BAB IV HASIL DAN PEMBAHASAN

Pada bab ini akan dijelaskan mengenai analisis data dan juga pembahasan dari hasil analisis tersebut, sehingga nantinya dapat memberikan usulan perbaikan berdasarkan hasil analisis permasalahan.

4.1 Gambaran Umum PT ALP Petro Industry

Pada gambaran umum objek penelitian ini akan dibahas mengenai gambaran secara umum PT ALP Petro Industry.

4.1.1 Sejarah PT ALP Petro Industry

PT ALP Petro Industry merupakan perusahaan gabungan antara sebuah perusahaan yang berkedudukan di Italia dengan PT. Sinar Pejambon Indah yang berlokasi di Surabaya dengan akta kesepakatan yang ditandatangani pada tahun 1994.

Pada tahun 1995 PT ALP Petro Industry mulai dibangun dan beroperasi pada tahun 1997. Pada tahun 1997, PT ALP Petro Industry belum beroperasi secara normal karena teknis belum siap sehingga alat-alat belum beroperasi secara optimal. Pada Oktober 1999, PT ALP Petro Industry mulai beroperasi secara normal. Sebelum berubah nama pada tahun 2004 karena akuisisi saham, PT ALP Petro Industry hanya memproduksi pelumas dengan merk mereka sendiri. Sejak nama perusahaan berganti nama, perusahaan ini memproduksi pelumas merk sendiri hanya dalam jumlah yang lebih sedikit dari sebelumnya, karena perusahaan juga menerima jasa produksi pelumas dari merk lain dalam kemasan drum. PT ALP Petro Industry mengolah minyak pelumas bekas (*used oil*) menjadi *base oil*, dan kemudian dengan menambahkan *additive* dihasilkan minyak pelumas bermutu tinggi.

Ada beberapa keuntungan berdirinya PT ALP Petro Industry:

- 1. Membantu memenuhi kebutuhan minyak pelumas nasional.
- 2. Membantu menghindarkan konsumen dari minyak pelumas dibawah standar.
- 3. Membantu mencegah kerusakan lingkungan akibat banyaknya minyak pelumas bekas.
- 4. Mengurangi pemalsuan pelumas.
- 5. Memperkecil impor pelumas
- 6. Penyerapan tenaga kerja.

PT ALP Petro Industry terletak di Desa Legok Kecamatan Gempol, Kabupaten Pasuruan yang mencakup area seluas 6,145 Ha. Beberapa pertimbangan dalam pemilihan lokasi tersebut adalah:

1. Bahan Baku

Tersedianya bahan baku yang banyak karena dekat dengan daerah perindustrian yang ada di sekitar Surabaya sebagai sumber bahan baku.

2. Transportasi

Tersedianya jalan raya yang bagus dan mudah dijangkau, baik untuk mengirim hasil produk maupun mengangkut bahan baku.

3. Tersedianya Air

Air dapat diperoleh dengan mudah karena dapat diambil dari dalam tanah.

4.2 Proses Produksi

Proses produksi *lubricant oil* (minyak pelumas) di PT ALP Petro Industry dibagi dalam tiga bagian, yaitu proses *Refinery* yang termasuk didalamnya adalah unit *Preflash*, *Thermal de-Asphalting*, dan *Hydrofinishing* serta proses *Blending* dan *Filling*.

4.2.1 Proses Refinery

Refinery dimaksudkan untuk mengolah used oil menjadi base oil yang kemudian digunakan sebagai bahan baku minyak pelumas. Proses tersebut berlangsung pada unit Preflash, TDA dan Hydrofinishing.

4.2.1.1 Unit Preflash

Pada unit ini, air dan *gas oil* frakasi ringan dipisahkan dari *used oil*. Pertamatama minyak pelumas bekas disaring dan dipompa ke *Preheater*. Disini temperatur dinaikkan hingga 90°C. Minyak selanjutnya dipompa ke *Mechanical Mixer* dan dicampur dengan NaOH 32°Be. Campuran ini dipanaskan hingga 140°C pada *Heat Exchanger*. Selanjutnya dialirkan ke kolom *Preflash* (T-301) yang bekerja pada tekanan 26.000 Pascal untuk mereduksi kadar air dari 10% menjadi 0,2%, menguapkan *gas oil* maupun *solvent* lainnya yang terkandung dalam minyak.

Dari puncak kolom, uap air serta hidrokarbon ringan dikirim ke *Condensor* dan diturunkan temperaturnya menjadi 40°C. Kemudian dialirkan ke Separator untuk memisahkan kondensat dengan uap tidak terkondensasi (*off-gas*). Kondensat air dipompa ke IPAL, sementara kondensat dari *gas oil* ringan dipompa ke *Coalescer* untuk

mereduksi kadar air sebelum ditampung di *storage gas oil* ringan (*light gas oil*). *Off-gas* dikirim ke *Incinerator* untuk dibakar. Akhirnya minyak yang sudah dihilangkan airnya dari dasar T-301 dipompa ke *Tanki Intermediate* (TK-401).

4.2.1.2 Unit TDA (Thermal de-Asphalting)

Unit ini dimaksudkan untuk memisahkan *gas oil, base oil (spindle, light and heavy oil)*, dan residu yang mengandung hidrokarbon tinggi dan logam. Di TK-401 diberikan waktu yang cukup untuk mengendapkan material yang tersafonifikasi dengan NaOH serta memisahkannya. Endapan dipisah dan dipompa ke tangki penampungan. Minyak yang telah dipisah sabunnya dipompa ke *Furnace* pH-401 untuk menaikkan temperatur hingga 350°C dan seterusnya dialirkan ke kolom Distilasi T-401. Dengan menggunakan *Cyclone* di bagian *flash area* pada kolom Distilasi T-401, aspal dipisah dari uapnya.

Kolom Distilasi T-401 bekerja pada tekanan 2000 Pascal. Metal, kotoran dan substansi aspal yang ada dalam minyak dikeluarkan dari dasar kolom, sementara fraksi *lubricant* yang berbeda titik didih dan viscositasnya di *stripping* pada kolom T-402 dan didinginkan berturut-turut dengan pendingin udara E-401, 402, dan 403.

Dari puncak kolom, gas oil dipisah menjadi dua. Pertama dikembalikan kekolom distilasi pada tray keempat (sebagai reflux), sedangkan aliran kedua didinginkan hingga 44°C pada Heat Exchanger E-404 (digunakan sebagai fluida kondensasi). Vacuum equipment terdiri dari tiga stage exchanger dengan Steam Ejector. Heat Exchanger E-405/406/407 bertujuan untuk mengondensasi dan mendinginkan vapor dari puncak kolom sebelum dipisah pada Barometric Separator CS-401. Air kondensat dikirim ke IPAL sedangkan gas oil ke storage. Gas yang tidak terkondensasi dipompa ke Incinerator untuk dibakar. Aspal dari dasar dipompa ke storage setelah disaring pada Strainer FIL-401 A/B.

4.2.1.3 Unit Hydrofinishing

Unit ini dimaksudkan untuk menjernihkan *base oil* (dari unit TDA) sehingga diperoleh *base oil* yang memenuhi syarat. Distilat *base oil* yang terbentuk di unit TDA dibawa ke unit HF dengan *Feed Pump* P-101 A/B. *Base oil* dicampur dengan make up dan gas hidrogen pada *Demetalization Reactor* R-101 A/B setelah dipanaskan dengan temperatur yang terkontrol dalam *Fired Heater* H-101 (320°C). *Make up* gas masuk melalui *Compresor* K-101 A atau B dengan tekanan 50 bar.

Dalam Reactor R-101, katalis akan memisahkan metal dari oil sehingga tidak mengganggu dalam proses Refining. Effluent R-101 dialirkan ke Reactor R-102 dimana temperatur dikontrol dengan menggunakan recycled gas (quench gas). Effluent dari Reactor R-102 dikirim ke Separator Drum V-101, dimana liquid dan vapor dipisah. Phase vapor dicampur dengan larutan amoniak dan ditambahkan air sebagai feed pada Washing Column T-101. Disamping pencucian gas juga di dinginkan dengan menggunakan air secara sirkulasi dari tangki V-103 yang telah didinginkan pada pendingin udara E-101. Larutan amoniak yang diinjeksikan akan menetralisasi asamasam halogen. Sementara air make-up melarutkan garam ammonium tersebut sehingga larutan mengandung kurang dari 4% garam.

Gas dingin dikompres oleh Compresor K-102 A/B dan digunakan untuk control temperatute feed yang masuk ke reaktor, kemudian recycle gas dicampur dengan feed dan make up gas dari Preheater H-101.

Phase liquid dari V-101 dicampur dengan kondensat hidrokarbon dalam T-101 dan ditampung pada V-103 dan digunakan sebagai feed untuk kolom Stripping T-102. Kolom ini dilengkapi dengan kondensator udara E-102, drum reflux V-104, dan pompa reflux P-105 A/B.

Kondensat steam dipidah dari hidrokarbon ringan dalam V-104. Produk dasar kolom dikirim ke Dryer T-103 yang dilengkapi dengan Overhead Condensor E-104, Ejector System J-102 dan E-106, drum penampung V-105. Pada V-105, air dipisah secara gravitasi dan dipompa ke unit pengolahan air limbah secara oily water.

