisis selesai langkah berikutnya yaitu menentukan grafitasi yang digunakan, menentukan *fixed support*, dan menetukan kecepatan jatuh *impactor*, grafitasi yang digunakan adalah standard grafitasi bumi yaitu sebesar (9,81 m/s²), *fixed support* yang digunakan adalah *fixed support* yang telah dimodelkan sebelumnya, dan kecepatan yang digunakan yaitu sebesar (7,67 m/s).
 - 9. Setelah selesai menentukan variable-variable yang dibutuhkan untuk proses simulasi langkah berikutnya yaitu menetukan solusi akhir atau hasil yang ingin didapatkan dari proses simulasi, pada fitur *solution* terdapat banyak macam solusi yang dapat ditampilkan tetapi hanya diambil beberapa solusi yang diperlukan sesuai dengan data yang diperlukan.
 - 10. Setelah penentuan solusi selesai langkah terakhir yaitu memulai proses simulasi (*running*) dengan menekan tombol *solve* pada *toolbars* maka komputer akan melakukan proses *solving* secara otomatis, dan setelah proses *solving* selesai maka solusi yang ditampilkan dapat diolah untuk mendapatkan data hasil simulasi.

Gambar 3.2 Pemodelan proses dropped weight impact test

3.5 Tempat dan Waktu Penelitian

Penelitian ini dilakukan di Studio Perancangan dan Rekayasa Sistem Teknik Mesin Universitas Brawijaya dengan spesifikasi komputer sebagai berikut:

_	Processor	: I	ntel Core TM.2600 CPU	(a)	3.40GH	z
				\smile		

- : 16384 MB RAM
- Operating System : Microsoft Windows 7 Ultimate

3.6 Rancangan Penelitian

RAM

Tujuan dari penelitian ini adalah untuk mengetahui besar energi yang diserap dan perilaku *crash box* saat mengalami deformasi dengan variasi diameter dan panjang serta perilaku *crash box* saat mengalami deformasi.

 Tabel 3.4 Tabel rencana analisa data antara perpindahan dengan gaya yang dialami oleh masing-masing crash box

No.	Crash box	Perpindahan (mm)	Gaya (N)
1			5
2	J.S.		
3	تلات		
4			
5			
6			

Tabel 3.5	Tabel renca	na analisa	data	variasi	alur	pada	crash	box	dengan	besar	energi
	yang diserap										

No	Crash box	Diameter (mm)	Panjang (mm)	Energi yang diserap (J)
1		YAU	N N	REASTAR
2				
3	P.BR			
4				
5	F			
6		RSII		4 1/2

3.7 Verifikasi Penelitian

Sebagai verifikasi, spesimen crash box pada penelitian sebelumnya digunakan sebagai pembanding untuk penelitian selanjutnya, dengan spesifikasi :

3.8 Diagram Alir Pelaksanaan Penelitian

Alur pelaksanaan penelitian sesuai dengan diagram alir (*flowchart*) penelitian sebagai berikut.

Gambar 3.4 Diagram alir penelitian

BAB IV

ANALISIS DAN PEMBAHASAN

4.1 Perbandingan Hasil Simulasi dengan Eksperimen

Berikut ini adalah hasil pengujian *crash box* dengan ukuran D = 75 mm dan L = 150 mm, pada gambar dibawah perbandingan antara eksperimental nyata dan hasil simulasi, (Gambar 4.1(a)) merupakan pengujian nyata *crash box* dengan *droped weight impact test* dimana beban yang dijatuhkan sebesar M =103 kg dengan kecepatan v = ± 7.67 m/s sedangkan (Gambar 4.1(b)) merupakan hasil simulasi *droped weight impact test* dengan massa dan kecepatan yang sama.

Gambar 4.1 : Perbandingan *crash box* (a) hasil eksperimen dan *crash box* (b) hasil simulasi *software*. Sumber : Velmurugan (2009)

 Tabel 4.1 Data perbandingan variabel dan hasil eksperimental nyata dengan simulasi software.

Eksperimental nyata	Simulasi software
Ø = 75 mm	Ø = 75 mm
L = 150 mm	L = 150 mm
M = 103 kg	M = 103 kg
t = 1.6 mm	t = 1.6 mm
v = 7.67 m/s	v = 7.67 m/s
Deformasi = 37.2 mm	Deformasi = 38.047 mm
Gaya rata-rata = 64.39 kN	Gaya rata-rata = 65.65 kN
Energi = 2395.30 J	Energi = 2497.75 J

Energi _{error} (%) = $\frac{(2497.75 - 2395.30)}{2497.75} \times 100 \% = 4.1 \%$

$$Deformasi_{error} (\%) = \frac{(38.047 - 37.2)}{38.047} \times 100 \% = 2.2 \%$$

Relative error atau kesalahan relatif dari energi yang diserap dan deformasi pada *crash box* hasil simulasi yang dibandingkan dengan hasil eksperimen masing-masing sebesar 4.1% dan 2.2 %, hasil tersebut menunjukkan bahwa tidak terjadi penyimpangan nilai yang cukup besar antara simulasi dan eksperimen sehingga hasilnya masih bisa diterima.

4.2 Pemodelan

Crash box dimodelkan secara tiga demensi,, tahap awal proses simulasi dimulai dengan menggambar tiap bagian yang berperan penting dalam pengujian dropped weight impact, yaitu impactor, tumpuan dan crash box melalui fitur Design Modeler

pada *software ANSYS 13.0* yang selanjutnya di transfer pada analisis *system explicit dynamics* seperti pada (Gambar 4.2).

Gambar 4.2 Pemodelan proses dropped weight impact test

Tahap berikutnya adalah memasukkan data material tiap-tiap bagian yaitu structural steel untuk impactor dan fixed support dan AISI 1340 Steel, annealed at 910°C untuk crash box, crash box dimodelkan secara bilinear isotropic hardening sedangkan impactor dan fixed support dimodelkan sebagai material rigid. Kemudian dilakukan proses meshing, yaitu proses membagi benda kerja dalam penelitian ini yaitu, impactor, crash box, dan fixed support menjadi elemen-elemen yang kecil. Semakin kecil elemen yang dibentuk maka semakin banyak pula persamaan yang harus diselesaikan oleh software, sehingga beban computer akan semakin besar namun nantinya hasil yang diperoleh juga akan semakin akurat.

Pada *software ANSYS 13.0 meshing* dapat dilakukan dengan dua cara yaitu manual dan otomatis, *meshing* secara manual adalah dengan mendiskritisasikan elemen yang akan dibentuk dengan input tipe, ukuran dan jumlah elemen sesuai yang diinginkan. Sedangkan *meshing* secara otomatis dengan memilih tipe elemen untuk ukuran dan jumlah elemen yang ditentukan secara otomatis oleh *software*. Dalam hal ini *ANSYS* akan menentukan sendiri secara otomatis berdasarkan pemodelan benda kerja dan spesifikasi computer yang dipakai. Dalam penelitian ini digunakan *meshing* secara otomatis dengan jenis elemen *explicit* dan tipe elemen *quadrilateral*.

(d) $\emptyset = 97.34$ mm, L = 115 mm

AL

BRAWIJAYA

(t) Ø = 58.06 mm, L = 195 mm

(w) $\emptyset = 54.03$ mm, L = 210 mm

(y) Ø = 51.65 mm, L = 220 mm

Gambar 4.3 Perbandingan antara kondisi awal *crash box* dan kondisi akhir setelah terdeformasi

4.3 Data Hasil Simulasi

Berikut merupakan hasil simulasi dari pengujian *dropped weight impact* yang dilakukan dengan *software ANSYS Workbench 13*, data yang didapatkan berupa deformasi, gaya kontak, dan kerja plastis, masing-masing data tersebut akan dibandingkan untuk mengetahui *crash box* dengan penyerapan energi terbesar.

