#### **BAB IV**

#### PERANCANGAN SIMULASI JARINGAN

#### 4.1 Umum

Dalam dunia nyata, evaluasi terhadap performansi suatu rancangan model jaringan merupakan hal yang sangat penting. Pross evaluasi ini, merupakan tugas yang kompleks dalam skenario nyata. Untuk mengatasi tantangan tersebut, berbagai simulator digunakan untuk menyimulasikan model jaringan dari perspektif yang berbeda. Salah satunya adalah *Optimized Network Engineering Tool* (OPNET) Modeler yang dirancang oleh OPNET Technologies Inc. OPNET Modeler memiliki fitur beragam dan komprehensif yang memudahkan proses mendesain skenario jaringan di dunia nyata kedalam suatu model simulasi jaringan.

#### 4.2 Instalasi OPNET Modeler v.14.5

Pada bagian ini akan dibahas mengenai cara instalasi OPNET Modeler v.14.5 pada sistem operasi Windows XP. Sebelum tahap instalasi dilakukan, perlu diketahui bahwa terdapat spesifikasi minimum yang diperlukan oleh OPNET Modeler v.14.5 agar dapat bekerja dengan baik. Tabel 4.1 di bawah ini menunjukkan spesifikasi minimum bagi OPNET Modeler v.14.5.

| Nama                    | Spesifikasi                                  |  |  |  |  |
|-------------------------|----------------------------------------------|--|--|--|--|
| Supported platform      | Windows XP Professional                      |  |  |  |  |
| for microsoft           |                                              |  |  |  |  |
| Required System Patches | Service Pack 1 (diperlukan)                  |  |  |  |  |
| for microsoft           | Service Pack 2 (Namun usahakan menggunakan   |  |  |  |  |
|                         | SP2, sebab untuk instalasi compiler, VS2005, |  |  |  |  |
|                         | memerlukan SP2)                              |  |  |  |  |
| System Configuration    | RAM : minimal 512 MB, 1-2 GB (disarankan)    |  |  |  |  |
|                         | System File Space : 3 GB                     |  |  |  |  |
|                         | Working File Space :                         |  |  |  |  |
|                         | (100 MB or more for temporary and log files) |  |  |  |  |
|                         | Display Resolution : 1024x768 minimum        |  |  |  |  |
| Supporting software     | Microsoft Visual C/C++ 6.x, Visual Studio    |  |  |  |  |
| (compiler)              | .NET 2003, atau Visual Studio 2005           |  |  |  |  |

Tabel 4.1 Spesifikasi minimum untuk OPNET Modeler v.14.5

(sumber: http://www.opnet.com, 2012)

Pada konfigurasi jaringan VoIP melalui *mobile* WiMAX akan ditentukan komponen-komponen jaringan, karakteristik trafik yang akan dibangkitkan serta penentuan parameter-parameter simulasi yang diimplementasikan dalam model jaringan yang akan dirancang untuk mengetahui performansi VoIP melalui *mobile* WiMAX.

## 4.3.1 Komponen Jaringan

Pada proses simulasi VoIP melalui *mobile* WiMAX pada OPNET Modeler diperlukan model-model jaringan yang merupakan representasi dari kondisi jaringan sebenarnya yang disebut dengan *node model*. Dalam *node model* tersebut telah terdapat konfigurasi-konfigurasi yang disesuaikan dengan fungsi masing-masing *node model* dan telah disesuaikan dengan standar *mobile* WiMAX 802.16e. Berikut ini merupakan penjelasan mengenai komponen-komponen jaringan (*node models*) yang akan digunakan dalam simulasi menggunakan OPNET Modeler:

Tabel 4.2 Komponen-komponen Jaringan yang Digunakan Dalam Simulasi

| No | Nama                                | Fungsi                                                                                                                                                    | Simbol                                         |
|----|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 1. | Wimax_bs_ethernet<br>4_slip4_router | model yang digunakan untuk<br>merepresentasikan <i>Base Station</i> (BS) pada<br>WiMAX BS tipe ini memiliki 4 <i>interface</i>                            |                                                |
| 2. | Wimax_ss_wkstn                      | ethernet dan 4 <i>interface</i> Serial Line IP (SLIP)<br>model yang digunakan untuk<br>merepresentasikan <i>Mobile Station</i> (MS)                       | Base Station                                   |
| 3. | Router_slip64_dc                    | menggunakan aplikasi TCP/IP<br>model yang digunakan untuk<br>merepresentasikan gateway yang<br>menghubungkan dengan jaringan internet                     |                                                |
| 4. | Profile Config                      | model yang digunakan untuk menentukan perilaku yang akan terjadi pada <i>user</i> atau disebut ( <i>user profile</i> )                                    | APPL<br>Profile<br>Profile Config              |
| 5. | Application Config                  | model yang digunakan untuk menentukan<br>jenis aplikasi atau layanan yang akan<br>berlangsung pada <i>user</i> , dalam skripsi ini<br>berupa layanan VoIP | Appleation<br>Definition<br>Application Config |
| 6. | WiMAX Config                        | model yang digunakan untuk melakukan<br>pengaturan konfigurasi parameter-parameter<br>jaringan WiMAX                                                      | WIMAX                                          |

| No | Nama            | Fungsi                                                                                                                                  | Simbol             |
|----|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 7. | Mobility Config | model yang digunakan untuk menentukan kecepatan, arah pergerakan, jarak, dan hal lain terkait dengan pergerakan/mobilitas <i>user</i> . | Mobility<br>Config |
| 8. | PPP             | Point-to-Point Protocol (duplex link) adalah sebuah protokol enkapsulasi paket jaringan                                                 |                    |
|    |                 | yang banyak digunakan pada wide area network (WAN)                                                                                      |                    |