Produk bawah yang telah dikeringkan, dipompa dengan P-106 A/B dan dicampur dengan kondensat hidrokarbon dengan pompa P-107 A/B dari V-105, didinginkan dengan *Cooler* E-103 dan dikirim ke *storage* produk akhir.

4.2.2 Proses Blending

Pada unit ini, base oil sebagai produk dari Refinery selanjutnya dicampur dengan bahan additiv sesuai dengan tingkat formulasi AGIP. Produk kemudian disimpan dalam tangki dan siap dikirim ke Filling Line.

Proses Filling 4.2.3

Minyak pelumas jadi dari unit *Blending* kemudian dimasukkan dalam kemasan yang berupa botol plastik (0,8 dan 1 L), jerigen plastik (4 L), drum (200 L) atau Flexi container (1000 L). Pengisian dilakukan secara otomatis dengan mesin.

4.3 Karakteristik Air Limbah Masukan (Inlet) PT ALP Petro Industry

Proses pengolahan air limbah PT ALP Petro Industry dilakukan dengan pemantauan karakteristik air limbah pada unit-unit inlet, inlet dan outlet pada unit primary treatment, secondary treatment, tertiary treatment serta hasil outlet akhir. Hal ini perlu dilakukan agar proses pengolahan yang dilakukan dapat menghasilkan effluent yang aman bagi lingkungan. Proses pengolahan air di IPAL meliputi air yang mengandung bahan kimia dimana air tersebut merupakan parameter pencemar yang harus diolah lebih lanjut. Air limbah berasal dari proses Hydrofinish sytem, air dan minyak pelumas bekas yang telah dipisahkan di unit Preflash, Thermal De-Asphalting, dan air pencucian gas-gas dari Blowdown System.

Karakteristik limbah cair sangat penting dalam menentukan jenis proses pengolahan limbah cair yang dibutuhkan dan juga untuk mengetahui kualitas limbah sebelum dan sesudah melalui unit pengolahan, dimana proses pengolahan limbah tersebut menggunakan proses fisika, kimia, dan biologi sehingga diketahui efisiensi pengolahan yang dilakukan. Karakteristik fisik limbah cair atau parameter-parameter inlet yang masuk ke unit pengolahan adalah seperti pH, NH3, PO4, oil content, phenol, turbidity, S, TSS, BOD, dan COD. Adapun alternatif pengolahan untuk masing-masing parameter limbah inlet sebagai berikut:

Tabel 4.1 Alternatif pengolahan air limbah cair pada inlet IPAL PT ALP Petro Industry

Parameter	Alternatif Pengolahan
TSS	Oksidasi biologi, koagulasi, flokulasi di tangki
7/	neutralization dan sedimentasi
BOD	Pengolahan secara biologi, koagulasi
COD	Pengolahan secara biologi, secara kimia, koagulasi
NH ₃	Pengolahan secara biologi, nitrifikasi
Turbidity	Pengolahan secara biologi, koagulasi
Suspended Solid	Koagulasi dan sedimentasi
Sulfida	Pengolahan secara biologi
Oil Content	Dilakukan oil separation
Phenol	Pengolahan secara biologi
PO ₄	Pengolahan secara biologi, neutralization
pH	Pengolahan dengan neutralization
CAN PLORA	PAULIE AND AUDIE OF

Parameter-parameter pencemar dapat menimbulkan dampak yang akan berpengaruh baik terhadap jalannya proses pengolahan maupun lingkungan sehingga perlu diolah untuk meminimalisir dampak yang dapat ditimbulkan. Berdasarkan tabel alternatif pengolahan air limbah diatas, proses pengolahan air limbah di IPAL PT ALP Petro Industry disesuaikan dengan jenis pengolahan yang tepat untuk air limbah hasil pengolahan oli bekas.

Kualitas air inlet dapat dianalisis dengan cara membandingkannya berdasarkan batas baku mutu yang diperbolehkan menurut SK Gubernur Jawa Timur No. 45 Tahun 2002 tentang Baku Mutu Limbah Cair bagi Kegiatan Industri.

Tabel 4.2 Perbandingan Kualitas *Influent* (Limbah Masukan) Limbah Cair dengan Baku Mutu

No	Parameter	Influen Limbah	SK Gubernur Jatim No. 45 Thn 2002
1	рН	8.1	6-9
2	BOD ₅	646.5 mg/l	50 mg/l
3	COD	2118.7 mg/l	100 mg/l
4	TSS	25.6 mg/l	200 mg/l
5	Sulfida	0.2 mg/l	0,06 mg/l
6	Phenol	26.7 mg/l	0,5 mg/l
7	Oil Content	30.3 mg/l	5 mg/l
8	NH ₃ -N	7.2 mg/l	1 mg/l

Sumber: Hasil Perbandingan Data Sekunder dengan Baku Mutu Limbah Cair

Berdasarkan perbandingan pada tabel diatas, dapat dilihat bahwa masing-masing parameter pencemar tidak memenuhi standar baku mutu yang diperbolehkan, misal sulfida yang dapat menimbulkan rasa dan bau, serta bersifat korosif (pada perpipaan) dan iritan, phenol dapat menimbulkan rasa, NH₃ dapat menimbulkan bau, dan BOD yang berpengaruh terhadap penguraian zat anorganik oleh bakteri yaitu untuk penjernihan air limbah, sehingga perlu adanya proses pengolahan lebih lanjut agar menghasilkan *effluent* yang aman terhadap lingkungan sekitar.

4.4 Proses Pengolahan Air Limbah

Berdasarkan proses produksi minyak pelumas bekas di PT ALP Petro Industry, yang mana proses tersebut akan menghasilkan limbah. Macam-macam limbah yang dihasilkan dari proses produksi yaitu limbah gas, limbah cair, dan limbah padatan. Limbah gas, seperti yang berasal dari cerobong *boiler*, *incinerator* dan *furnace* sangat berbahaya, sehingga perlu diukur dan diteliti agar tidak melebihi ambang batas yang telah ditentukan hingga dapat dibuang ke lingkungan dengan aman. Sedangkan limbah

cair dan limbah padatan yang berbahaya harus melalui proses pengolahan lanjutan di unit Instalasi Pengolahan Air Limbah (IPAL) atau Waste Water Treatment Plant (WWTP).

IPAL merupakan suatu unit untuk mengolah air limbah atau buangan dari seluruh proses kilang PT ALP Petro Industry. Disamping itu juga mengolah air limbah yang berasal dari air hujan, sisa-sisa drain dari area proses dan sisa buangan dari blending part. Masing-masing kilang tersebut mempunyai sump pit untuk penampungan yang saling berhubungan melalui line header menuju sump pit pertama.

Proses pengolahan air di IPAL meliputi air yang mengandung bahan kimia dimana air tersebut merupakan parameter-parameter yang harus diolah lebih lanjut. Air limbah berasal dari proses hydrofinish system, air dan minyak pelumas bekas yang telah dipisahkan di unit preflash, thermal de-asphalting, hydrofinishing dan air pencucian gas-gas dari blowdown system.

Air limbah yang keluar dari proses *preflash*, TDA, dan HDF (*hydro finishing*) ditampung pada suatu tangki (tangki 14) yang masih termasuk didalam bagian proses produksi. Dari tangki tersebut selanjutnya dialirkan ke SWS. Berikut ini diagram proses pengolahan air limbah PT ALP Petro Industry:

Gambar 4.1 Skema pengolahan air limbah Sumber: Data sekunder PT ALP Petro Industry

Adapun fungsi dari masing-masing unit pengolahan limbah cair di WWTP PT ALP Petro Industry adalah sebagai berikut:

4.4.1 Sour Water Stripper (SWS)

Pengolahan air ini dilakukan dari seluruh air sisa proses yang berasal dari unit pre flash, TDA, dan HF (hydrofinishing) yang ditampung pada suatu tangki (tangki 14), kemudian dipompa masuk ke kolom Sour Water Stripper. Disini air dipanaskan sampai 105 °C sebelum masuk ke kolom, selanjutnya pH atau keasaman air didalam kolom diatur dengan menginjeksikan NaOH untuk menaikkan pH menjadi 7-8. Pada tahap ini, diharapkan diharapkan gas-gas beracun seperti H₂S, NH₃, dan HC dan fraksi-fraksi ringan senyawa organik beracun dapat teruapkan.

Air bebas gas ini dikirim langsung ke TK-811 feed WWT atau API separator. Selanjutnya bila kualitas air sudah layak dapat dibuang ke sungai, dengan P-806A dan P-806B air di pompa ke pit 2 dan mengalir ke pit 4 dengan P-806C dikirim ke Equalization & Feed Tank (TK-811) dengan kapasitas 100 m³.

4.4.2 API (American Petroleum Institute)

Unit API di PT ALP Petro Industry memiliki desain dengan kapasitas penampungan sebesar 90 m³, L sebesar 23.875 mm dan W sebesar 8.175 mm, dengan luas total unit sebesar 195 m².

API adalah bak penampung air limbah yang berfungsi untuk memisahkan oli dari limbah yang berasal dari proses Blending water, air hujan, dan tumpahan oli. Di dalam API separator akan terjadi *interface* minyak diatas dan air dibawah. Disamping itu API dilengkapi dengan sump pit air bebas minyak dan dua pompa P-807 kapasitas kecil dan P-808 kapasitas besar untuk memompa air ke sungai.