Tabel 4.2 Data gaya kontak dan deformasi pada crash box dengan ukuran

No	Waktu (s)	Deformasi (mm)	Force (N)
1	0	0	0
2	7.50E-04	5.8185	127015.639
3	1.50E-03	11.585	75913.99662
4	2.25E-03	17.352	56379.09713
5	3.00E-03	23.115	44364.5437
-6	3.75E-03	28.871	82590.97669
7	4.50E-03	34.626	73558.09844
8	5.25E-03	40.417	84966.14317
9	6.00E-03	46.218	57719.52345
10	6.75E-03	51.951	78703.29531
11	7.50E-03	57.75	83085.85089
12	8.25E-03	63.675	96708.7752
13	9.00E-03	69.541	72462.68723
14	9.75E-03	75.515	80377.89769
15	1.05E-02	81.483	130138.5679
16	1.09E-02	84.671	233114.6705

D = 106.46 mm dan L = 105 mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0		0
2	0.00031191	2.3886	102757.5812
3	0.00061692	4.7298	106737.2589
4	0.00090529	6.9431	88040.43272
5	0.0011781	9.0363	73872.32964
6	0.0014371	11.024	64290.63146
7	0.0016866	12.938	57834.88462
8	0.0019275	14.787	53029.71866
9	0.0021602	16.572	49083.74307
10	0.0023875	18.316	45170.67051
11	0.0026122	20.039	41209.52075
12	0.0028316	21.722	39253.13401
13	0.0030486	23.387	78110.66918
14	0.0032638	25.037	85379.58087
15	0.0034778	26.681	79055.71555
16	0.0036915	28.32	70699.27424
17	0.0039044	29.954	64081.11005
18	0.0041173	31.587	58534.3377
19	0.0043303	33.217	61421.81606
20	0.0045413	34.834	84539.42134
21	0.004751	36.443	76340.27335
22	0.0049594	38.047	64835.21584

Tabel 4.3 Data gaya kontak	dan deformasi pada	crash box dengan ukuran	D = 75
----------------------------	--------------------	-------------------------	--------

mm dan L = 150 mm

4.3.1 Hubungan Gaya Kontak dan Deformasi Crash Box

Pada saat *impactor* jatuh menumbuk *crash box* maka keduanya saling memberikan gaya yang disebut dengan gaya kontak, gaya yang diberikan *impactor* pada *crash box* nantinya akan dikalikan dengan deformasi maksimal yang terjadi sehingga akan diketahui besar energi yang diserap oleh *crash box*.

Gambar 4.4 Grafik hubungan deformasi dengan gaya kontak crash box

Rumus diatas merupakan rumus yang digunakan untuk menghitung besarnya energi regangan atau energi yang diserap oleh *crash box* saat terjadi deformasi, besarnya energi regangan sendiri adalah luasan dibawah grafik gaya dan deformasi pada (Gambar 4.4).

Berdasarkan perhitungan luas daerah dibawah grafik didapatkan energi yang diserap oleh masing-masing *crash box* yang ditunjukkan pada (Tabel 4.4).

No	D (mm)	L (mm)	Energi (J)	Kerja Plastis (J)	Error (%)
1	106.46	105	7287.525877	7147.6	1.920073827
2	86.29	130	7031.082318	6972.7	0.830346103
3	97.34	115	5947.540601	6177	3.858055193
4	93.35	120	5419.080081	5736.1	5.85006891
-5	101.69	110	5336.641405	5576	4.485191656
6	68.33	165	4996.599735	5091.9	1.907302367
7	111.7	100	4860.600105	5045	3.793768074
8	52.81	215	4559.268881	4617.8	1.283783004
9	72.63	155	4198.986684	4242.5	1.036281352
10	83.16	135	4145.463787	4336.2	4.6010826
11	61.11	185	4040.660916	4139.5	2.446111813
12	70.41	160	4038.348891	4176.4	3.418503768
13	50.53	225	3836.001098	3884.7	1.269522629
14	64.51	175	3783.159837	4063.1	7.399638796
15	55.3	205	3470.53727	3552.9	2.373198257
16	80.24	140	3469.998777	3627.4	4.536059898
17	56.65	200	3284.526971	3362.5	2.37395003
18	89.68	125	3112.270305	3371.4	8.326066492
19	51.65	220	2849.927875	2722.8	4.460740081
20	66.36	170	2736.741951	2840.1	3.776682305
21	75	150	2497.746327	2613.2	4.622313794
22	77.53	145	2483.458952	2577.8	3.798776216
23	58.06	195	2419.568814	2526.7	4.427697422
24	62.77	180	2328.508872	2441.9	4.869688467
25	59.55	190	2319.903974	2435.1	4.965551475
26	54.03	210	1660 065157	1931 5	16 35085478

Tabel 4.4 Energi yang diserap pada setiap variasi diameter dan panjang crash

box.

Nilai penyerapan energi pada tabel diatas juga dibandingkan dengan kerja plastis yang didapat dari *software ANSYS* dan kemudian dibandingkan sehingga menghasilkan kesalahan relatif / *error* untuk memastikan ketepatan perhitungan energi regangan pada grafik gaya dan perpindahan, dari tabel tersebut dapat dilihat bahwa kesalahan relatif / *error* yang terjadi tidak terlalu besar sehingga nilai energi dari hasil perhitungan masih dapat diterima.

BRAWIJAYA

		1 5 0			
No	D (mm)	L (mm)	Energi (J)	Kerja Plastis (J)	D/L
1	106.46	105	7287.525877	7147.6	1.013904762
2	86.29	130	7031.082318	6972.7	0.663769231
3	97.34	115	5947.540601	6177	0.846434783
4	93.35	120	5419.080081	5736.1	0.777916667
5	101.69	110	5336.641405	5576	0.924454545
6	68.33	165	4996.599735	5091.9	0.414121212
7	111.7	100	4860.600105	5045	1.117
8	52.81	215	4559.268881	4617.8	0.245627907
9	83.16	135	4145.463787	4336.2	0.616
10	72.63	155	4198.986684	4242.5	0.468580645
11	70.41	160	4038.348891	4176.4	0.4400625
12	61.11	185	4040.660916	4139.5	0.330324324
13	64.51	175	3783.159837	4063.1	0.368628571
14	50.53	225	3836.001098	3884.7	0.224577778
15	80.24	140	3469.998777	3627.4	0.573142857
16	55.3	205	3470.53727	3552.9	0.269756098
17	89.68	125	3112.270305	3371.4	0.71744
18	56.65	200	3284.526971	3362.5	0.28325
19	66.36	170	2736.741951	2840.1	0.390352941
20	51.65	220 -	2849.927875	2722.8	0.234772727
21	75	150	2497.746327	2613.2	0.5
22	77.53	145	2483.458952	2577.8	0.534689655
23	58.06	195	2419.568814	2526.7	0.29774359
24	62.77	180	2328.508872	2441.9	0.348722222
25	59.55	190	2319.903974	2435.1	0.313421053
26	54.03	210	1660.065157	1931.5	0.257285714

Tabel 4.5Energi dan rasio (D/L) yang dihasilkan pada setiap variasi diameter
dan panjang crash box.

4.3.2 Hubungan Diameter dan Panjang Crash Box terhadap Energi yang

(b) Grafik hubungan panjang *crash box* dan energi yang diserap *crash box*.