## 4.3.2 Parameter-parameter Jaringan WiMAX

Agar diperoleh hasil simulasi yang mendekati kondisi nyata, maka konfigurasi model-model dalam simulasi harus sesuai dengan parameter-parameter jaringan *mobile* WiMAX 802.16e. Tabel 4.3 menunjukkan data-data yang akan digunakan pada simulasi ini adalah :

Tabel 4.3 Parameter Mobile WiMAX 802.16e Dalam Simulasi

| No  | Parameter            | Nilai                |
|-----|----------------------|----------------------|
| 1.  | Frekuensi Kerja      | 2300 MHz             |
| 2.  | Metode Transmisi     | TDD                  |
| 3.  | Teknik Transmisi     | OFDMA                |
| 4.  | Bandwidth            | 5 MHz                |
| 5.  | Teknik Modulasi      | QPSK, 16-QAM, 64-QAM |
| 6.  | Durasi Cyclic Prefix |                      |
| 7.  | Jumlah Subcarier     | 512                  |
| 8.  | Tinggi BS            | 32 meters            |
| 9.  | Daya Maksimum BS     | 35 dBm               |
| 10. | Gain Antena BS       | 16 dBi               |
| 11. | Tinggi MS            | 1,5 meters           |
| 12. | Daya Maksimum MS     | 23 dBm               |
| 13. | Gain Antena MS       | 0 dBi                |

(Sumber : WiMAX Forum, 2006)

Data dalam Tabel 4.3 merupakan parameter-parameter yang mempengaruhi proses simulasi terhadap performansi VoIP melalui *mobile* WiiMAX yakni *delay end to end, packet loss* dan *troughput*. Sedangkan untuk parameter-parameter lain yang tidak secara langsung berpengaruh dalam performansi VoIP melalui *mobile* WiiMAX, akan digunakan data-data sesuai dengan standar WiMAX 802.16e.

Parameter dalam Tabel 4.3 akan diimplementasikan ke dalam model-model yang telah ditentukan sebelumnya, antara lain pada model *Wimax\_bs\_ethernet4\_slip4\_router* (yang berfungsi sebagai representasi Base Station), model *Wimax\_ss\_wkstn* (yang berfungsi sebagai representasi Mobile Station) dan model *WiMAX\_Config* (merupakan konfigurasi global dari jaringan WiMAX, antara lain meliputi tipe layanan dan PHY profile)

### 4.4 Desain Simulasi

Sebelum dapat memulai tahap simulasi performansi VoIP melalui *mobile* WiMAX pada simulator OPNET Modeler, diperlukan konfigurasi jaringan WiMAX kedalam network model simulasi. Langkah-langkah dalam melakukan konfigurasi jaringan WiMAX, antara lain menentukan topologi jaringan yang akan digunakan, konfigurasi mobilitas MS, menambahkan trafik dalam model jaringan WiMAX, dan konfigurasi parameter WiMAX ke dalam model jaringan.

## 4.4.1 Topologi Jaringan

Membangun topologi untuk jaringan WiMAX memiliki kesamaan dengan membangun topologi pada jaringan yang lain. Pada OPNET Modeler terdapat beberapa metode yang dapat digunakan untuk membuat topologi jaringan WiMAX, dan dalam penelitian ini digunakan metode *Wireless Network Deployment* (WND). Menu tersebut memberikan kemudahan dalam membangun dan melakukan konfigurasi jaringan *wireless*, dan pada OPNET Modeler v.14.5 telah mendukung beberapa teknologi jaringan termasuk jaringan WiMAX.



Gambar 4.1 Menu Wireless Network Deployment (WND) Opnet Modeler

Tabel 4.4 menunjukkan beberapa parameter yang digunakan dalam pembuatan topologi jaringan WiMAX menggunakan menu WND.

| No  | Parameter                    | Value               |  |  |
|-----|------------------------------|---------------------|--|--|
| 1.  | Daya Maksimum BS             | 35 dBm ( 3,16 W)    |  |  |
| 2.  | Daya Maksimum MS             | 23 dBm ( 0,20 W )   |  |  |
| 3.  | Model Pathloss dan Multipath | Pedestrian          |  |  |
| 4.  | Jumlah <i>Cell</i>           | 1                   |  |  |
| 5.  | Cell Radius                  | 1 mil = 1,60934 km  |  |  |
| 6.  | Bentuk Cell                  | Persegi 6 (hexagon) |  |  |
| 7.  | Penempatan MS                | Acak (random)       |  |  |
| 8.  | Kecepatan MS                 | 0,5 m/s             |  |  |
| 9.  | Area pergerakan MS           | Dalam Cell          |  |  |
| 10. | Ketinggian MS                | 1,5 m               |  |  |
| 11. | Mobilitas MS                 | Acak (random)       |  |  |

Tabel 4.4 Parameter dalam pembuatan topologi jaringan WiMAX

Setelah seluruh parameter telah sesuai maka topologi jaringan WiMAX siap diimplementasikan ke dalam lembar kerja. Gambar 4.2 menunjukkan tahap akhir dalam menentukan konfigurasi topologi jaringan WiMAX.