Cara pengoperasian sistem ini dapat secara manual atau otomatis, sehingga bila musim penghujan bisa dioperasikan secara otomatis untuk mencegah level API overflow yang mengakibatkan minyak ikut ke sungai. Hal ini tidak diharapkan, maka P-807 dan P-808 di set tertentu sehingga apabila API berada di level tinggi maka pompa akan berjalan secara otomatis sehingga minyak tidak sampai luber masuk ke sungai dan akan mencemari lingkungan sekitar. Selanjutnya minyak yang ada dipermukaan level API dapat di pompa ke TK-811 (Equalization) dengan menggunakan P-806A atau P-806B yang sebelumnya ditampung terlebih dahulu di vessel reservoir dan liquid condensation harus di *drain*, untuk selanjutnya di suplai ke seluruh unit WWT untuk digunakan.

4.4.3 Equalization (Physical Treatment)

Equalization berfungsi sebagai bak yang menampung air limbah dari SWS dan API untuk di homogenkan antara konsentrasi dengan polutannya. Dengan adanya Equalization ini diharapkan debit yang masuk ke proses tidak berfluktuasi dan dapat diatur konstan. Air limbah dalam bak Equalization ini tidak boleh dipompa habis agar sisanya dapat menghomogenkan air limbah yang baru. Aliran Equalization ini dibuat dengan konstruksi kolam besar yang akan mengumpulkan aliran dari buangan dan kemudian air akan dipompa ke pengolah dengan jumlah yang konstan.

Di TK-811 (*Equalization*) ini juga menampung aliran produk *bottom* SWS dan buangan dari *Filter Press* (FP-800) yang dilepas karena menimbulkan bau di lingkungan sekitar. Gas yang terakumulasi di TK-811 akan mengalir melalui pipa-pipa yang bergabung dengan gas dari TK-14 dan dibakar di *flare*. Dari TK-811 ditarik pompa P-801A atau P-801B yang digerakkan oleh udara dari TK-809 (*Air Reservoir*) melalui pipa 4 masuk ke TK-801 (OCS) Oil Coalesing Separator.

4.4.4 *Oil Coalescing Separator* (OCS)

OCS ini mempunyai fungsi untuk mengendapkan partikel diskrit dan memisah oli dan air yang terkandung dalam air limbah. Air yang sudah terpisah menuju proses berikutnya sedangkan yang belum terpisah menuju oil decant tank. Didalam OCS terdapat tiga outlet. Air di lewatkan saringan dan dengan sistem overflow, dari bawah tangki untuk menghindari kandungan minyak yang berlebihan selanjutnya dimasukkan ke Chemical Mix Tank yang dilengkapi sistem pengaduk. Overflow yang mengandung minyak pada permukaan atas dipompa dengan P-801 ke Oil Decant Tank, untuk dipisahkan air dan minyaknya, air di drain ke pit 4 dan minyak ditampung ke drum, selanjutnya dibawa ke oil slop atau use oil.

4.4.5 Chemical Mix Tank (Chemical Treatment)

Chemical mix tank berfungsi untuk menggabungkan partikel koloid sehingga membentuk partikel yang lebih besar ukurannya atau mendestabilkan partikel suspended dengan menambahkan coagulant (N 3276) dan flocculant (N 7128) agar terbentuk flok sehingga dapat mengendap.

Coagulant dan flocculant di injeksikan dengan P-802A dan P-802B untuk menaikkan daya tarik partikel aktif untuk dapat bergabung menjadi suatu ikatan yang

kuat membentuk flok-flok, besarnya injeksi ini tergantung dari jenis airnya. Masingmasing pompa ditentukan strokenya untuk pengaturan seberapa banyak chemical yang diperlukan untuk injeksi. Untuk penambahan koagulasi, pH diatur sesuai dengan hasil percobaan jar test. Kondisi air limbah yang masuk proses pengolahan, setiap harinya adalah berbeda sehingga untuk pemberian dosis diperlukan jar test untuk menentukan besarnya dosing yang dibutuhkan.. Penentuan dosing bahan kimia di dasarkan atas nilai turbidity jar test.

Injeksi flocculant dan coagulant harus selalu dimonitor baik stroke pompa/pH dan juga warna effluent yang keluar, dengan memperhatikan kondisi jangan sampai minyak dipermukaan TK-801 (OCS) masuk ke TK-802 (Chemical Mix Tank) yang akan mengakibatkan masalah ke proses IPAL. Apabila terjadi perubahan debit dosing bahan kimia, maka dilakukan perubahan stroke pompa dosing sesuai dengan hasil kalibrasi pompa dosing.

Disamping itu pompa feed dari TK-811 harus diatur supaya seimbang dan tidak terjadi overflow yang akan masuk ke TK-802. Stroke pada P-802A antara 50-100% dan stroke pada P-802B antara 30-50% tergantung analisa laborat. Pengecekan rutin pH dan DO ditempat-tempat pengambilan sampel yang sudah ditentukan dan hasilnya harus segera dianalisa untuk mempertahankan kondisi tetap normal.

4.4.6 Dissolved Air Flotation (DAF)

Dengan menggunakan sistem Dissolved Air Flotation (DAF) ini, flok-flok dari minyak yang sudah terbentuk akan terangkat keatas dan terpisah dari air. Padatan yang mengapung atau flok hasil dari Chemical Mix Tank, kemudian dengan skrap berputar dialirkan ke Suction Pump P-804A dan pada bagian bawah TK-803 yang komposisinya banyak padatan, dipompa secara berkala 4 jam sekali ke TK-804 (Sludge Blending) untuk dipisahkan antara cairan dan padatan. Dari TK-802 kemudian dimasukkan secara overflow ke TK-803A Dissolved Air Flotation yang juga dilengkapi pengaduk mekanik. Disamping itu, flok-flok tersebut akan diproses pada Sludge Blending dan untuk mengurangi kadar air yang terkandung pada sludge tersebut maka sludge diproses ke Sludge Thickener dan yang terakhir menuju Filter Press.

Tangki ini memiliki empat sistem outlet, pada bagian atas dan tengah akan masuk pompa P-804 yang sebagian besar mengandung bahan padatan. Bagian samping yang paling banyak kandungan airnya masuk ke DAF Skid yang terdiri dari P-803A/B, ejector, dan TK-803B. Dari DAF Skid kemudian dikembalikan ke TK-803A gelembung udara (dari educator) sebagai aerasi dan penyempurnaan chemical. Secara rutin injeksi ini harus selalu dimonitor agar kemungkinan pompa tidak meghisap sehingga tidak ada aliran dan udara yang ditambahkan tidak boleh terlalu besar tekanannya agar flok tidak pecah.

4.4.7 Neutralization (Chemical Treatment)

Tangki Neutralization berfungsi untuk mengkondisikan agar pH air limbah dari DAF netral atau sesuai untuk proses biologi aerob. Air limbah sebelum masuk ke proses biologi dinetralkan terlebih dahulu dengan caustic soda NaOH sehingga pH proses sebelum ke bak aerasi menjadi netral yaitu antara 7,0 – 7,5. Dari *overflow* bagian bawah permukaan atas DAF masuk ke TK-800 Neutralization yang terdiri dari dua ruangan. Pertama dilengkapi dengan pengaduk mekanik dan di injeksikan bahan kimia NaOH untuk menormalkan pH effluent dengan P-802 yang sudah di atur secara otomatis, sedangkan yang kedua dilengkapi dengan pH meter untuk mengontrol secara otomatis keasaman air didalamnya sehingga pH air menjadi normal.

Dari tangki Neutralization di atur dengan level switch yang apabila level tinggi maka P-803A/B akan jalan dan apabila levelnya rendah maka pompa akan berhenti, aliran discharge yang kelihatan jernih mengalir masuk ke TK-806A (Aerator).

4.4.8 Aerator (Biological Treatment)

Bak aerasi merupakan tempat terjadinya pengolahan atau penguraian bahan limbah secara biologi aerob organik dalam dengan menggunakan mikroorganisme/bakteri. Senyawa organik yang biodegradable diubah menjadi CO₂ dan sel bakteri baru. Untuk menjaga kinerja bakteri maka DO (Dissolved Oxygen) harus dijaga antara 2-4 mg/l dengan penambahan oksigen dari blower. Sedangkan untuk menjaga agar konsentrasi atau massa bakteri di bak aerasi sesuai dengan desain, maka sebagian atau seluruh bakteri dari *clarifier* dikembalikan ke bak aerasi.

Untuk melangsungkan reproduksi dan fungsinya, suatu organisme harus memiliki sumber energi, karbon sebagai sintesa untuk sel yang baru, dan elemen organik seperti nitrogen, fosfor, sulfat, potassium, kalsium, dan magnesium. Penambahan nutrien dengan nutrien organik sangat dibutuhkan oleh mikroorganisme. Kebutuhan nutrien organik disebut juga faktor pertumbuhan yang artinya adalah senyawa yang dibutuhkan oleh organisme sebagai bahan pokok atau bahan pendahuluan dari bahan organik sel yang tidak dapat disintesa dari sumber karbon lain. Nutrien organik juga dibutuhkan untuk sintesa sel. Karbon dan sumber energi biasa juga disebut substrat dan nutrien. Kaitannya dengan penambahan nutrisi, tergantung pada ratio F/M yaitu perbandingan makanan dan mikroorganisme. Aerasi juga digunakan untuk mentransfer oksigen, untuk pengolahan biologi, untuk *stripping* pelarut dari air limbah, dan untuk menghilangkan gas yang mudah menguap (*volatile*) seperti H₂S dan NH₃.