Pada (Gambar 4.5) yaitu grafik hubungan antara diameter dan panjang *crash box* terhadap energi yang diserap dapat dilihat bahwa grafik cenderung meningkat untuk pertambahan diameter dan cenderung menurun untuk

BRAWIJAY

pertambahan panjang, seiring meningkatnya ukuran diameter crash box maka energi yang diserap semakin besar sedangkan semakin meningkatnya panjang crash box maka energi yang diserap semakin kecil, hal ini dikarenakan semakin besar diameter maka luas permukaannya juga semakin besar sehingga momen inersia luasannya pun juga semakin besar ,besarnya momen inersia luasan berpengaruh terhadap nilai beban kritis yang dihasilkan, semakin besar momen inersia luasannya maka beban kritis yang diperlukan untuk mendeformasi crash box juga semakin besar karena beban kritis berbanding lurus dengan momen inersia luasan, besar beban kritis sendiri berpengaruh terhadap gaya yang diterima oleh crash box semakin besar beban kritis maka gaya awal yang diterima crash box untuk mengalami buckling pada dindingnya juga semakin besar, gaya awal inilah yang mengawali terjadinya lipatan-lipatan pada dinding *crash box*, dan sebaliknya panjang *crash box* berbanding terbalik dengan beban kritis (critical load) sehingga semakin panjang ukuran crash box maka gaya yang diperlukan untuk mendeformasi crash box juga semakin kecil sehingga buckling yang terjadi pada dinding crash box juga semakin kecil, besarnya energi yang diserap dipengaruhi oleh gaya yang diterima crash box dan juga besar deformasi yang terjadi, semakin besar gaya yang diterima dan semakin besar deformasinya maka energi yang diserap juga semakin besar, pada grafik hubungan antara diameter dan panjang crash box terhadap energi yang diserap pada (Gambar 4.5) crash box yang memiliki penyerapan energi terbesar adalah crash box dengan ukuran D dan L masing-masing 106.46 mm dan 105 mm dengan penyerapan energi sebesar 7147.6 J.

4.3.3 Hubungan Rasio (D/L) dan Penyerapan Energi pada Crash Box

Gambar 4.6 Grafik hubungan rasio (D/L) dengan energi yang diserap crash box

Pada grafik hubungan rasio (D/L) yaitu perbandingan antara diameter dan panjang *crash box* dengan energi yang diserap terlihat bahwa semakin besar rasio (D/L) maka energi yang diserap cenderung makin besar, hal ini dikarenakan gaya yang diterima oleh *crash box* agar dapat terdeformasi plastis atau membentuk lipatan pada dindingnya lebih besar karena *crash box* yang memiliki luasan penampang besar beban kritis nya juga makin besar, hal ini sesuai dengan persamaan beban kritis:

$$P_{cr} = \frac{\pi^2 EI}{4L^2} \tag{4-2}$$

- P_{cr} = Beban kritis (*N*)
- E = Modulus Elastisitas (*Pa*)
- I =Momen inersia penampang (m^4)
- L =Panjang kolom (m)

Pada rumus diatas beban kritis (*Pcr*) berbanding lurus dengan inersia luasan dan modulus elastisitas bahan serta berbanding terbalik dengan panjang, pada (Gambar 4.4) yaitu grafik hubungan deformasi dengan gaya kontak *crash box* dapat kita lihat bahwa gaya awal nya memiliki nilai yang besar dan selanjutnya mengalami penurunan gaya, gaya puncak awal atau (*initial peak load*) inilah yang mengawali terjadinya *buckling* pada *crash box* sehingga selanjutnya mengalami beberapa lipatan pada dindingnya, pada grafik di atas

BRAWIJAYA

seiring meningkatnya rasio (D/L) maka energi yang diserap juga meningkat tetapi pada titik tertentu mengalami penurunan hal ini dikarenakan nilai rasio (D/L) memiliki batas dalam hal penyerapan energinya, nilai penyerapan yang relatif besar dimiliki oleh *crash box* dengan ukuran D dan L masing-masing 106.46 mm dan 105 mm, sedangkan rata-rata rasio (D/L) yang memiliki penyerapan energi terbaik yaitu rasio (D/L) = 0.8225 dan untuk *crash box* yang memiliki penyerapan yang relatif kecil yaitu *crash box* dengan rasio (D/L) = 0.39, sehingga dapat diambil kesimpulan untuk mendapatkan *crash box* dengan penyerapan yang baik maka sebaiknya *crash box* tersebut memiliki rasio (D/L) ≤ 0.8225 .

4.3.4 Hubungan Rasio (D/L) dengan Energi yang Diserap per Satuan

Gambar 4.7 Grafik hubungan rasio (E/L) dengan rasio (D/L)

Pada grafik hubungan (E/L) dengan rasio (D/L) terlihat grafik memiliki kecendurungan meningkat seiring pertambahan rasio (D/L), rasio (E/L) merupakan faktor yang digunakan untuk menganalisa performa *crash box* sehingga dapat dilihat efektifitas penyerapan energi per satuan panjangnya, plot grafik diatas menampilkan hasil yang hampir sama dengan grafik pada (Gambar 4.6) yaitu semakin meningkatnya rasio (D/L) maka nilai (E/L) juga makin meningkat tetapi pada batas tertentu mengalami penurunan. *Crash box* yang

memiliki nilai (E/L) terbesar adalah *crash box* dengan ukuran D dan L masingmasing 106.46 mm dan 105 mm.

4.3.5 Hubungan Efisiensi Perpindahan dengan Rasio (D/L)

Gambar 4.8 Grafik hubungan rasio (δ /L) dengan rasio (D/L)

Pada grafik hubungan rasio (δ/L) dengan rasio (D/L) diatas dapat dilihat bahwa semakin meningkat rasio (D/L) maka efisiensi perpindahannya juga semakin meningkat, efisiensi perpindahan merupakan rasio antara deformasi akhir crash box dengan panjang awalnya, semakin meningkatnya nilai ini maka kemampuan penyerapan energinya makin besar karena energi yang diubah menjadi deformasi plastis makin besar pula sama dengan grafik sebelumnya bahwa terjadi penurunan pada titik tertentu saat rasio (D/L) semakin meningkat hal ini menandakan efisiensi perpindahan berbanding lurus dengan penyerapan energinya semakin besar nilainya maka energi yang diserap juga semakin besar, efek yang diharapkan dari meningkatnya nilai ini adalah crash box dapat menyerap energi tabrak yang besar tetapi efek deselerasi yang ditimbulkan tidak terlalu besar, efek deselerasi yang besar ditimbulkan karena besarnya nilai gaya awal puncak atau (initial peak load) yang terjadi pada saat awal tabrakan, agar efek tersebut tidak terlalu besar maka crash box harus memiliki peningkatan efisiensi perpindahan dan dapat mengurangi gaya awal puncak yang terjadi sehingga dapat mencegah kerusakan struktur yang dilindungi, crash box yang memiliki efisiensi perpindahan terbesar adalah crash box dengan ukuran D dan L masing-masing 106.46 mm dan 105 mm.