Gambar 4.2 Konfigurasi topologi jaringan WiMAX menggunakan menu WDN

Gambar 4.3 di bawah ini menunjukkan hasil pembuatan topologi jaringan WiMAX yang telah dirancang menggunakan menu WDN.



Gambar 4.3 Topologi Jaringan WiMAX Dalam Simulasi

## 4.4.2 Konfigurasi Mobilitas Mobile Station

Pada standar *mobile* WiMAX 802.16e, *user* tetap dapat memperoleh layanan WiMAX walaupun sedang dalam kondisi bergerak (*mobile*). Pergerakan user ini dapat terjadi baik di dalam *cell* maupun pergerakan *user* dari satu *cell* ke *cell* lain yang berbeda. Dalam simulasi ini, *user* akan diwakili oleh *node model* MS, dan mobilitas dari MS akan dibatasi hanya terjadi di dalam *cell*. Pergerakan MS akan ditetapkan secara acak, dengan menggunakan menu *random mobility*.

Selama simulasi berlangsung, MS akan secara acak memilih tujuan dalam satu *cell* dengan kecepatan yang telah ditetapkan yakni 0,5 m/s. Setelah mencapai tujuannya, akan mengulangi proses sebelumnya dengan arah yang berbeda.

Atur *random mobility* dengan memilih menu *auto create*, dengan fitur *record trajectory* yang telah diaktifkan. Pengaturan ini membuat pergerakan MS akan secara otomatis di simpan, dan pergerakan MS dapat diulangi lagi pada simulasi selanjutnya. Gambar 4.4 menunjukkan menu kofigurasi mobilitas *Mobile Station*.

| 🔣 Configure Mobility Profile on Selected 🔳 🗖 🔀  |                                     |  |  |  |  |  |
|-------------------------------------------------|-------------------------------------|--|--|--|--|--|
| Mobility Profile Name Default Random Waypoint 🗨 |                                     |  |  |  |  |  |
| Default Random Waypoint                         |                                     |  |  |  |  |  |
|                                                 | Random Waypoint (Record Trajectory) |  |  |  |  |  |
|                                                 | Static                              |  |  |  |  |  |
| Random Waypoint (Auto Create)_1                 |                                     |  |  |  |  |  |

#### Gambar 4.4 Menu konfigurasi mobilitas Mobile Station

## 4.4.3 Implementasi VoIP dalam Jaringan WiMAX

Jenis aplikasi yang akan digunakan dalam simulasi ini adalah layanan VoIP dengan memanfaatkan jaringan WiMAX. Untuk mengimplementasikan aplikasi

tersebut dalam OPNET Modeler, digunakan *node model* Application Config. Dalam *node model* tersebut terdapat aplikasi-aplikasi standar yang dapat disesuaikan dengan kebutuhan. Selain VoIP beberapa aplikasi lain yang tersedia pada OPNET Modeler, yaitu http, email, video, FTP, voice, database, dan sebagainya. Gambar 4.5 menunjukkan konfigurasi pada *node model* Application Config.

| Attrib     | ute                                    | Value              | <b>A</b> |
|------------|----------------------------------------|--------------------|----------|
| 🔊 :- na    | me                                     | Application_Config |          |
| 2) 🗏 A     | oplication Definitions                 | []                 |          |
| -          | Number of Rows                         | 1                  |          |
| ē          | VolP                                   |                    |          |
| 2          | - Name                                 | VoIP               |          |
| 2          | Description                            | ()                 |          |
| 2          | - Custom                               | Off                |          |
| 2          | - Database                             | Off                |          |
| 2          | - Email                                | Off                |          |
| 2          | - Ftp                                  | Off                |          |
| 2          | - Http                                 | Off                |          |
| 2          | - Print                                | Off                |          |
| 2          | - Remote Login                         | Off                |          |
| 2          | <ul> <li>Video Conferencing</li> </ul> | Off                |          |
| 2          | L Voice                                | []                 |          |
| €M         | OS                                     |                    |          |
| 2) 🗉 V     | pice Encoder Schemes                   | G.711              | -        |
| ( <u> </u> |                                        |                    |          |

Gambar 4.5 Konfigurasi pada atribut model Application Config

Parameter yang digunakan dalam layanan untuk aplikasi VoIP dalam simulasi ini adalah :

- *audio codec* yang digunakan adalah standar G.711 dengan *bit rate* 64 Kbps dan *frame size* 10 ms
- protokol yang digunakan adalah H.323
- Type of Service (ToS) berupa best effort

Konfigurasi parameter VoIP dirancang dengan menentukan Tabel *Voice* seperti yang terlihat pada Gambar 4.6 di bawah ini.