Suplai air limbah dalam bak aerasi dilakukan secara kontinyu selama 24 jam/hari dengan DO minimal 2 mg/l dan kondisi harus netral antara 6,5 – 8,5 dengan pH optimal 7,2 – 7,5. *Dissolved Oxygen* (DO) yaitu banyaknya oksigen terlarut dalam air dan diperlukan untuk proses penguraian senyawa organik dalam air limbah, DO harus dijaga pada semua titik berkisar 2-4 ms/l, jika melebihi 4 mg/l maka *sludge* yang terbentuk akan terganggu. Bak aerator ini dilengkapi dengan sistem aerasi dari udara yang berasal dari *blower* TK-802B/C, disini dimonitor nilai DO, SVI, MLVS, MLSS sebagai tanda adanya aktivitas mikroorganisme.

Sludge Volume (SV) digunakan sebagai indikator banyaknya bakteri yang terbentuk (dalam volume/ml). Nilai SV berdasarkan kriteria desain adalah 300-400 ml/L. Besarnya nilai SV ini tergantung pada nilai BOD masukan, Sludge Volume Index (SVI) yaitu perbandingan antara SV dan MLSS (Mixed Liquor Suspended Solid) dan sebagai indikator untuk mengetahui kondisi bakteri. Nilai SVI berdasarkan kriteria desain yaitu 80-150 mg/l. Berdasarkan literatur, apabila SVI kurang dari 80 mg/l maka nilai MLSS bertambah besar, bakteri yang terdapat dalam tangki sudah tua sehingga mudah mengendap sehingga harus dibuang sebagian dan jika nilai SVI lebih besar dari 150 mg/l, maka akan terjadi bulking sludge, jumlah MLSS lebih kecil dan bakteri sukar mengendap. Sedangkan MLSS yaitu indikator banyaknya bakteri (dalam mg) yang terbentuk dalam air limbah atau untuk menunjukkan perkiraan jumlah mikroba dalam lumpur. Nilai MLSS bedasarkan kriteria desain adalah 3000-5000 mg/l. Berdasarkan referensi, dalam bak aerasi ini dihasilkan sludge return yang berfungsi untuk menjaga massa bakteri bak aerasi. Berdasarkan debit return sludge dapat dihitung dan dalam prakteknya, untuk pengontrolan return sludge dipasang flow meter.

4.4.9 Clarifier

Hasil tangki Aerator selanjutnya masuk secara *overflow* ke *Clarifier* TK-807 dimana dengan gerakan dan gaya mekanis dari *Clarifier* maka padatan yang masih tersuspensi didalam air dapat terkumpul di bagian bawah kemudian dari *Clarifier* bagian bawah yang sebagian besar berupa *sludge* dibawa dengan *air lift pump* ke

Digester (TK-806B). Dalam bak Clarifier ini terjadi proses pemisahan, antara lumpur dengan supernatant. Pada lapisan permukaan atas TK-807 yang dengan sistem sekrap dan hanya jika diperlukan, sebagian dialirkan kembali ke aerator TK-806A dengan menggunakan air lift pump sampai dicapai kondisi MLSS sesuai dengan desain. Kondisi ini harus dijaga agar waktu tinggal dalam *clarifier* tidak terlalu lama, hal ini untuk menghindari proses anaerob sedangkan supernatant mengalir secara overflow ke Sand Filter untuk dilakukan proses penyaringan.

Digester dilengkapi dengan sistem aerasi udara yang berasal dari blower K-802A/B. Pengontrolan dan penganalisaan kualitas air mulai dilakukan agar proses dapat berjalan dengan baik dan air dapat langsung ke proses selanjutnya tanpa mengulang proses.

4.4.10 Sand Carbon Filter (Physical Treatment)

Sand Carbon Filter berfungsi untuk menyaring padatan (suspended solid) atau partikel yang tidak dapat mengendap atau yang masih terdapat di *supernatant* hasil dari proses sedimentasi. Dalam tangki ini dilakukan backwash secara kontinyu. Dari Clarifier bagian bawah permukaan atas yang sedikit padatannya overflow ke filter feed chamber TK-806C. Dengan menggunakan pompa P-800A, air overflow masuk ke unit tertiary treatment (Sand and Carbon Filter) yang selanjutnya air dapat dibuang ke Fish *Pond* yaitu tempat untuk mengontrol langsung kelayakan air untuk kehidupan.

4.4.11 Sludge Blending

Sludge atau partikel-partikel dari proses sedimentasi dan DAF ditampung dan dicampur dalam Sludge Blending. Dalam pengoperasiannya, air dalam Sludge Blending harus segera dialirkan ke dalam Sludge Thickener agar waktu tinggal tidak terlalu lama untuk menghindari fase anaerob sehingga tidak timbul bau.

Dari Digester (TK-806B) yang banyak kandungan padatannya, kemudian dibawa pada Sludge Blending TK-804. Disini masih diberi sistem aerasi udara agar penguraian oleh bakteri dapat berlangsung sempurna. Dari tangki Sludge Blending kemudian overflow ke tangki Sludge Thickener.

4.4.12 Sludge Thickener

Sludge Thickener berfungsi untuk memekatkan lumpur agar konsentrasi lumpur lebih tinggi sehingga beban Filter Press bisa berkurang. Dalam tahapan ini, sludge dari proses *sludge blending* ditampung untuk dikentalkan terlebih dahulu sebelum dilakukan pemisahan *supernatant* dan *sludge*.

4.4.13 Filter press (Physical Treatment)

Filter Press merupakan alat untuk memadatkan lumpur dengan mengurangi kandungan air dari lumpur. Sludge yang sudah terpisah dengan supernatant dialirkan ke Filter Press untuk mengurangi kadar air yang terkandung di sludge tersebut dengan cara di press sehingga sludge berbentuk padat.

Dari TK-804 atau TK-805 dengan line yang saling berhubungan dengan bottom TK-806B (digester) ditarik dengan P-804B masuk ke Filter Press sebagai filling, tergantung pada kondisi sludge. Apabila jumlahnya banyak maka langsung dilakukan drying dan airnya dibuang ke TK-811 melalui pipa. Sludge tersebut akan di press dengan menggunakan power dari udara yang sebelumnya ditampung di TK-809 (air reservoir), setelah sludge kering kemudian dikeluarkan dari Filter Press dan selanjutnya ditampung dalam drum serta dijaga tetap kering dan dikirim ke tempat penampungan secara periodik ke PPLI Cileungsi - Bogor, karena sludge tersebut dianggap mengandung bahan berbahaya dan beracun. Menurut hasil analisis TCLP (Toxicity Characteristic Leaching Procedure), sludge yang dihasilkan oleh IPAL di PT ALP Petro Industry tidak mengandung logam berat dan berbahaya. Analisis TCLP terhadap sludge yang dihasilkan yaitu dengan melihat kondisi sludge apakah berbahaya bagi masyarakat dan environmental karena kontaminan yang ada dapat diserap. Penentuan analisis TCLP terhadap kontaminan diidentifikasi dengan United States Environmental Protection Agency (USEPA). Selesai pengambilan sludge dari filter press, filter harus dibersihkan sampai tidak ada sisa *sludge* yang tercecer atau bau yang kurang sedap.

Untuk mengoperasikannya, *filter press* harus selalu di monitor dimana proses digerakkan oleh udara dari TK-809 (*air reservoir*). Disamping itu, posisi *valve* harus benar sehingga pada waktu dilakukan *filling*, P-804A tidak *overload* karena *sludge* terlalu tebal/berat. Saat kondisi *drying* juga harus di monitor dan sisa air harus sering dibuang supaya cepat kering.

4.4.14 Fish Pond

Air limbah yang telah melewati *Sand Carbon Filter* di alirkan ke *Fish Pond* sebelum dibuang ke outlet atau badan penerima air. Tujuan *fish pond* adalah sebagai

indikator untuk mengontrol langsung kelayakan air limbah/effluent secara visual apakah air limbah yang dibuang sudah cukup baik dengan adanya indikator ikan di bak tersebut.

Sebelum membuang air limbah ke sungai, kondisi air buangan harus diperiksa terlebih dahulu apakah sudah memenuhi syarat untuk dibuang. Jika air yang dibuang belum memenuhi syarat, maka harus dikembalikan ke aerator TK-806A melalui pipa.

Persyaratan parameter air limbah yang diizinkan untuk dibuang ke sungai harus memenuhi standar baku mutu yang diperbolehkan yaitu sesuai dengan SK Gubernur Jawa Timur No. 45 Tahun 2002.

4.5 Karakteristik Air Limbah Keluaran (Outlet) PT ALP Petro Industry

Dari hasil pengolahan limbah cair pada Instalasi Pengolahan Air Limbah (IPAL) PT ALP Petro Industry, limbah masukan yang sudah diproses menghasilkan limbah keluaran (outlet/effluent) yang diusahakan sesuai dengan standar baku mutu yang telah ditetapkan oleh SK Gubernur Jawa Timur. Dalam tabel dibawah ini, disebutkan baku mutu limbah cair bagi industri atau kegiatan usaha lainnya di Jawa Timur. Sesuai dengan hasil limbah yang dihasilkan PT ALP Petro Industry untuk air pertanian, golongan yang menjadi acuan perusahaan menghasilkan karakteristik effluent merupakan Golongan II.