Gambar 4.9 Grafik hubungan efisiensi gaya tabrak dengan rasio (D/L)

Pada grafik hubungan efisiensi gaya tabrak dengan rasio (D/L) terlihat bahwa semakin besar rasio (D/L) maka efisiensi gaya tabraknya makin menurun, efisiensi gaya tabrak merupakan rasio antara gaya rata-rata dan gaya puncak yang dialami oleh crash box, jika nilai dari efisiensi gaya tabrak makin besar maka gaya puncak yang disalurkan pada struktur yang dilindungi akan lebih kecil, nilai ini meningkat jika nilai gaya rata-rata tidak jauh berbeda dengan gaya puncaknya, crash box dengan ukuran D dan L masing-masing 106.46 mm dan 105 mm memiliki efisiensi terendah sebesar 37% hal ini dikarenakan crash box memiliki beban puncak yang jauh lebih tinggi jika dibandingkan dengan gaya rata-ratanya pada grafik hubungan deformasi dengan gaya kontak crash box terlihat gaya kontak pada deformasi maksimal memiliki nilai sebesar 233114.6705 N besarnya gaya ini terjadi karena crash box mengalami pemadatan yang maksimal atau (compaction), pemadatan sendiri merupakan fenomena yang disebabkan oleh tumbukan yang menyebabkan crash box terpadatkan diakhir deformasinya, secara ideal crash box di desain agar dapat menyerap energi sebelum mengalami *compaction* sehingga efek deselerasi yang terjadi tidak terlalu besar, dapat disimpulkan crash box dengan ukuran D dan L masing-masing 106.46 mm dan 105 mm kurang ideal karena memiliki gaya puncak akibat pemadatan yang besar sehingga dapat mempengaruhi efek deselerasi yang cukup besar, crash box yang ideal sebagai penyerap energi

tabrakan pada penelitian ini adalah crash box yang memiliki penyerapan energi

cukup besar dengan beban puncak akibat pemadatan relatif kecil yaitu *crash box* dengan ukuran D dan L masing-masing 97.34 mm dan 115 mm dengan penyerapan sebesar 6177 J dan efisiensi gaya tabrak sebesar 55% sehingga *crash box* dapat menyerap energi yang cukup besar dan meminimalisasi efek deselerasi yang ditimbulkan.

4.3.7 Perilaku Deformasi Crash Box

Deformasi pada *crash box* dapat terjadi tiga macam diantarannya *Concertina mode* / tekukan pada dinding-dinding *crash box* yang simetris, *bending* atau bengkok, dan *Diamond mode*/ tekukan pada dinding *crash box* yang tidak simetris, berikut ini merupakan analisa visual yang dilakukan dengan cara melihat bentuk deformasi *crash box* hasil simulasi sehingga nantinya diketahui perilaku deformasi yang dapat memberikan performa terbaik dalam penyerapan energinya.

Tabel 4.6 Perilaku deformasi pada crash boxpada setiap variasi diameter danpanjang crash box.

No	D (mm)	L (mm)	δ (mm)	δ/L	Perilaku	D/L
1	106.46	105	84.671	0.806390476	C	1.013904762
2	86.29	130	100.71	0.774692308	C	0.663769231
3	97.34	115	87.488	0.760765217	С	0.846434783
4	93.35	120	86.489	0.720741667	C	0.777916667
5	101.69	110	77.305	0.702772727	C	0.924454545
6	68.33	165	79.187	0.479921212	C	0.414121212
7	111.7	100	70.394	0.70394	С	1.117
8	52.81	215	76.633	0.356432558	C	0.245627907
9	72.63	155	67.295	0.43416129	D	0.616
10	83.16	135	63.382	0.469496296	C	0.468580645
11	61.11	185	64.517	0.348740541	C	0.4400625
12	70.41	160	63.281	0.39550625	C	0.330324324
13	50.53	225	62.678	0.278568889	D	0.368628571
14	64.51	175	60.357	0.344897143	C C	0.224577778
15	55.3	205	56.632	0.276253659	D	0.573142857
16	80.24	140	53.761	0.384007143	C	0.269756098
17	56.65	200	56.776	0.28388	D	0.71744
18	89.68	125	53.591	0.428728	D	0.28325
19	51.65	220	50.422	0.229190909	D	0.390352941
20	66.36	170	46.884	0.275788235	D	0.234772727
21	75	150	38.047	0.253646667	C	0.5
22	77.53	145	37.408	0.257986207	C	0.534689655
23	58.06	195	39.377	0.201933333	C	0.29774359
24	62.77	180	36.955	0.205305556	C	0.348722222
25	59.55	190	37.111	0.195321053	C	0.313421053
26	54.03	210	33.931	0.16157619	D	0.257285714
			J.			

Keterangan : C (Concertina mode) D (Diamond mode)

Gambar 4.10 Diagram prosentase bentuk deformasi crash box

Dengan pengamatan visual yang dilakukan pada deformasi *crash box* hasil simulasi dapat disimpulkan bahwa deformasi yang paling umum dialami adalah *Concertina mode* yang terjadi sebesar 69.2% dari keseluruhan *crash box* yang mengalami deformasi, sebagian besar mode deformasi yang terjadi pada *crash box* dengan penyerapan energi terbaik adalah *Concertina mode*, sedangkan pada *crash box* yang memiliki penyerapan energi relatif rendah mode deformasinya yaitu *Diamond mode*, pada grafik hubungan rasio (D/L) dengan energi yang diserap *crash box* kita ketahui bahwa semakin besar rasio (D/L) maka energi yang diserap semakin besar sehingga dapat disimpulkan bahwa semakin besar rasio (D/L) maka mode deformasinya cenderung membentuk *Concertina mode*.

BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan analisis yang telah dilakukan dalam penelitian ini, dapat diperoleh kesimpulan bahwa penyerapan energi pada *crash box* dengan rentang ukuran diameter 50 mm \leq D \leq 150 mm dan panjang 100 mm \leq L \leq 300 mm, seiring meningkatnya ukuran diameter (D) crash box maka energi yang diserap semakin besar sedangkan semakin meningkatnya panjang (L) crash box maka energi yang diserap semakin kecil semakin bertambah rasio (D/L) maka penyerapan energi nya semakin besar dengan rasio $(D/L) \le 0.8225$, semakin bertambahnya rasio (D/L) maka efisiensi perpindahannya semakin besar sehingga deformasi plastis yang dihasilkan makin besar pula sehingga penyerapan energi nya makin maksimal dan efek deselerasi nya makin menurun, dengan bertambahnya rasio (D/L) efisiensi gaya tabrak makin menurun dikarenakan perbandingan gaya puncak dan gaya rata-rata semakin kecil akibat pemadatan atau compaction yang terjadi akibat tumbukan hal ini berpengaruh terhadap meningkatnya efek deselerasi yang kurang menguntungkan, dan pada mode deformasi semakin bertambahnya rasio (D/L) maka crash box cenderung mengalami Concertina mode yang cenderung stabil pada saat mengalami deformasi, pada penelitian kali ini crash box yang memiliki penyerapan energi, efisiensi perindahan, efisiensi gaya tabrak, dan deformasi yang baik adalah crash box dengan ukuran (D) dan (L) masing-masing 97.34 mm dan 115 mm dengan penyerapan energi sebesar 6177 J, efisiensi perpindahan sebesar 76%, efisiensi gaya tabrak sebesar 55%, dan mode deformasi memiliki pola Concertina.

5.2 Saran

- 1 Untuk penelitian selanjutnya sebaiknya dilakukan eksperimen secara nyata agar data yang diperoleh lebih akurat dan valid.
- 2 Dilakukan penelitian lebih lanjut mengenai bentuk penampang selain lingkaran dan modifikasi permukaan *crash box*.

DAFTAR PUSTAKA

Chung, T.J. 1988. Continuum Mechanics. Prentice Hall.

- Ferdinand P. Beer, Russell Johnston, dan John T. DeWolf. 2006. *Mechanics of Materials 4th Edition*. Singapore: McGraw Hill.
- Gere, James M. 2004. *Mechanics of Material 6th Edition*. USA : Brooks/Cole Thomson Learning.

Gunawan, Dirgantara and Putra. 2010. Development of a Dropped Weight

Impact Testing Machine. Indonesia.

Moaveni, Saeed. 1999. Finite Element Analysis Theory and Application with ANSYS. New Jersey : Prentice Hall.

Nakazawa, Tamura dan Yoshida. 2005. Develoment Of Crash-Box For Passenger Car With High Capability For Energy Absorption. Jepang.