| 👪 (Voice) Table                 | ٥                         | < |  |
|---------------------------------|---------------------------|---|--|
| Attribute                       | Value                     | I |  |
| Silence Length (seconds)        | default                   |   |  |
| Talk Spurt Length (seconds)     | default                   |   |  |
| Symbolic Destination Name       | Voice Destination         |   |  |
| Encoder Scheme                  | G.711                     |   |  |
| Voice Frames per Packet         | 1                         |   |  |
| Type of Service                 | Best Effort (0)           |   |  |
| RSVP Parameters                 | None                      |   |  |
| Traffic Mix (%)                 | All Discrete              |   |  |
| Signaling                       | H.323                     |   |  |
| Compression Delay (seconds)     | 0.02                      |   |  |
| Decompression Delay (seconds)   | 0.02                      |   |  |
| Conversation Environment        | ()                        |   |  |
| <u>D</u> etails <u>P</u> romote | <u>O</u> K <u>C</u> ancel |   |  |

Gambar 4.6 Konfigurasi parameter VoIP pada (Voice) Table

VIJ AL

Setelah konfigurasi pada *node model* Application Config, perlu dilakukan konfigurasi pada Profile Config untuk menentukan perilaku *user* pada layanan yang akan dirancang. Dalam simulasi, panggilan menggunakan VoIP akan dibangkitkan 10 detik setelah simulasi dimulai.

Waktu pembangkitan = *profile start time* (detik) + *application start time* (detik) VoIP = 5 detik + 5 detik

### = 10 detik

Masing-masing simulasi akan dilakukan selama 5 menit (300 detik), sehingga durasi terjadinya panggilan adalah selama 290 detik. Prosedur ini akan dilakukan terus menerus selama simulasi berlangsung. Gambar 4.7 di bawah ini menunjukkan konfigurasi waktu dalam simulasi.



Gambar 4.7 Konfigurasi waktu dalam simulasi (sumber : opnet tutorial)

Perilaku *user* yang telah ditentukan di atas, diimplementasikan ke dalam *node model* Profile Config yang akan digunakan selama proses simulasi berlangsung, sebagaimana ditunjukkan dalam Gambar 4.8 berikut:

| Attribute                     | Value                   |
|-------------------------------|-------------------------|
| <sub>i</sub> r name           | Profile Config          |
| Profile Configuration         | ()                      |
| - Number of Rows              | 1                       |
| VolP                          |                         |
| - Profile Name                | VolP                    |
| Applications                  | ()                      |
| - Number of Rows              | 1                       |
| VolP                          |                         |
| - Name                        | VoIP                    |
| - Start Time Offset (seconds) | constant (5)            |
| - Duration (seconds)          | constant (590)          |
| 🖲 Repeatability               | Once at Start Time      |
| - Operation Mode              | Simultaneous            |
| - Start Time (seconds)        | constant (5)            |
| - Duration (seconds)          | End of Last Application |
| 🖲 Repeatability               | Once at Start Time      |
|                               |                         |

Gambar 4.8 Konfigurasi parameter perilaku user pada Profile Config

Tahap terakhir dalam desain simulasi VoIP melalui *mobile* WiMAX yaitu mengimplementasikan parameter jaringan WiMAX ke dalam model jaringan. Parameter dalam konfigurasi ini mengacu pada Tabel 4.2 dan parameter-parameter lain yang sesuai dengan standar *mobile* WiMAX 802.16e. Seluruh konfigurasi ini dilakukan di dalam *node model* WiMAX\_Config.

#### a. Kelas-Kelas Layanan

Suatu kelas layanan (*Service Class*) digunakan untuk mengelompokkan kebutuhan QoS sesuai dengan prioritas pengguna. Kelas-kelas layanan tersebut didefinisikan dalam *MAC Service Class Definition*. Secara *default*, terdiri dari tiga kelas layanan, yakni *Gold*, *Silver*, dan *Bronze*. *Maximum sustained traffic rate* menunjukkan puncak laju trafik yang dating dari layer yang lebih tinggi menuju 802.16 MAC, sedangkan *minimum reserved traffic rate* menunjukkan laju data minimum yang dapat dijamin dalam *service flow* untuk kelas tersebut. Tabel 4.5 menunjukkan nilai-nilai dari Parameter MAC *Service Class*.

| Tabel 4.5 Parameter MAC Service Class |      |                                   |                                  |  |  |
|---------------------------------------|------|-----------------------------------|----------------------------------|--|--|
| Service<br>Class                      | Туре | Maximum Sustained<br>Traffic Rate | Minimum Reserved<br>Traffic Rate |  |  |
| Gold                                  | UGS  | 5 Mbps                            | 1 Mbps                           |  |  |
| Silver ertPS                          |      | 1 Mbps                            | 0.5 Mbps                         |  |  |
| Bronze                                | BE   | 384 Kbps                          | 384 Kbps                         |  |  |

selanjutnya data-data tersebut diimplementasikan dalam tabel MAC *Service Class Definition* seperti ditunjukkan pada gambar di bawah ini :