BRAWIJAYA

Tabel 4.3 Baku mutu limbah cair bagi industri atau kegiatan usaha lainnya di Jawa Timur

	BAKU MU TERMASUK PENGOLAH LIMI)	JTU LIMBAH BAH TERPUS		JASAN IN	NDUSTRI	D
				an Baku M		<i>'</i>
No	Parameter	Satuan	I	II	III	IV
A	FISIKA	A PHILLIPS	441	3204	4011	
1	Temperatur	°C	35	38	40	45
2	Zat Padat terlarut	mg/liter	1500	2000	4000	5000
3	Zat Padat tersuspensi	mg/liter	100	200	200	500
В	KIMIA					
1	PH	mg/liter	6-9	6-9	6-9	6-9
2	Besi (Fe)	mg/liter	5	10	15	20
3	Mangan (Mn)	mg/liter	0.5	2	5	10
4	Barium (Ba)	mg/liter	1	2	3	5
5	Tembaga (Cu)	mg/liter	1	2	3	5
6	Seng (Zn)	mg/liter	5	10	15	20
7	Krom Heksavalen (Cr ⁶)	mg/liter	0.05	0.1	0.5	2
8	Krom Total (Cr tot)	mg/liter	0.1	0.5	1	2
9	Cadmium (Cd)	mg/liter	0.01	0.05	0.1	1
10	Raksa (Hg)	mg/liter	0.001	0.002	0.005	0.01
11	Timbal (Pb)	mg/liter	0.1	_0.5	1	3
12	Timah Putih (Sn)	mg/liter	2	5.3	4	5
13	Arsen (As)	mg/liter	0.05	0.1	0.5	1
14	Selenium (Se)	mg/liter	0.01	0.05	0.5	1
15	Nikel (Ni)	mg/liter	0.1	0.2	0.5	1
16	Kobalt (Co)	mg/liter	0.2	0.4	0.6	1
17	Sianida (CN)	mg/liter	0.05	0.1	0.5	1
18	Sulfida (HS)	mg/liter	0.01	0.06	0.1	1
19	Fluorida(F)	mg/liter	1.5	15	20	30
20	Klorin Bebas (Cl ₂)	mg/liter	0.02	0.03	0.04	0.05
21	Amoniak Bebas (NH ₃ -N)	mg/liter	0.5	1	5	20
22	Nitrat (NO ₃ -N)	mg/liter	10	20	30	50
23	Nitrit (NO ₂ -N)	mg/liter	0.06	1	3	5
24	BOD	mg/liter	30	50	150	300
25	COD	mg/liter	80	100	300	600
26	Detergentan ionic	mg/liter	0.5	1	10	15
27	Phenol	mg/liter	0.01	0.5	1	2
28	Minyak dan Lemak	mg/liter	1	5	15	20
29	PCB	mg/liter	NIHIL	NIHIL	NIHIL	NIHI

Sumber: Keputusan Gubernur Jawa Timur No. 45 Tahun 2002

Pengukuran hasil *effluent* sangat penting untuk mengetahui kadar atau komposisi yang terkandung didalamnya karena merupakan indikator apakah proses pengolahan limbah yang telah dilakukan sesuai dengan baku mutu yang telah ditetapkan. Sementara *effluent* yang dihasilkan PT ALP Petro Industry ada 2 parameter yang tidak sesuai

dengan baku mutu yang ada, yaitu pada COD dan NH3N. Hal ini nantinya akan mempengaruhi kualitas limbah yang akan dibuang ke lingkungan.

Tabel 4.4 Perbandingan Kualitas Effluent Limbah Cair PT ALP Petro Industry dengan Baku Mutu Limbah Cair bagi Industri Pengolahan Oli Bekas

Parameter		Rata-rata <i>Effluent</i>	Baku Mutu
Ph	11	6.6	6 – 9
TSS (Total Suspended Solid)	mg/L	60 mg/l	200 mg/l
BOD (Biochemical Oxygen Demand)	mg/L	20.0 mg/l	50 mg/l
COD (Chemical Oxygen Demand)	mg/L	137.3 mg/l	100.0 mg/l
Sulfida	mg/L	0.024 mg/l	0.06 mg/l
Phenol	mg/L	0.048 mg/l	0.5 mg/l
Minyak dan Lemak	mg/L	4.3 mg/l	5.0 mg/l
NH ₃ -N	mg/L	21.33 mg/l	1.00 mg/l

Sumber: Data PT ALP Petro Industry

4.6 RKL RPL AMDAL

Jenis dampak yang ditimbulkan berdasarkan laporan akhir RKL RPL yang disetujui oleh Departemen Pertambangan RI No. 4959/0115/SJ.T/95 tanggal 28 Desember 1995 pada tahap pasca konstruksi adalah sebagai berikut:

- Penurunan kualitas udara,
- 2. Penurunan kualitas perairan dan air tanah,
- 3. Penurunan keanekaragaman flora dan fauna,
- 4. Penyerapan tenaga kerja dan peningkatan pendapatan.

4.7 Problem Formulation

Problem formulation merupakan tahap awal dari seluruh penilaian risiko lingkungan. Tahap ini merupakan proses untuk mengidentifikasi dan menggambarkan permasalahan adanya potensi risiko lingkungan dan efek yang ditimbulkan, mengumpulkan informasi, dan mengembangkan suatu rencana analisis risiko.

Problem formulation dimulai dengan indentifikasi risiko melalui wawancara dengan pihak perusahaan yang terkait dengan proses pengolahan limbah cair dari setiap unit pada IPAL. Hasil identifikasi selanjutnya dipakai sebagai dasar untuk menganalisis risiko dengan menggunakan metode Failure Mode and Effect Analysis (FMEA) dan Root Cause Analysis (RCA).

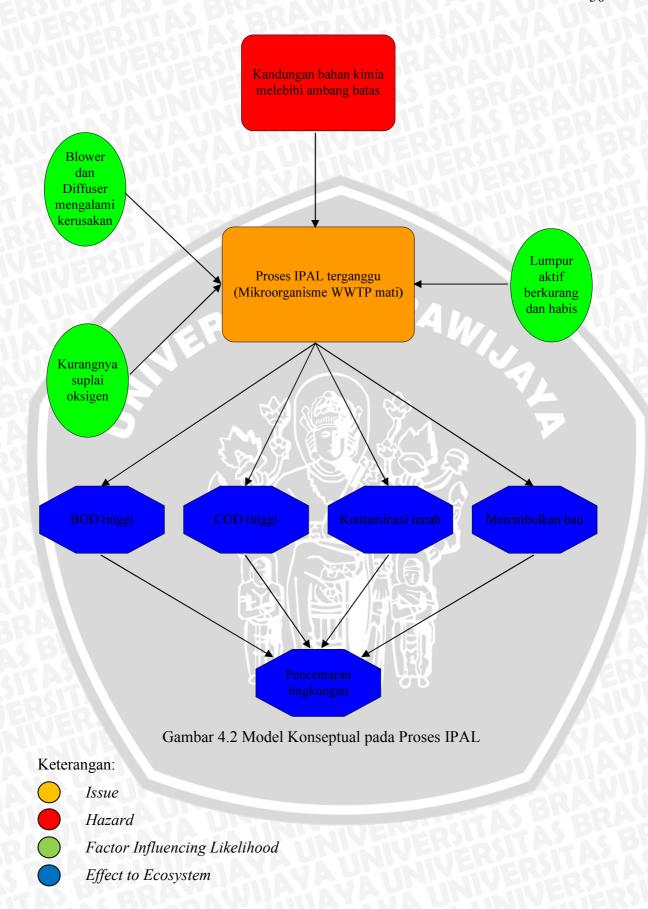
Tabel 4.5 Aktivitas Pengolahan Setiap Unit

NO		PENGOLAHAN	MESIN/ALAT	MANUSIA	PROSEDUR
NO	AKTIVITAS	SUB AKTIVITAS	WESHVALAT	MANUSIA	
		Pengumpulan limbah cair dari TK-14	Tanki pengumpul (TK-14)	Monitor pengumpulan limbah cair	Air limbah dari seluruh departemen dikumpulkan di TK-14
1.	Pengumpulan limbah di SWS	Pemanasan air limbah	Sour Water Stripper	Monitor suhu	Memanaskan air limbah hingga mencapai suhu 105°C
Ŕ	Pemisahan oli dari air limbah di API	Penginjeksian NaOH	SWS	Menginjeksikan NaOH	NaOH diinjeksikan untuk menaikkan pH menjadi 7-8
2.	dari air	Memisahkan oli dari air limbah	AS B	Monitor proses otomatis; Melakukan pemisahan manual	Air limbah yang berasal dari proses blending water, air hujan dan tumpahan oli dipisah dengan interface minyak diatas dan air dibawah.
2.	ilmoan di API	Memompa air ke tanki Ekualisasi	Pipa	Monitor proses	Air yang sudah terpisah dari minyak dipompa menuju Equalization untuk diproses
	Pengolahan	Menampung dan menghomogenkan limbah cair	Equalization Tank	Monitor dan mengoperasikan alat	Air limbah disini tidak boleh dipompa sampai habis agar dapat menghomogenkan air limbah selanjutnya
3.	limbah cair secara fisika	Mengalirkan air limbah ke Oil Coalesing Separator	Pipa	Monitor air limbah	Air limbah masuk ke OCS
	Treatment I	di Physicai		Mengoperasikan alat dan memastikan oli terpisah dari air limbah	Air dan oli dipisahkan lagi karena tercampur dari air yang berasal dari TK-14
		Mengalirkan air limbah ke Chemical Mix Tank	Pipa	Monitor air limbah	Air limbah masuk ke Chemical Mix Tanx