- Nentchev, A. 2002. Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements. USA.
- Robert D. Cook, David S. Malkus dan Michael E. Plesha. 1989. Concepts and Applications of Finite Element Analysis. Canada : Wiley.

Segerlind, Larry J. 1984. Applied Finite Element Analysis. Canada : John Wiley & Sons

- Velmurugan and Muralikannan. (2009). Energy Absorption Characteristics of Annealed Steel Tubes of Various Cross Sections in Static and Dynamic Loading. India.
- Witteman. 1999. Improved Vehicle Crashworthiness Design by Control of theEnergyAbsorption for Different Collision Situations. Belanda.

00

Yanjie, Liu. 2008. Computer Simulations and Experimental Study on Crash Box of Automobile in Low Speed Collision. China.

SHIVERSITAS BRAWING

LAMPIRAN

Ĭ

Data Gaya dan Deformasi

Crash box D111.7 mm L100 mm

No	Waktu (s)	Deformasi (m)	Gaya (N)
1	0	0 = 1	0
2	0.00046126	3.5735	145239.3288
3	0.00092248	7.1148	101537.8025
4	0.0013837	10.655	76031.12991
5	0.001845	14.194	62722.99184
6	0.0023062	17.733	54014.25222
7	0.0027674	21.271	46166.86412
8	0.0032287	24.809	44121.57618
9	0.0036899	28.345	95801.13678
10	0.0041511	31.887	84868.22989
11	0.0046124	35.438	67927.66985
12	0.0050736	38.979	87074.9122
13	0.0055348	42.527	75617.91236
14	0.0059961	46.076	56011.1062
15	0.0064573	49.62	45468.74863
16	0.0069185	53.171	96070.44165
17	0.0073798	56.765	82003.43868
18	0.007841	60.37	67305.65206
19	0.0083023	63.962	56535.34552
20	0.0087635	67.539	47579.28115
21	0.0091312	70.394	57920.67823

Crash box D106.46mm L105mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00075005	5.8185	127015.639
3	0.0015001	11.585	75913.99662
4	0.00225	17.352	56379.09713
5	0.003	23.115	44364.5437
6	0.00375	28.871	82590.97669
7	0.0045	34.626	73558.09844
8	0.00525	40.417	84966.14317
9	0.006	46.218	57719.52345
10	0.00675	51.951	78703.29531
11	0.0075	57.75	83085.85089
12	0.00825	63.675	96708.7752
13	0.009	69.541	72462.68723
14	0.00975	75.515	80377.89769
15	0.0105	81.483	130138.5679
16	0.010907	84.671	233114.6705

Crash box D101.69mm L110 mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00058605	4.4934	131266.4994
3	0.001122	8.6062	87201.19164
4	0.001627	12.481	66520.88702
5	0.0021149	16.225	55356.82809
6	0.0025924	19.888	46806.21379
7	0.0030633	23.502	41948.69973
8	0.003531	27.091	85895.5418
9	0.0040002	30.09	84553.69129
10	0.0044701	34.286	67537.38545
11	0.0049363	37.867	88938.48929
12	0.0054025	41.45	73168.02006
13	0.0058681	45.033	54018.62577
14	0.0063335	48.61	61993.97544
15	0.0068009	52.205	80510.02999
16	0.0072708	55.8	64086.64719
17	0.0077407	59.383	85128.75805
18	0.0082086	62.994	70068.6233
19	0.008674	66.547	55540.88118
20	0.0091343	70.173	67703.94053
21	0.0096047	73.75	66420.32685
22	0.010068	77.305	84073.64722

Crash box D97.34 mm L115mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00068605	5.2584	123439.8047
3	0.0013166	10.098	79108.62462
4	0.0019052	14.614	59872.06577
5	0.0024678	18.932	48888.39154
6	0.003007	23.068	41844.59908
7	0.003538	27.14	83684.32922
8	0.0040687	31.212	78345.2649
9	0.0045974	35.266	69196.62323
10	0.005216	39.317	82127.85467
11	0.0056547	43.362	57280.32601
12	0.0061788	47.385	57023.54874
13	0.0067037	51.409	78974.04532
14	0.007228	55.427	61725.36212
15	0.0077511	59.444	80226.82018
16	0.0082722	63.461	63392.21073
17	0.0087933	67.479	46790.79192
18	0.0093144	71.496	73221.48113
19	0.0098355	75.513	63152.83737
20	0.010357	79.529	64914.46684
21	0.010878	83.546	98185.44589
22	0.011391	87.488	84191.85188

Crash Box D93.35mm L120mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00096537	7.403	112165.7355
3	0.0018478	14.172	66279.60516
4	0.0027004	20.711	47442.64602
5	0.0035412	27.159	66559.5209
6	0.0043754	33.562	73163.5806
7	0.0052174	40.013	75555.25682
8	0.0059848	45.895	52103.60148
9	0.006694	51.337	80360.20269
10	0.0071081	54.52	64857.61043
11	0.0074881	57.144	69027.08489
12	0.0078758	60.425	77937.12851
13	0.0082116	62.99	67884.42721
14	0.0084	64.437	59818.71366
15	0.008788	67.42	54112.88068
16	0.0091808	70.441	64185.86802
17	0.009573	73.462	69822.06515
18	0.009969	76.513	63541.33846
19	0.010292	78.994	53241.39037
20	0.010636	81.635	51617.84627
21	0.011	84.432	48613.15251
22	0.011333	86.489	60148.77948

Crash Box D89.68mm L125mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00053837	4.1262	121357.8695
3	0.0010424	7.9936	100068.4484
4	0.0015225	11.676	70150.7689
5	0.0019618	15.045	56285.97661
6	0.002363	18.123	50923.81072
7	0.0027331	20.964	47655.22842
8	0.0030755	23.542	48105.17598
9	0.0033994	26.079	73513.96611
10	0.0037099	28.462	75804.3614
11	0.0040106	30.77	64915.78685
12	0.0043093	33.065	59147.46233
13	0.0046072	35.351	54656.42546
14	0.0049052	37.625	51622.06395
15	0.0052005	39.888	48205.44967
16	0.0054896	42.102	44374.0211
17	0.0057671	44.225	49234.88219
18	0.0060425	46.341	52639.59608
19	0.0063147	48.428	53731.42339
20	0.006553	50.253	53916.35782
21	0.006772	51.94	49670.21415
22	0.0069879	53.591	51659.61891

Crash box D86.29mm L130mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0.00E+00	0	0
2	9.55E-04	7.3219	106935.2329
3	1.77E-03	13.601	66026.72548
4	2.52E-03	19.321	49705.01047
5	3.22E-03	24.663	53606.65588
6	3.91E-03	30.022	81070.05653
7	4.62E-03	35.41	66244.06729
8	5.31E-03	40.717	75093.19323
9	6.00E-03	46.008	58252.32432
10	6.69E-03	51.287	74555.92032
11	7.37E-03	56.493	66086.25838
12	8.01E-03	61.399	74317.56791
13	8.54E-03	65.5	61836.44236
14	9.06E-03	69.525	78255.73209
15	9.61E-03	73.693	60382.95018
16	1.01E-02	77.812	66379.19808
17	1.07E-02	81.773	65920.78163
18	1.12E-02	85.692	72516.62576
19	1.17E-02	89.747	66029.97018
20	1.22E-02	93.869	58174.30459
21	1.27E-02	97.59	101331.4911
22	1.31E-02	100.71	133212.477