|                  | WiMAX) Attributes     |                    |                                         |                                        |                                   |                                  |                  |                       |
|------------------|-----------------------|--------------------|-----------------------------------------|----------------------------------------|-----------------------------------|----------------------------------|------------------|-----------------------|
|                  | Type: Utilities       |                    |                                         |                                        |                                   |                                  |                  |                       |
|                  | Attribute             |                    | 1                                       | /alue                                  |                                   | <u> </u>                         |                  |                       |
|                  | 🕐 🕝 name              |                    | V                                       | WIMAX                                  |                                   |                                  |                  |                       |
|                  | 🕐 🖲 AMC P             | rofile Sets Defini | tions (.                                | ()                                     |                                   |                                  |                  |                       |
|                  | 🕐 🖲 Conter            | tion Parameters    | C                                       | ) efault                               |                                   |                                  |                  |                       |
|                  | ⑦ - Efficien          | icy Mode           | N                                       | fobility and Ranging E                 | nabled                            |                                  |                  |                       |
|                  | 🕐 🖲 MAC S             | ervice Class Def   | initions 🚺                              | )                                      |                                   |                                  |                  |                       |
|                  | 🕐 🖲 OFDM              | PHY Profiles       | (.                                      | ]                                      |                                   |                                  |                  |                       |
|                  | 📃 🖲 SC PH             | Y Profiles         |                                         | )                                      |                                   |                                  |                  |                       |
| 街 (MAC S         | Service Class         | Definitions)       | Table                                   |                                        |                                   |                                  |                  |                       |
|                  | Service Class<br>Name | Scheduling<br>Type | Maximum Sustained<br>Traffic Rate (bps) | Minimum Reserved<br>Traffic Rate (bps) | Maximum Latency<br>(milliseconds) | Maximum Traffic<br>Burst (bytes) | Traffic Priority | Unsolicited Poll In 🖻 |
| 0                | Gold                  | ]UGS               | 5 Mbps                                  | 1 Mbps                                 | 30.0                              | 0                                | Not Used         | Auto Calculated       |
| 1                | Silver                | rtPS               | 1 Mbps                                  | 0.5 Mbps                               | 30.0                              | 0                                | Not Used         | Auto Calculated       |
| 2                | Bronze                | Best Effort        | 384 Kbps                                | 384 Kbps                               | 30.0                              | 0                                | Not Used         | Auto Calculated 🔍     |
| •                |                       |                    |                                         |                                        |                                   |                                  |                  | •                     |
| 3                | Rows De               | letein             | sert D <u>u</u> plicate                 | e <u>M</u> ove Up                      | M <u>o</u> ve Down                |                                  |                  |                       |
| D <u>e</u> tails | Promo                 | te 🔽 🔽 Show        | row labels                              |                                        |                                   |                                  | 0 <u>K</u>       | Cancel                |

Gambar 4.9 Tabel MAC Service Class Definition

Mode efisiensi (*Efficiency Mode*) merupakan fitur didalam *node model* WiMAX\_Config yang berfungsi untuk memberikan batasan kemampuan jaringan WiMAX yang akan disimulasikan. Pada simulasi ini, mode efisiensi yang digunakan adalah *Mobility and Ranging mode*, karena keseluruhan fitur WiMAX dapat aktif sehingga hasil simulasi diharapkan semakin mendekati pada kondisi nyata. Fitur-fitur yang aktif antara lain *physical layer effects*, *frame modeling*, *ARQ*, *mobility* dan *ranging*. Selain itu, penggunaan mode tersebut dapat memberikan hasil *delay* yang lebih akurat. Gambar 4.10 menunjukkan konfigurasi mode efisiensi dalam *node model* WiMAX\_Config.

| ype: Utilities                    |                                                  |
|-----------------------------------|--------------------------------------------------|
| Attribute                         | Value                                            |
| ? mame                            | WIMAX                                            |
| 🕐 🗉 AMC Profile Sets Definitions  | ()                                               |
| 🕐 🗉 Contention Parameters         | Default                                          |
| P Efficiency Mode                 | Mobility and Ranging Enabled                     |
| 🍸 🗉 MAC Service Class Definitions | Efficiency Enabled                               |
| ③ E OFDM PHY Profiles             | Framing Module Enabled<br>Physical Layer Enabled |
| SC PHY Profiles                   | Mobility and Ranging Enabled                     |
|                                   |                                                  |
|                                   |                                                  |

Gambar 4.10 Konfigurasi efisiensi mode Mobility and Ranging Enabled

#### c. Service Flow

Setelah melakukan konfigurasi terhadap kelas-kelas layanan dalam jaringan WiMAX, kelas-kelas layanan tersebut dapat ditambahkan ke dalam *service flow* yang dibangun antara MS dengan BS. *Uplink* mengacu pada *service flow* dari MS ke BS, sebaliknya *downlink* mengacu pada dari BS ke MS. Pada simulasi ini kedua jenis *service flow* akan menggunakan kelas layanan *Silver*, hal ini berkaitan dengan tipe QoS yang dibutuhkan dalam aplikasi VoIP yakni ertPS.

|   |       | Service Class Name | Modulation and<br>Coding | d Average<br>(bytes) | je SDU Size | Activity Io<br>(seconds | dle Timer<br>) | Buffer Siz | e (bytes)   | -       |
|---|-------|--------------------|--------------------------|----------------------|-------------|-------------------------|----------------|------------|-------------|---------|
| _ | 0     | Silver             | Adaptive                 | 1500                 |             | 60                      | ,<br>,         | 64 KB      |             |         |
|   | ¥] (L | Jplink Service F   | lows) Table              |                      |             |                         |                |            |             |         |
| • |       | Service Clas       | s Name Modula            | ation and            | Average SE  | )U Size                 | Activity Idle  | e Timer    | Buffer Size | e (byte |
| 1 |       |                    | Loaing                   |                      | (Dytes)     |                         | (seconds)      |            |             |         |

Gambar 4.11 Konfigurasi service flow (UL/DL)

AL

# d. Menetapkan Trafik pada Service Classes

Service flow antara MS dan BS dapat dikonfigurasi dengan menggunakan service class tertantu. Konfigurasi ini dilakukan pada kedua node, baik MS maupun BS. Untuk uplink konfigurasi dilakukan pada sisi MS, sedangkan untuk downlink konfigurasi dilakukan pada sisi BS. Dalam simulasi ini akan digunakan tipe service class Silver. Gambar 4.13 (a) dan (b) menunjukkan konfigurasi trafik pada service classes pada MS dan BS.