Tabel 4.5 Aktivitas Pengolahan Setiap Unit (Lanjutan)

NO		S PENGOLAHAN	MESIN/ALAT	MANUSIA	PROSEDUR
4389	AKTIVITAS	Menggabungkan partikel koloid sehingga membentuk flok yang dapat mengendap	Chemical Mix Tank (TK-802)	Monitor air limbah dan mengoperasikan alat	Terbentuk flok dalam effluent, pH dan warna effluent sesuai dan minyak dari TK-801 tidak masuk ke TK-802.
		Menginjeksikan coagulant, flocculant dan polymer	P-802A dan P- 802B	Memonitor dan melakukan jartest untuk mengetahui dosis yang diperlukan sebelum diinjeksi	Stroke pada P- 802A antara 50-100% dan pada P-802B antara 30-50%
		Pengecekan rutin dan Pengambilan sampel	Chemical Mix Tank (TK-802) dan laboratorium	Mengambil sampel dan menganalisa	pH, DO tetap pada kondisi normal.
	7	Mengalirkan air limbah ke DAF	Pipa 🛇		Air limbah masuk ke DAF
4.	Pengolahan limbah cair secara kimia di Chemical Treatment	Memperkuat flok dan ikatan partikel aktif yang lebih sempurna serta mengikat unsur- unsur polimeris	Dissolved Air Flotation (TK- 803)	Memonitor	Mengangkat flok keatas agar terpisah dari air. Effluent yang keluar dan masuk ke Neutralization berwarna jernih
		Memompa flok ke Sludge Blending (TK- 804)	Pompa (P-804A)	Mengoperasikan pompa	Flok dibawa ke Sludge Blending untuk dipisahkan antara air dan lumpurnya
		Mengondisikan pH limbah cair dari TK-803	Pompa (P-802) menginjeksikan Soda Kaustik NaOH	Memonitor dan menginjeksikan Soda Kaustik NaOH	pH netral antara 7.0-7.5 untuk proses
		netral	Chemical Mix Tank (TK-802) Monitor air limbah dan mengoperasikan alat Memonitor dan melakukan jartest untuk mengetahui dosis yang diperlukan sebelum diinjeksi An Chemical Mix Tank (TK-802) dan laboratorium menganalisa Pipa Monitor air limbah Pipa Monitor air limbah Mengambil sampel dan menganalisa Mengambil sampel sampel dan menganalisa Mengambil sampel sam	aerob dan berwarna jernih	
JA.	YAYA	Mengalirkan air limbah ke aerator	Pipa		Air limbah masuk ke tanki aerator

BRAWIJAYA


Tabel 4.5 Aktivitas Pengolahan Setiap Unit (Lanjutan)

NO	TEKNIS AKTIVITAS	S PENGOLAHAN SUB AKTIVITAS	MESIN/ALAT	MANUSIA	PROSEDUR
A		Pengolahan atau penguraian air limbah	Pengolahan atau penguraian air limbah secara biologi aerob dengan menggunakan nikroorganisme/bakteri Mengalirkan air limbah yang sudah diolah ke Clarifier Pemisahan air limbah yang sudah diolah ke Clarifier Pemisahan air limbah antara lumpur dengan supernatant Mengalirkan kembali air imbah ke Aerator TK-806 Mengalirkan kembali air imbah ke Aerator TK-806 Mengalirkan supernatant ke Sand Filter Mengalirkan air limbah ke Carbon Filter Mengalirkan air limbah Mengalirkan air ke Carbon Filter Mengalirkan air ke Carbon Filter Mengalirkan air limbah Mengalirkan air ke Carbon Filter Mengalirkan air limbah Mengalirkan air limbah	Dissolved Oxygen (DO) antara 2-4 mg/l	
R	BRAW AS BRA			Mengontrol pH	pH netral antara 6.5 – 8.5 dengan optimalisasi 7.2 – 7.5
5.	Pengolahan limbah cair secara biologi di Biologycal Treatment	Mengalirkan air limbah yang sudah diolah ke Clarifier	AD DE	limbah yang sudah diolah ke	Air limbah yang sudah diolah (wate water) mengalir melalui pipa dengan kadar MLSS (Mix Liquor Suspended Solid) 3000- 5000 mg/l
		Pemisahan air limbah antara lumpur dengan supernatant		limbah agar tidak terlalu	Waktu tinggal air limbah tidak terlalu lama supaya tidak terjadi proses anaerob
		Mengalirkan kembali air limbah ke Aerator TK- 806	Air lift pump	yang tidak	MLSS sesuai desain dengan kadar 3500 mg/l
À		supernatant ke Sand	Pipa	N N	Supernatant masuk ke Sand Filter
		Mengalirkan air limbah ke Carbon Filter	Pipa (P-800A)	41 PJ	Air limbah masuk ke Carbon Filter
	Dangalahan	supernatant secara	Sand Filter	alat dan	Air limbah disaring dengan pasir secara kontinyu supaya lebih jernih
6.	air limbah secara fisika		Pipa		Air limbah masuk ke Carbon Filter
		Menyaring air limbah	Carbon Filter		Karbon aktif dari Carbon Filter sekitar 4 m³/batch/3 bulan
	IAS BR	Mengalirkan air limbah ke fish pond	Pipa	Monitor air limbah	Air limbah masuk ke fish pond

Tabel 4.5 Aktivitas Pengolahan Setiap Unit (Lanjutan)

NO		ENGOLAHAN	MESIN/ALAT	MANUSIA	PROSEDUR
NO	AKTIVITAS	SUB AKTIVITAS	WIESIN/ALA I	MANUSIA	
A W R S	AYAY WIIAY BRARA	Pengolahan lumpur atau partikel- partikel dengan sistem aerasi udara	Sludge Blending (TK-804)	Monitor lumpur	Penguraian lumpur oleh bakteri sempurna dan tidak terjadi fase anaerob (tidak menimbulkan bau)
	ITAS B ERSITA	Mengalirkan lumpur dan air limbah ke Sludge Thickener	Pipa	Monitor lumpur dan air limbah	Lumpur dan air limbah masuk ke Sludge Thickener
7.	Pengolahan lumpur sisa air limbah	Memekatkan lumpur agar konsentrasi lumpur lebih tinggi	Sludge Thickener	Monitor lumpur dan air limbah	Lumpur mengental
		Mengalirkan sisa air limbah kembali ke Aerator	Pipa	Monitor air limbah	Air limbah masuk ke aerator
		Mengalirkan lumpur ke Filter Press	Pipa	Monitor lumpur	Lumpur masuk ke Filter Press
		Memadatkan	Filter Press	Monitor lumpur	
		lumpur dengan mengurangi air dari lumpur dengan cara ditekan (press)		Monitor gerakan pressing oleh udara	Lumpur berbentuk padat
8.	Pengujian air limbah dalam fish pond (kolam indicator)	Pengujian kualitas air limbah	Ikan	Monitor dampak air limbah terhadap ikan	Air limbah yang sudah diolah dan dijernihkan sebagian dialirkan ke kolam indicator untuk mengetahui kualitas air apakah berbahaya bagi biota air

Dalam *problem formulation* ini membuat gambaran permasalahan yang dituangkan dalam model konseptual. Berikut ini adalah model konseptual dari permasalahan yang ada.

4.8 Identifikasi Risiko dengan Failure Mode and Effect Analysis (FMEA)

Failure Mode and Effect Analysis digunakan untuk mengetahui risiko pada IPAL. Disusun berdasarkan brainstorming dengan pihak terkait pada bagian pengolahan air limbah. Sebelum brainstrorming dilakukan, diambil 3 responden (1 supervisor dan 2 operator) untuk mengisi kuesioner awal. Selanjutnya setelah didapat penilaian dari ketiga responden dilakukan brainstorming untuk menentukan Occurrence dan Severity yang tepat dan sesuai. Pada FMEA dilakukan justifikasi sebagai bentuk penilaian Severity dan Occurrence.