Crash box D 83.16mm L135

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00049969	3.8303	115100.0705
3	0.00095763	7.3446	91025.42202
4	0.0013828	10.607	69369.60714
5	0.0017893	13.725	58075.67227
6	0.0021857	16.765	50727.98295
7	0.0025744	19.748	44234.98653
8	0.0029591	22.698	44098.22677
9	0.003342	25.636	85518.98443
10	0.0037232	28.56	78032.56191
11	0.0041037	31.48	65003.01903
12	0.004485	34.396	67585.41955
13	0.004863	37.294	84826.69291
14	0.0052411	40.183	64417.11641
15	0.005616	43.069	49759.88853
16	0.0059918	45.954	71469.5042
17	0.0063699	48.848	73641.1735
18	0.0067479	51.752	61293.68314
19	0.0071288	54.667	69745.46478
20	0.0075069	57.579	82105.51013
21	0.007885	60.481	62764.69509
22	0.0082632	63.382	50101.84915

Crash box D80.24mm L140mm

N	lo	Waktu (s)	Deformasi (mm)	Gaya (N)
1		0	0	0
2		0.00042159	3.2305	111981.2255
3	L	0.00081435	6.2447	96680.59563
4		0.0011799	9.0497	75159.85457
5		0.0015284	11.723	62619.65474
6		0.0018659	14.313	54872.98212
7	1	0.0021966	16.85	49096.02483
8	5	0.002523	19.354	43573.73988
9		0.0028455	21.828	40425.04774
1	0	0.0031665	24.287	78531.2415
1	1	0.0034862	26.742	82259.80905
1	2	0.0038055	29.189	69426.33639
1	3	0.0041239	31.631	60220.56799
1	4	0.0044433	34.075	69523.32944
1	5	0.0047627	36.531	78957.30801
1	6	0.0050822	38.989	62204.96172
1	7	0.0054016	41.447	49727.33255
1	8	0.005721	43.903	66682.15888
1	9	0.0060404	46.368	79041.80816
2	0	0.006363	48.833	67067.33801
2	1	0.0066856	51.297	58024.21904
2	2	0.0070082	53.761	63912.43136

Crash box D77.53mm L145mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.0002794	2.1383	105632.2487
3	0.00055168	4.2285	110346.5584
4	0.00080834	6.1983	92414.36441
5	0.0010545	8.0877	78569.62105
6	0.0012946	9.9297	68361.36065
7	0.0015303	11.739	61240.85464
8	0.0017631	13.525	55962.73609
9	0.0019936	15.294	51784.01078
10	0.0022226	17.051	47938.00952
11	0.0024502	18.798	44080.39373
12	0.0026776	20.542	40251.74987
13	0.0029042	22.282	47524.75388
14	0.0031306	24.02	82391.21053
15	0.0033551	25.742	84693.88321
16	0.0035771	27.446	75798.56842
17	0.0037966	29.131	67856.98095
18	0.0040142	30.8	61640.25965
19	0.0042304	32.459	58135.70802
20	0.0044454	34.113	75162.62932
21	0.0046604	35.76	81115.89649
22	0.0048749	37.408	69643.99276

Crash box D75mm L150mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00031191	2.3886	102757.5812
3	0.00061692	4.7298	106737.2589
4	0.00090529	6.9431	88040.43272
5	0.0011781	9.0363	73872.32964
6	0.0014371	11.024	64290.63146
7	0.0016866	12.938	57834.88462
8	0.0019275	14.787	53029.71866
9	0.0021602	16.572	49083.74307
10	0.0023875	18.316	45170.67051
11	0.0026122	20.039	41209.52075
12	0.0028316	21.722	39253.13401
13	0.0030486	23.387	78110.66918
14	0.0032638	25.037	85379.58087
15	0.0034778	26.681	79055.71555
16	0.0036915	28.32	70699.27424
17	0.0039044	29.954	64081.11005
18	0.0041173	31.587	58534.3377
19	0.0043303	33.217	61421.81606
20	0.0045413	34.834	84539.42134
21	0.004751	36.443	76340.27335
22	0.0049594	38.047	64835.21584

Crash box D72.65mm L155mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00061273	4.6969	101929.606
3	0.0011654	8.9383	80704.04436
4	0.001688	12.949	60621.3204
5	0.0021968	16.853	50094.92319
6	0.0026928	20.657	41848.10268
7	0.0031829	24.417	71819.47425
8	0.0036678	28.138	74415.98344
9	0.0041448	31.795	61877.56251
10	0.0046097	35.363	75333.50545
11	0.0050701	38.894	63503.93794
12	0.0055199	42.348	55982.06637
13	0.0059462	45.617	75837.72169
14	0.0063712	48.875	64578.44622
15	0.0067753	51.973	54236.7057
16	0.0071484	54.837	68372.45382
17	0.0075157	57.65	66234.34513
18	0.0078766	60.418	57951.71942
19	0.0082332	63.152	55822.14636
20	0.0085662	65.709	65393.94838
21	0.0087303	66.968	62291.7873
22	0.0087732	67.295	63877.84707

Crash box D70.41mm L160mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.0005842	4.4778	99912.50913
3	0.0011105	8.5178	83605.40149
4	0.0015878	12.18	63083.14745
5	0.0020343	15.605	52620.80715
6	0.0024578	18.856	45142.54258
7	0.0028654	21.982	44262.98715
8	0.0032662	25.055	83923.31241
9	0.0036628	28.097	71878.78194
10	0.0040587	31.131	60012.80409
11	0.0044573	34.192	73667.69139
12	0.004855	37.249	70878.09936
13	0.0052515	40.293	52171.28536
14	0.0056287	43.185	66818.75587
15	0.0059781	45.867	72259.59618
16	0.0063195	48.488	61071.45436
17	0.0066611	51.11	54919.99853
18	0.0070157	53.83	82252.40015
19	0.0073787	56.614	67656.95007
20	0.0076909	59.009	50300.19922
21	0.0079663	61.123	71561.54797
22	0.0082481	63.281	75954.71635

Crash box D68.33mm L165mm

1	No	Waktu (s)	Deformasi (mm)	Gaya (N)
	1	0	0	0
	2	0.00069834	5.3528	97041.33978
	3	0.0013327	10.221	76141.47023
	4	0.0019072	14.63	56538.24118
	5	0.0024443	18.751	46293.81959
	6	0.0029502	22.631	51758.24511
	7	0.0034464	26.438	79970.82858
	8	0.0039431	30.25	63202.74174
	9	0.0044376	34.044	66485.91485
	10	0.00493	37.826	66334.28993
	11	0.0054221	41.594	56871.85958
	12	0.0059116	45.354	73866.90025
	13	0.0063997	49.107	58444.47899
	14	0.0068879	52.859	64007.48079
	15	0.007376	56.612	68764.73163
2	16	0.0078262	60.067	63950.61087
	17	0.0082391	63.236	73542.71602
	18	0.0086466	66.37	60117.56459
	19	0.0090527	69.48	49595.49079
	20	0.0094566	72.58	73193.95799
	21	0.0098957	75.942	60839.00079
	22	0.010319	79.187	81210.54419

Crash box D66.36mm L170mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00047903	3.6711	93561.60448
3	0.00092961	7.129	90719.64173
4	0.0013462	10.326	70182.19475
5	0.0017386	13.336	57328.89596
6	0.0021131	16.208	49157.9603
7	0.0024789	19.014	46029.18845
8	0.0028363	21.755	49879.67527
9	0.0031883	24.455	78100.04443
10	0.0035345	27.112	69464.91172
11	0.0038778	29.747	53517.28919
12	0.0042206	32.375	52450.82918
13	0.0045633	35	55324.3779
14	0.0049055	37.62	54098.54529
15	0.0052412	40.191	50228.35469
16	0.0055151	42.285	44133.13184
17	0.0056834	43.571	48793.46883
18	0.0058123	44.555	57800.91262
19	0.0059182	45.365	61433.99522
20	0.006041	46.303	65105.72984
21	0.0060912	46.687	67141.87325
22	0.006117	46.884	69745.03157