Gambar 4.12 (a) Konfigurasi trafik pada service classes pada MS dan (b) pada BS

# e. Konfigurasi Parameter Physical Layer

Parameter konfigurasi *Physical Layer* yang akan dilakukan pada node BS dan MS, tercantum dalam Tabel 4.2. *Node model* MS digunakan untuk mereprentasikan karakteristik dari *user* yang *mobile*. Konfigurasi dilakukan dengan mengedit atribut pada *Wimax\_ss\_wkstn*, sebagaimana ditunjukkan pada Gambar 4.13 berikut ini :

|   | Attribute                                            | Value                                   |
|---|------------------------------------------------------|-----------------------------------------|
| 0 | i" name                                              | Mobile_1_8                              |
| 1 | - trajectory                                         | Final Simulasi-z_10_QPSK 12-Office Net. |
|   | WiMAX Parameters                                     |                                         |
| 3 | - Antenna Gain (dBi)                                 | 0.0                                     |
| 1 | Classifier Definitions                               | ()                                      |
| 0 | - MAC Address                                        | Auto Assigned                           |
| 0 | - Maximum Transmission Power (W)                     | 0.2                                     |
| 0 | - PHY Profile                                        | WirelessOFDMA 20 MHz                    |
| 0 | - PHY Profile Type                                   | OFDM                                    |
| 0 | SS Parameters                                        | ()                                      |
| 0 | - BS MAC Address                                     | Distance Based                          |
| 0 | Downlink Service Flows                               | ()                                      |
| 0 | Uplink Service Flows                                 | []                                      |
| 0 | <ul> <li>Multipath Channel Model</li> </ul>          | ITU Pedestrian A                        |
|   | Pathloss Parameters                                  | ()                                      |
|   | - Pathloss Model                                     | Suburban Fixed (Erceg)                  |
| 0 | <ul> <li>Terrain Type (Suburban Fixed)</li> </ul>    | Terrain Type B                          |
| 3 | L. Shadow Fading Standard Deviati                    | 9.6                                     |
| 3 | - Ranging Power Step (mW)                            | 0.25                                    |
| 0 | Timers                                               | Default                                 |
| 0 | - Contention Ranging Retries                         | 16                                      |
| 0 | Mobility Parameters                                  | Default                                 |
|   | HARQ Parameters                                      | ()                                      |
| 0 | <ul> <li>Piggyback BW Request</li> </ul>             | Enabled                                 |
| 0 | - CQICH Period                                       | 3                                       |
| 0 | <ul> <li>Contention-Based Reservation Tim</li> </ul> | 16                                      |
|   | Request Retries                                      | 16                                      |

Gambar 4.13 Konfigurasi pada node model Mobile Station

Sedangkan untuk melakukan konfigurasi dalam node model BS, dapat dilakukan dengan mengedit atribut pada Wimax\_bs\_ethernet4\_slip4\_router, sebagaimana ditunjukkan pada Gambar 4.14 berikut ini :

| Attribute                                  | Value                        |
|--------------------------------------------|------------------------------|
| in name                                    | Base Station_1               |
| WiMAX Parameters                           |                              |
| - Antenna Gain (dBi)                       | 16                           |
| BS Parameters                              | ()                           |
| - Maximum Number of SS Nodes               | 100                          |
| Received Power Tolerance                   | [ ()                         |
| - Minimum Power Density (dBm/su            | -88                          |
| Maximum Power Density (dBm/s               | -73                          |
| CDMA Codes                                 | ()                           |
| Backoff Parameters                         | ()                           |
| Mobility Parameters                        | ()                           |
| - Channel Quality Averaging Parameter      | 4/16                         |
| - Number of Transmitters                   | SISO                         |
| - ASN Gateway IP Address                   | Disabled                     |
| - DL AMC Profile Set                       | Default DL Burst Profile Set |
| - UL AMC Profile Set                       | Default UL Burst Profile Set |
| - CQICH Period                             | Accept SS Configured Value   |
| - Reserved DL Subframe Capacity (%)        | 25%                          |
| End of the served UL Subframe Capacity (%) | 25%                          |
| Elassifier Definitions                     | ()                           |
| - MAC Address                              | Auto Assigned                |
| - Maximum Transmission Power (W)           | 3.16                         |
| - PHY Profile                              | Wireless0FDMA 20 MHz         |
| - PHY Profile Type                         | OFDM                         |
| <sup>I.,</sup> PermBase                    | 0                            |