Tabel 4.7 Identifikasi Risiko dengan Failure Mode and Effect Analysis (FMEA)

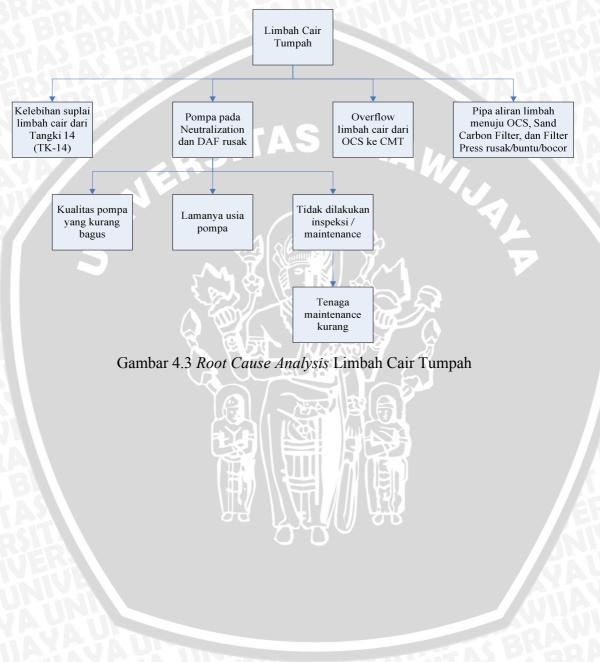
No	Component	Function	Function Failure	Potential Failure Mode	0	Potential Effect of Failure	S	Risk	RPN	
1.	Sour Water Stripper (TK-800)	Memanaskan air dan mengatur pH dengan menginjeksikan NaOH	Suhu tidak mencapai 105°C dan pH tidak mencapai 7-8	NaOH gagal diinjeksikan	1	pH air limbah tidak sesuai karakteristik	1	Air limbah terlalu basa atau asam	1	
				Kelebihan Supply limbah cair dari SWS dan API	1	Volume limbah cair di TK- 811 penuh	1	Limbah cair tumpah (leakage)	1	
2.	Equalization Tank	Sebagai tempat pengumpulan air limbah	Tidak mampu mengumpulkan limbah	Pipa sebagai tempat aliran limbah cair ke OCS (TK-801) rusak	3	Limbah cair tidak dapat		RAWN	6	
	(TK-811)	dari SWS dan API	dari setiap unit	Kualitas pipa kurang bagus	2_	dialirkan ke OCS (TK-801)	2	Limbah cair tumpah (leakage)	4	
		C PAL		Lama usia pipa	4.)		1 S D	8	
-				Korosifitas pipa	3				6	
3.	Oil Coalesing Separator (TK-801)	Memisahkan oli/minyak dan air yang terkandung	Oli/minyak yang terkandung masih	Oli/minyak masuk ke Chemical Mix Tank (TK-802) karena	3	Oli/minyak mengontaminasi proses di Chemical Mix Tank (TK-802)	1	Bakteri aerator kolaps/keracunan	1	
			terlalu banyak	overflow berlebihan		Terjadi kebocoran	2	Limbah cair tumpah (leakage) Pencemaran lingkungan	- 6	
		koloid menjadi partikel F yang ukurannya lebih n	yan <mark>g u</mark> kurannya lebih menggumpal Tidak dapat menggumpalkan		Fungsi/beban proses selanjutnya (DAF) menjadi berat	1	Kandungan COD masih tinggi	4		
4.	Chemical Mix Tank (TK-802)	Menstabilkan partikel suspended sehingga membentuk flok	Partikel flok kurang padat	partikel suspended	particel suspended	39	Terjadi korosifitas pada pipa dan kebocoran	2	Limbah cair tumpah (leakage)	8
		Menginjeksikan flocculant dan coagulant	Dosis terlalu banyak atau terlalu sedikit Pengaduk rusak	Terbatasnya bahan kimia untuk menjernihkan air		Penjernihan air tidak dapat dilakukan	1	Warna air limbah tidak sesuai karakteristik	1	
		Memisahkan flok dari air dengan menambahkan	Penambahan polymer tidak sesuai kebutuhan	Pompa P-802C rusak	3	Dosis polymer melebihi	2.	Warna air limbah tidak sesuai	6	
	Dissolved Air	polymer agar gumpalan kuat	Tidak tercampur dengan baik	Dosis polymer berlebihan	2	kebutuhan	2	karakteristik	4	
5.	Dissolved Air Flotation (TK-803A)	Me <mark>mo</mark> mpa flok	Pompa tidak menghisap	Tidak ada aliran dan udara yang ditambahkan	2	Aliran dan udara terlalu besar	2	Flok pecah	4	
		Mengaduk air yang mengandung flok	Tidak mampu mengaduk dengan rata	Pengaduk mekanik rusak	4	Hasil flok tidak menggumpal dengan sempurna	4	DAF macet dan terjadi tumpahan limbah cair	16	
		Memisahkan padatan ke Sludge Blending	Padatan masih tertinggal di TK-803A	Terjadi penyumbatan pada pompa P-804 dan pipanya	7	Pompa P-804 rusak Lumpur pada DAF berlebihan	1 2	Timbul bau	7 14	

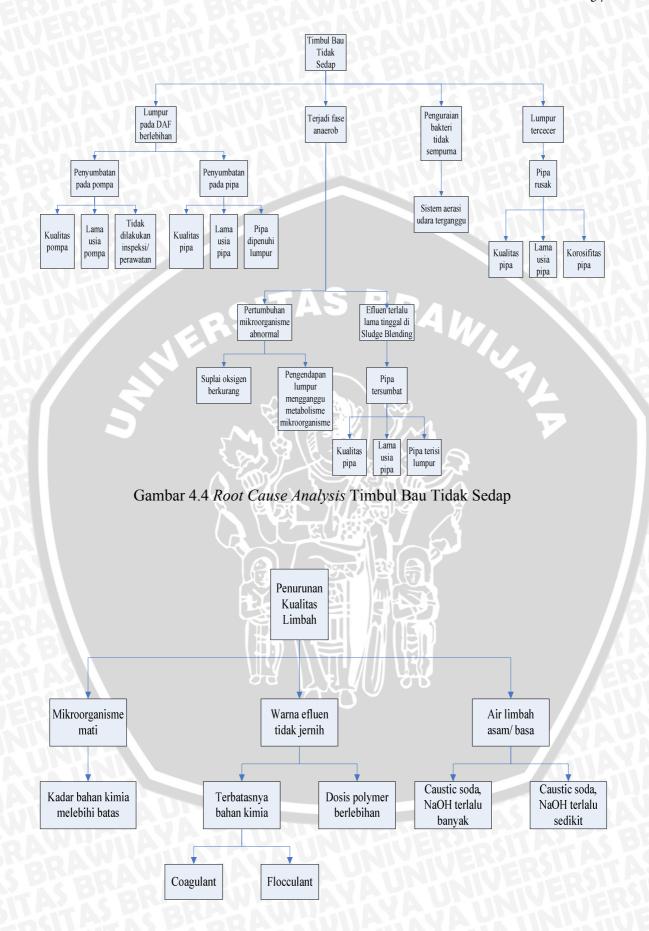
Tabel 4.7 Identifikasi Risiko dengan Failure Mode and Effect Analysis (FMEA) (Lanjutan)

No	Component	Function	Function Failure	Potential Failure Mode	0	Potential Effect of Failure	S	Risk	RPN									
6.	Neutralization (TK-800)	Menetralkan pH air limbah dari DAF agar sesuai dengan spesifikasi	Air limbah tidak dapat dinetralkan	Caustic soda, NaOH terlalu banyak atau terlalu sedikit Terbatasnya bahan kimia untuk menetralka air	8	Penetralan air tidak dapat dilakukan	2	Air limbah asam atau basa (Penurunan kualitas limbah)	16									
		proses biologi aerob		Pompa rusak	2	NaOH gagal diinjeksikan	2	WWE	4									
			127	1 onipu rusuk		Terjadi kebocoran	2	Limbah cair tumpah (leakage)	4									
		RAN	Mikroorganisme pengurai limbah tidak dapat mengurai bahan organik	Kadar bahan kimia dalam limbah melebihi batas yang dapat dicerna mikroorganisme	8	Mikroorganisme mati	2	Penurunan kualitas limbah (BOD dan COD tinggi)	16									
		secara biologi aerob		Blower K-802 pada sistem aerasi untuk mengalirkan udara rusak akibat korosi		Supply oksigen untuk mikroorganisme berkurang, bahan-bahan kimia tidak terdegradasi	1	IT A	1									
						Terjadi pengendapan lumpur sehingga mengganggu metabolisme mikroorganisme	2	Sign	2									
7.	Aerator (TK-806A)			Lamanya usia						Lamanya usia Blower K-802 dan				2	Supply oksigen untuk mikroorganisme berkurang, bahan-bahan kimia tidak terdegradasi	1	Penurunan kualitas limbah dan menimbulkan bau	2
	(1K-800A)			Dilusei		Terjadi pengendapan lumpur sehingga mengganggu metabolisme mikroorganisme	2	incillibuikali bau	4									
				Kualitas Blower K-802 dan	5	Supply oksigen untuk mikroorganisme berkurang, bahan-bahan kimia tidak terdegradasi	1	ASBR	5									
				Difuser yang kurang bagus	<i>J</i> \	Terjadi pengendapan lumpur sehingga mengganggu metabolisme mikroorganisme	2	EVERSI	10									
				Flow meter sebagai pengontrol return sludge rusak		Return Sludge sebagai penjaga massa bakteri bak aerasi tidak berfungsi	1	Massa bakteri bak aerasi tidak berfungsi	2									

Tabel 4.7 Identifikasi Risiko dengan Failure Mode and Effect Analysis (FMEA) (Lanjutan)