Crash box D64.51mm L175mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00051635	3.9588	91563.77741
3	0.00098754	7.5748	89372.07371
4	0.0014136	10.844	68728.54369
5	0.0018158	13.93	56325.62851
6	0.0022058	16.922	48739.92324
7	0.0025898	19.868	42004.80986
8	0.00297	22.784	58705.36856
9	0.0033515	25.713	78930.48023
10	0.0037344	28.649	65711.46412
11	0.0041173	31.589	55837.2298
12	0.0044986	34.514	73900.48743
13	0.0048744	37.395	61710.73444
14	0.0052456	40.253	51314.78899
15	0.0056168	43.106	76280.18294
16	0.0059858	45.938	65250.86429
17	0.0063531	48.751	54990.9773
18	0.0067204	51.564	63820.49121
19	0.0070904	54.401	72930.93239
20	0.0074128	56.873	54102.11606
21	0.0077137	59.181	70940.63376
22	0.0078673	60.357	77792.32375

Crash box D64.51mm L180mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	3.28E-04	2.5124	84477.45126
3	6.53E-04	5.0053	96876.88554
4	9.60E-04	7.3588	88642.26761
5	1.24E-03	9.52	74551.96691
6	1.50E-03	11.528	63943.27208
7	1.75E-03	13.422	56970.0389
8	1.99E-03	15.232	51956.21686
9	2.21E-03	16.971	47926.20233
10	2.43E-03	18.641	44167.7505
11	2.64E-03	20.258	40269.81355
12	2.85E-03	21.839	45768.08987
13	3.05E-03	23.395	80460.03421
14	3.25E-03	24.934	79798.49899
15	3.45E-03	26.462	73235.73798
16	3.65E-03	27.984	66563.87324
17	3.85E-03	29.502	60799.7514
18	4.04E-03	31.014	55832.62218
19	4.24E-03	32.515	61472.6727
20	4.43E-03	33.995	78075.53879
21	4.62E-03	35.46	72202.68097
22	4.82E-03	36.955	62213.3474

Crash box D61.11mm L185mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00052283	4.0081	86560.04015
3	0.0010332	7.9241	90108.18623
4	0.0015095	11.579	69205.66074
5	0.0019572	15.014	55445.63982
6	0.0023769	18.234	47241.46364
7	0.0027614	21.185	40212.55857
8	0.0031392	24.083	73368.69242
9	0.0035238	27.034	73496.68775
10	0.0039112	30.009	61572.67582
11	0.004299	32.993	63149.23521
12	0.0046813	35.927	71931.56535
13	0.0050568	38.806	54925.43231
14	0.0054286	41.666	64929.73813
15	0.0058039	44.546	71353.89327
16	0.0061809	47.437	60405.5678
17	0.0065602	50.341	54150.44996
18	0.0069369	53.227	75415.58768
19	0.0073122	56.106	64272.78151
20	0.0076873	58.982	63621.04945
21	0.0080516	61.776	74014.4827
22	0.0084106	64.517	62465.3828

Crash box D59.55mm L190mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00029466	2.2577	79235.57841
3	0.00058461	4.4817	91399.76438
4	0.00086091	6.6018	92391.41695
5	0.0011214	8.6009	83265.16052
6	0.001367	10.485	71504.18262
7	0.0016019	12.288	62427.28991
8	0.0018293	14.032	56200.73712
9	0.002051	15.734	51439.1176
10	0.0022689	17.406	47574.12017
11	0.0024847	19.062	43770.16481
12	0.0026987	20.704	39909.25215
13	0.00291	22.323	48697.74313
14	0.0031211	23.943	81186.24292
15	0.0033334	25.572	77108.66695
16	0.0035468	27.208	69382.09592
17	0.0037607	28.849	62704.37554
18	0.0039753	30.496	56902.78541
19	0.0041909	32.148	56797.70021
20	0.0044064	33.801	73581.60515
21	0.0046219	35.454	70278.64721
22	0.0048379	37.111	59519.88611

Crash box D58.06mm L195mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00034059	2.6118	77786.30991
3	0.0006778	5.1991	91419.04462
4	0.0010031	7.6947	90761.97576
5	0.001307	10.026	80619.03325
6	0.0015863	12.17	67866.4393
7	0.0018485	14.181	59063.29172
8	0.0020979	16.094	53069.78486
9	0.0023368	17.927	48536.25633
10	0.0025665	19.689	44424.79601
11	0.0027892	21.398	40305.76319
12	0.0030081	23.077	48950.53282
13	0.0032263	24.751	81033.95774
14	0.0034423	26.408	77008.1465
15	0.0036566	28.052	69358.67267
16	0.0038691	29.682	62666.92728
17	0.0040803	31.304	56929.93115
18	0.0042918	32.929	55423.19198
19	0.0045042	34.56	74028.61647
20	0.0047208	36.222	70252.36401
21	0.0049342	37.859	58441.45217
22	0.005132	39.377	43870.91606

Crash box D56.65mm L200mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00048144	3.6913	78596.50202
3	0.00094205	7.2253	91199.54553
4	0.0013696	10.506	83126.58158
5	0.0017612	13.511	66718.42374
6	0.0021295	16.337	55321.36783
7	0.0024835	19.053	48106.43554
8	0.0028298	21.711	41994.84617
9	0.0031759	24.366	56221.85305
10	0.0035243	27.039	77320.43346
11	0.0038739	29.722	65934.81388
12	0.0042238	32.409	56407.42179
13	0.0045731	35.093	67691.0572
14	0.0049224	37.769	67380.56719
15	0.0052679	40.422	59997.97367
16	0.0056017	42.982	52019.53385
17	0.0059358	45.538	64841.32996
18	0.0062509	47.952	52897.22088
19	0.0065526	50.261	45738.21102
20	0.0068448	52.5	45018.33489
21	0.0071266	54.656	47765.5882
22	0.0074046	56.776	48415.66433

Crash box D55.3mm L205mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00056069	4.2966	78230.30305
3	0.0011177	8.57	90163.76273
4	0.0016448	12.614	81113.21935
5	0.0021371	16.392	59960.91952
6	0.0025984	19.931	49532.12996
7	0.0030192	23.16	40064.79395
8	0.0034227	26.254	63033.57438
9	0.003832	29.395	74573.45388
10	0.0042454	32.569	60983.16603
11	0.0046599	35.749	67230.11655
12	0.005064	38.848	65520.5127
13	0.0054118	41.517	46065.93216
14	0.0055763	42.774	70246.53328
15	0.0058894	45.175	75716.41308
16	0.0061269	46.997	66349.64343
17	0.0062856	48.214	59837.52245
18	0.0064208	49.253	53821.07432
19	0.0065673	50.376	48039.60642
20	0.0067788	51.997	57761.54154
21	0.007076	54.277	73283.73799
22	0.0073836	56.632	66681.88829

Crash box D54.03mm L210mm

1	No	Waktu (s)	Deformasi (mm)	Gaya (N)
	1	0	0	0
	2	0.00035124	2.6912	71848.11899
	3	0.00069721	5.3454	85302.81603
	4	0.0010298	7.8975	88588.69095
	5	0.0013494	10.349	85172.95406
	6	0.0016661	12.78	62712.81036
	7	0.0019852	15.229	58069.84477
	8	0.0022885	17.557	55651.43777
	9	0.0025611	19.649	51680.8051
	10	0.0028067	21.535	49324.27201
1	11	0.0030258	23.219	46399.1864
	12	0.0032205	24.716	42739.41328
	13	0.0034001	26.097	46375.02773
	14	0.0035732	27.43	43594.39891
	15	0.0037457	28.758	41598.06942
	16	0.0039191	30.092	39651.79721
	17	0.0040921	31.424	37646.24894
	18	0.0042625	32.732	34971.61852
	19	0.004347	33.38	33350.02544
	20	0.0043858	33.678	33336.72083
	21	0.004405	33.825	34235.24374
	22	0.0044186	33.931	34094.65231