Gambar 4.14 Konfigurasi pada node model Base Station

# f. Konfigurasi Node Model WiMAX

Node model WiMAX merupakan model yang digunakan untuk melakukan pengaturan konfigurasi parameter-parameter jaringan WiMAX. Konfigurasi ini mengacu pada parameter yang terdapat pada Tabel 4.3 yang telah disesuaikan dengan standar mobile WiMAX 802.16e. Gambar 4.15 menunjukkan konfigurasi pada node model WiMAX :

| Att      | ribute                                             | Value                                              |
|----------|----------------------------------------------------|----------------------------------------------------|
| <b>?</b> | name                                               | WIMAX                                              |
| 2 🗉      | AMC Profile Sets Definitions                       | []                                                 |
| ?) ⊞     | Contention Parameters                              | []                                                 |
| 2        | Efficiency Mode                                    | Mobility and Ranging Enabled                       |
| ? €      | MAC Service Class Definitions                      | Gold/Silver/Bronze                                 |
| 2 🗉      | OFDM PHY Profiles                                  | []                                                 |
|          | - Number of Rows                                   | 1                                                  |
|          | 🗏 Row 0                                            |                                                    |
| 2        | - Profile Name                                     | Wireless0FDMA 20 MHz                               |
| 2        | <ul> <li>Frame Duration (milliseconds)</li> </ul>  | 5                                                  |
| 2        | <ul> <li>Symbol Duration (microseconds)</li> </ul> | 100.8 (n=8/7, delta_f = 11.16 kHz, Tg=Tb/8)        |
| 2        | <ul> <li>Number of Subcarriers</li> </ul>          | 512                                                |
| 2        | Frame Structure                                    | []                                                 |
| 2        | <ul> <li>Duplexing Technique</li> </ul>            | TDD                                                |
| 2        | <ul> <li>TC Sublayer Overhead Factor</li> </ul>    | 0                                                  |
| 2        | Frequency Band                                     | []                                                 |
| 2        | - Base Frequency (GHz)                             | 2.3                                                |
| 2        | - Bandwidth (MHz)                                  | FDM PHY Profiles [0].Frequency Band.Base Frequence |
| 2        | Frequency Division                                 |                                                    |
| æ        | SC PHY Profiles                                    |                                                    |
| •        |                                                    |                                                    |

Gambar 4.15 Konfigurasi pada node model WiMAX

#### 4.4.5 Skenario Perbedaan Tipe Modulasi

Pada bagian ini akan dirancang skenario simulasi performansi VoIP melalui *mobile* WiMAX dengan menggunakan tipe-tipe modulasi yang berbeda. Tipe modulasi yang akan diimplementasikan dalam simulasi adalah QPSK, 16-QAM, dan 64-QAM. Parameter yang akan diamati dalam simulai ini adalah *delay end to end*, probabilitas *packet loss* dan *throughput*.

Jaringan pada Gambar 4.18 dibangun dengan menggunakan OPNET Modeler v.14.5. Untuk melakukan analisis terhadap parameter *delay end to end*, probabilitas *packet loss* dan *throughput* akan dilakukan enam simulasi berbeda sesuai dengan jenis modulasi dan pengkodean. Mengacu pada Tabel 2.5, digunakan 6 jenis modulasi dan pengkodean yang akan diimplementasikan dalam simulasi, yaitu QPSK ½, QPSK ¾, 16-QAM ½, 16-QAM ¾, 64-QAM <sup>2</sup> <sub>3</sub>, dan 64-QAM ¾. Gambar 4.16 menunjukkan skenario simulasi dengan menggunakan jenis modulasi dan pengkodean QPSK ½, yang telah diimplementasikan aplikasi layanan VoIP.



Gambar 4.16 Skenario simulasi perbedaan Tipe Modulasi dan Pengkodean pada layanan VoIP melalui *Mobile* WiMAX

Pada simulasi ini digunakan dua MS yakni Mobile\_1 dan Mobile\_2 yang bertindak sebagai sumber dan tujuan panggilan. Gambar 4.17 menunjukkan konfigurasi sumber dan tujuan panggilan pada simulasi.

| E Deploy Applications                                                                                                                                                                      |                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application Communication Visualization                                                                                                                                                    | Deploy Applications                                                                                                                                                                                                                                    |
| VolP v application under profile VolP v<br>running on Campus Network Wireless Subnet_0.Mobile_1_1 v<br>Logical Tiers: Nodes:<br>Client Campus Network<br>Wireless Subnet_0.Mobile_1_1<br>S | Profile: 'VolP"     Source     Campus Network.Wireless Subnet_0.Mobile_1_1     Application: 'VolP"     Campus Network.Wireless Subnet_0.Mobile_1_2     Campus Network.Wireless Subnet_0.Mobile_1_2     Error & Watning     Visualize App Communication |
| Voice Destination Campus Network<br>Wireless Subnet_0.Mobile_1_2                                                                                                                           | , on a node or a set of nodes:                                                                                                                                                                                                                         |
|                                                                                                                                                                                            | Appry OK Calicer nep                                                                                                                                                                                                                                   |

Gambar 4.17 Konfigurasi sumber dan tujuan panggilan pada simulasi

Kedua MS tersebut berada di dalam jangkauan sebuah BS (terdapat dalam satu *cell*) dan mobilitas kedua MS hanya terjadi di dalam *cell* tersebut. BS dan *operator backbone network* dihubungkan dengan menggunakan medium kabel *Point-to-Point Protocol* (PPP). Durasi simulasi dilaksanakan selama 300 detik pada masing-masing tipe modulasi.