Crash box D52.81mm L215mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00083786	6.4252	78593.27659
3	0.0016033	12.3	82279.13407
4	0.0022419	17.2	57832.69531
5	0.0028165	21.609	44331.62988
6	0.0033444	25.657	58382.28436
7	0.0038731	29.714	71166.92476
8	0.0044081	33.825	61152.87636
9	0.0049501	37.98	68004.56516
10	0.0054409	41.747	54603.46122
11	0.0059167	45.395	72986.3227
12	0.0064035	49.124	57436.17971
13	0.0068943	52.894	64094.11526
14	0.0073635	56.498	68041.46158
15	0.0077725	59.637	69303.95507
16	0.0080532	61.794	71824.10919
17	0.0083983	64.438	62738.1535
18	0.0087513	67.163	49296.59815
19	0.0091083	69.904	49470.91977
20	0.0094614	72.614	55454.15858
21	0.0097701	74.969	53524.75949
22	0.0099872	76.633	58369.13106

Crash box D51.65mm L220mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00052038	3.9896	71389.90324
3	0.0010247	7.8588	85842.61809
4	0.0014832	11.376	83298.95605
5	0.0018957	14.542	65568.85756
6	0.0022826	17.511	53139.84173
7	0.0026549	20.367	45138.13002
8	0.003015	23.13	38417.87996
9	0.0033695	25.851	71698.69345
10	0.0037252	28.58	71705.59727
11	0.0040816	31.317	60318.18298
12	0.0044404	34.073	62044.8242
13	0.0047885	36.742	64484.68846
14	0.0050267	38.569	56132.4608
15	0.0052455	40.238	46802.17178
16	0.0054649	41.917	43796.64451
17	0.0056894	43.638	55688.12588
18	0.005928	45.467	62789.78963
19	0.0061968	47.525	59910.18237
20	0.0063704	48.855	51899.29546
21	0.0065054	49.899	48009.32322
22	0.0065734	50.422	45397.1832

Crash box D50.53mm L225mm

No	Waktu (s)	Deformasi (mm)	Gaya (N)
1	0	0	0
2	0.00061864	4.7412	71627.54135
3	0.0012236	9.3826	85145.39482
4	0.0017694	13.571	76123.97208
5	0.0022675	17.393	56298.88271
6	0.0027278	20.925	46458.19824
7	0.003167	24.292	44739.76734
8	0.0035975	27.598	76852.53353
9	0.0040296	30.913	65764.79233
10	0.0044621	34.223	59747.56043
11	0.0048799	37.428	71170.39686
12	0.0052632	40.368	50352.02014
13	0.0056179	43.091	70862.60824
14	0.0059606	45.719	68090.06629
15	0.0062861	48.215	57661.72297
16	0.0065939	50.577	54473.48113
17	0.0068926	52.87	74584.52894
18	0.007188	55.14	65325.12927
19	0.0074667	57.277	57238.70079
20	0.0077223	59.237	68797.43039
21	0.0079564	61.028	67398.41238
22	0.008171	62.678	57724.59149

Data Energi per Satuan Panjang

No	D(mm)	L (mm)	Energi (I)	E/L
1	106.46	105	7287.525877	69405.00835
2	86.29	130	7031.082318	54085.2486
3	97.34	115	5947.540601	51717.74436
4	93.35	120	5419.080081	45159.00068
5	101.69	110	5336.641405	48514.92186
6	68.33	165	4996.599735	30282.42264
7	111.7	100	4860.600105	48606.00105
8	52.81	215	4559.268881	21205.90177
9	72.63	155	4145.463787	26744.92766
10	83.16	135	4198.986684	31103.60507
11	61.11	185	4038.348891	21828.91292
12	70.41	160	4040.660916	25254.13073
13	50.53	225	3783.159837	16814.04372
14	64.51	175	3836.001098	21920.00627
15	55.3	205	3469.998777	16926.8233
16	80.24	140	3470.53727	24789.55193
17	56.65	200	3112.270305	15561.35153
18	89.68	125	3284.526971	26276.21577
19	51.65	220	2736.741951	12439.73614
20	66.36	170	2849.927875	16764.28162
21	75	150	2497.746327	16651.64218
22	77.53	145	2483.458952	17127.30312
23	58.06	195	2419.568814	12408.0452
24	62.77	180	63009.30515	2328.508872
25	59.55	-190	62512.56969	2319.903974
26	54.03	210	48924.73422	1660.065157

AL.

Data Efisiensi Perpindahan

No	D (mm)	L (mm)	D/L	δ/L
1	106.46	105	1.013904762	0.806390476
2	86.29	130	0.663769231	0.774692308
3	97.34	115	0.846434783	0.760765217
4	93.35	120	0.777916667	0.720741667
5	101.69	110	0.924454545	0.702772727
6	68.33	165	0.414121212	0.479921212
7	111.7	100	1.117	0.70394
8	52.81	215	0.245627907	0.356432558
9	72.63	155	0.616	0.43416129
10	83.16	135	0.468580645	0.469496296
11	61.11	185	0.4400625	0.348740541
12	70.41	160	0.330324324	0.39550625
13	50.53	225	0.368628571	0.278568889
14	64.51	175	0.224577778	0.344897143
15	55.3	205	0.573142857	0.276253659
16	80.24	140	0.269756098	0.384007143
17	56.65	200	0.71744	0.28388
18	89.68	125	0.28325	0.428728
19	51.65	220	0.390352941	0.229190909
20	66.36	170	0.234772727	0.275788235
21	75	150	0.5	0.253646667
22	77.53	145	0.534689655	0.257986207
23	58.06	195	0.29774359	0.201933333
24	62.77	180	0.348722222	0.205305556
25	59.55	190	0.313421053	0.195321053
26	54.03	210	0.257285714	0.16157619

AL.

 4
 62.77
 180
 0.348722222
 0.20

 5
 59.55
 190
 0.313421053
 0.19

 5
 54.03
 210
 0.257285714
 0.1

repository.ub.ac.id

Data Efisiensi Gaya Tabrak

No	Diameter (mm)	Panjang (mm)	D/L	Efisiensi gaya tabrak
1	106.46	105	1.013904762	0.369212006
2	86.29	130	0.663769231	0.524088563
3	97.34	115	0.846434783	0.550723617
4	93.35	120	0.777916667	0.55860457
5	101.69	110	0.924454545	0.525904072
6	68.33	165	0.414121212	0.650225334
7	111.7	100	1.117	0.475411863
8	52.81	215	0.245627907	0.723085521
9	72.63	155	0.616	0.612154934
10	83.16	135	0.468580645	0.568239732
11	61.11	185	0.4400625	0.695046714
12	70.41	160	0.330324324	0.63872018
13	50.53	225	0.368628571	0.718790666
14	64.51	175	0.224577778	0.684547115
15	55.3	205	0.573142857	0.679677332
16	80.24		0.269756098	0.576390438
17	56.65	200	0.71744	0.634330167
18	89.68	125	0.28325	0.478539184
19	51.65	220	0.390352941	0.658431874
20	66.36	170	0.234772727	0.623895038
21	75	150	0.5	0.615052042
22	77.53	145	0.534689655	0.601635846
23	58.06	195 -	0.29774359	0.672138348
24	62.77	180	0.348722222	0.650405975
25	59.55	190	0.313421053	0.676605812
26	54.03	210	0.257285714	0.552268396