## 4.4.6 Skenario Penambahan Jumlah User

Pada bagian ini akan dirancang skenario simulasi performansi VoIP melalui *mobile* WiMAX dengan melakukan penambahan jumlah *user* yang terdapat dalam jangkuan 1 *cell Base Station*. Parameter yang akan diamati dalam simulai ini adalah *delay end to end*, probabilitas *packet loss* dan *throughput*. Sama seperti pada skenario sebelumnya, skenario ini menggunakan modulasi QPSK, 16-QAM, dan 64-QAM. Skenario penambahan jumlah *user* dilakukan berdasarkan pada Tabel 4.6 dibawah ini:

| Skenario | Kecepatan<br><i>User</i> | Durasi panggilan<br>tiap <i>user</i> | Jumlah<br><i>user</i> |
|----------|--------------------------|--------------------------------------|-----------------------|
| 1        | 0,5 m/s                  | 300 detik                            | 2                     |
| 2        | 0,5 m/s                  | 300 detik                            | 4                     |
| 3        | 0,5 m/s                  | 300 detik                            | 8                     |
| 4        | 0,5 m/s                  | 300 detik                            | 12                    |
| 5        | 0,5 m/s                  | 300 detik                            | 16                    |
| 6        | 0,5 m/s                  | 300 detik                            | 20                    |

Tabel 4.6 Skenario penambahan jumlah user

Penempatan lokasi *user* dan mobilitas dari masing-masing *user* dilakukan secara acak (*random*) melalui pengaturan pada OPNET Modeler v.14.5. Pada skenario ini, dari jumlah *user* yang terdapat dalam *cell* tersebut akan dibagi dua yakni sebagian bertindak sebagai sumber panggilan dan sebagian sebagai tujuan panggilan. Konfigurasi simulasi skenario penambahan jumlah *user* pada Tabel 4.6 ditunjukkan pada Gambar 4.18 di bawah ini :



BRAWIJAYA

### 4.5 Pelaksanaan Simulasi

Simulasi adalah proses merancang model dari suatu sistem yang sebenarnya, beserta kondisi sekelilingnya dengan tujuan menggambarkan sifat-sifat karakteristik kunci dari perilaku sistem fisik tertentu. Selama proses simulasi, digunakan media laptop yang telah memenuhi standar minimum yang dibutuhkan agar *network simulator* tersebut dapat bekerja dengan baik. Tabel 4.7 menunjukkan spesifikasi laptop yang digunakan selama proses simulasi.

| G 1911 1                                           |
|----------------------------------------------------|
| Spesifikasi                                        |
| AXIOO NEON MNC                                     |
| Microsoft Windows XP Professional (Service Pack 3) |
| Intel ® Pentium ® Dual CPU T2410 @ 2.00 GHz        |
| RAM : 1918 MB                                      |
| 5 GB                                               |
| lebih dari 100 MB                                  |
| 1280 x 800 (32 bit) (60 Hz)                        |
| Visual Studio 2005 (compiler)                      |
|                                                    |

Tabel 4.7 Spesifikasi laptop yang digunakan selama proses simulasi

Setelah tahap desain simulasi selesai dilakukan, tahap selanjutnya adalah menjalankan simulasi. Model simulasi yang digunakan adalah *Discrete event simulation* (DES). Gambar 4.19 di bawah ini adalah tampilan dari *Discrete event simulation* OPNET Modeler :

| Preview Simulation Set     Number of runs: 1       Image: Common term     Common       Image: Durbuts term     Duration: 300 second(s) Image: Second(s) Imag | Configure/Run DES: Fina                                            | simulasi-z_20_QPSK 12a                                                                                                         | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---|
| Imputs       Common         B→       Imputs         B→       Outputs         B→       Runtime Displays         B→       Runtime Displays         Common       Seed:         128       Enter Multiple Seed Value:         Values per statistic:       100         Update interval:       10000         Simulation Kemet:       Optimized         Simulation set name:       scenario         Comments:       Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Preview Simulation Set                                             | Number of runs: 1                                                                                                              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Common     Inputs     Outputs     P Execution     Runtime Displays | Common Duration: 300 Seed: 128 Values per statistic: 100 Update intervat: 10000 events Simulation set name: scenario Comments: |   |
| Simple Edit Simulation Sequence Bun Cancel Annu Hele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Simple Edit Simulation S                                           | ence Eun Cancel Applu Help                                                                                                     |   |

Gambar 4.20 Tampilan menu Discrete event simulation OPNET Modeler

Tetapkan durasi simulasi selama 300 detik, sesuai dengan pengaturan yang dilakukan sebelumnya. Pada tahap ini juga diatur format laporan yang diinginkan, dalam hal ini format laporan yang digunakan adalah dalam bentuk *website report*. Pada menu report output, centang "Generate web report for simulation results" untuk mengaktifkan *website report* menu. Setelah konfigurasi selesai, klik Run untuk memulai simulasi.



Gambar 4.20 Screenshot Simulation Progress saat simulasi berlangsung

Gambar 4.20 di atas menunjukkan proses saat simulasi sedang berlangsung. Sedangkan pada Gambar 4.21 di bawah ini menunjukkan laporan hasil simulasi dalam format *website report*.



Gambar 4.21 Tampilan laporan hasil simulasi dalam format website report