No	Component	Function	Function Failure	Potential Failure Mode	0	Potential Effect of Failure	S	Risk	RPN
		Memisahkan antara lumpur dengan	Lumpur dengan supernatant sulit terpisah	Pipa untuk mengalirkan lumpur kembali ke tangki aerasi rusak	3	Lumpur tercecer, kontaminasi	2	Pencemaran lingkungan	6
		supernatant	Partikel padat pada lumpur tidak dapat diendapkan	Pipa untuk megeluarkan lumpur ke Digester (TK-806B) rusak	3	tanah	2	Pencemaran migkungan	6
8.	Clarifier (TK-807)	ifier -807)		Pipa untuk mengalirkan air ke Sand Carbon Filter rusak atau buntu	4	Overflow pada TK-807	1	Limbah cair tumpah (leakage)	4
	(1K-007)		Penjernihan air tidak	Pengontrolan/analisa kualitas air mengalami kesalahan	5	Hasil analisa pengujian tidak akurat/salah	1	Penurunan kualitas limbah	5
		pad <mark>at p</mark> ada lumpur aktif dan penjernihan air	dapat dilakukan dan terjadi kemacetan	Waktu tinggal <i>effluent</i> terlalu lama dalam TK-807	8	Terjadi proses anaerob	2	Timbul bau	16
			Lumpur aktif hab	Lumpur aktif habis	4	Konsentrasi atau jumlah bahan organik dan mineral termasuk dalam mikroorganisme tidak konstan	3	Bakteri WWTP mati	12
9.	Sand Carbon Filter	mengendap atau yang	Partikel tidak dapat	Karbon sudah jenuh	7	Air limbah kurang jernih	1	Warna air limbah tidak sesuai karakteristik	7
<i>)</i> .	(SF-800) (CF-800)	masih terdapat di supernatant hasil dari proses sebelumnya	tersaring	Pasir sudah jenuh	37		1		7
10.	Sludge Blending (TK-804)	Me <mark>mis</mark> ahkan cairan dan pad <mark>ata</mark> n	Cairan dan padatan masih menyatu atau	Air terlalu lama di Sludge Blending dan tidak segera di alirkan ke Sludge Thickener	7	Terjadi fase anaerob	2	Timbul bau tidak sedap	14
		TARK	tercampur	Sistem aerasi udara terganggu	7	Penguraian bakteri tidak sempurna	2	453114	14
11.	Sludge Thickener (TK-805)	Memekatka lumpur agar konsentrasi lumpur lebih tinggi sehingga beban Filter Press bisa berkurang	Lumpur masih cair dan tidak pekat/kental	Filter Press tidak bisa berfungsi secara maksimal	2	Terjadi tumpahan dan ceceran lumpur (sludge)	2	Limbah cair tumpah (leakage)	4


Tabel 4.7 Identifikasi Risiko dengan Failure Mode and Effect Analysis (FMEA) (Lanjutan)


No	Component	Function	Function Failure	Potential Failure Mode	0	Potential Effect of Failure	S	Risk	RPN
12	Filter Press	Memadatkan lumpur dengan mengurangi	Lumpur tidak dapat	Pipa untuk mengambil lumpur dari Sludge Thickener (TK-805) rusak atau bocor	2	Lumpur tercecer dan		Pencemaran lingkungan	4
12 1	(FP-800)	kan <mark>du</mark> ngan air dalam lumpur dengan cara ditekan	ra dipadatkan	Pipa untuk mengambil lumpur dari Sludge Thickener (TK-805) korosif	2	mengontaminasi tanah	2	Menimbulkan bau	4
		Indikator untuk mengontrol langsung kelayakan air/effluent	V. 10. 63. 4411	Terbatasnya bahan kimia untuk melakukan pengujian di laboratorium	1	Pengujian di lab tidak dapat dilakukan	1	VERA	1
13.	Fish Pond		kelayakan air/effluent diketahui dan	Kesalahan laboran dalam melakukan pengujian di lab		Hasil analisa pengujian tidak akurat/salah	1	Penurunan kualitas <i>effluent</i>	1
		air yang akan dibuang bagi lingkungan		Ikan yang dipakai untuk indikator pengujian effluent mati	5	Effluent tidak memenuhi standar baku mutu limbah cair sesuai SK Gubernur Jawa Timur No. 45 Tahun 2002			5

4.9 Identifikasi Akar Penyebab dengan Root Cause Analysis (RCA)

Berdasarkan identifikasi risiko dengan FMEA diatas, dapat dilakukan identifikasi terhadap akar penyebab dari permasalahan yang terjadi dengan metode *Root Cause analysis* (RCA). RCA ini dibuat berdasarkan hasil wawancara dengan pihak perusahaan yang berkaitan dengan IPAL PT ALP Petro Industry.

Gambar 4.5 Root Cause Analysis Penurunan Kualitas Limbah

Bakteri WWTP Mati

Risk Analysis (Analisis Risiko) 4.10

Pada tahap ini dilakukan penilaian risiko, analisa terhadap risiko, dan mengukur tingkat risiko yang terjadi. Dari risiko yang sudah teridentifikasi, langkah selanjutnya adalah mengestimasi probabilitas atau kemungkinan terjadinya risiko, menentukan tingkat risiko dan mengetahui nilai risiko.

Penilaian likelihood dan consequences ini dilakukan dengan wawancara dan brainstorming dengan pihak pelaksana IPAL PT ALP Petro Industry untuk mengestimasi probabilitas kejadian risiko. Nilai kategori likelihood dan consequences dapat dilihat pada tabel dibawah ini.

Tabel 4.8 Nilai *Likelihood* Risiko

No	Risiko	Likelihood	
1.	Limbah cair tumpah	Rare	
2.	Timbul bau tidak sedap	Likely	
3.	Penurunan kualitas limbah	Unlikely	
4.	Bakteri WWTP mati	Moderate	
5.	Pencemaran lingkungan	Rare	

Tabel 4.9 Nilai Consequences Risiko

No	Risiko	Consequences	
1.	Limbah cair tumpah	Insignificant	
2.	Timbul bau tidak sedap	Insignificant	
3.	Penurunan kualitas limbah	Major	
4.	Bakteri WWTP mati	Major	
5.	Pencemaran lingkungan	Minor	

4.10.1 Analisis Failure Mode and Effect Analysis

Berdasarkan dari tabel FMEA ditemukan sepuluh risiko yang teridentifikasi diantaranya adalah limbah cair tumpah, pencemaran lingkungan, air limbah terlalu asam atau basa, bakteri aerator kolaps atau keracunan, kandungan COD dan BOD masih tinggi, warna air limbah tidak sesuai karakteristik, flok pecah, timbul bau tidak sedap, penurunan kualitas limbah, bakteri WWTP mati. Berdasarkan hasil brainstorming dengan pihak manajemen serta dalam RPN yang sudah ditetapkan pada lampiran, sepuluh risiko yang telah ditemukan disederhanakan menjadi lima risiko yaitu limbah cair tumpah, timbul bau tidak sedap, penurunan kualitas limbah, bakteri WWTP mati, dan pencemaran lingkungan. Kelima risiko ini memiliki nilai RPN yang tinggi dan muncul lebih banyak daripada risiko lainnya.

1. Limbah cair tumpah (*Leakage*)

Limbah cair tumpah terjadi pada *Neutralization* dan DAF. Limbah cair yang tumpah dapat mengakibatkan penceraman pada tanah. Dampak dari pencemaran tanah adalah rusaknya struktur tanah, air tanah dapat terkontaminasi, dan bahkan dapat mengganggu mikroorganisme yang ada didalam tanah. Ketika limbah cair telah mencemari permukaan tanah, maka dapat menguap, terbawa air hujan dan atau masuk kedalam tanah.

Timbul bau tidak sedap

Timbulnya bau tidak sedap pada Instalasi Pengolahan Air limbah dapat menyebar ke seluruh lingkungan sekitar perusahaan. Hal ini dapat mengganggu kenyamanan warga dan aktivitas di area perusahaan.

Jika dalam jangka panjang bau limbah tidak segera diatasi dan menyengat, dapat mengancam kesehatan lingkungan. Tidak hanya bagi manusia saja, tanaman dan hewan dapat terkena dampaknya juga. Bau tidak sedap memicu adanya bakteri atau hewan yang merugikan kesehatan.

Penurunan kualitas limbah

Penurunan kualitas limbah terjadi ketika parameter fisika dan kimia tidak sesuai dengan standar baku mutu yang sudah ditentukan. Jika penurunan kualitas limbah pada IPAL PT ALP Petro Industry terjadi maka akan berdampak pada lingkungan sekitar perusahaan. Pengaruh parameter-parameter air limbah pada lingkungan adalah sebagai berikut:

- a. pH air yang terlalu rendah dapat menyebabkan air menjadi bersifat kororsif dan apabila terlalu basa juga dapat menyebabkan iritasi/terbakar pada kulit.
- b. BOD dan COD apabila berlebihan dapat menyebabkan kualitas air menjadi buruk dengan meningkatnya mikroorganisme dalam air.
- Phenol dapat menjadi toksik pada biota air dan manusia apabila melebihi baku mutu.
- d. NH₃N apabila berlebihan dapat menyebabkan pencemaran air dengan meningkatknya tumbuhan air didalam air.
- Minyak dan lemak apabila berlebihan di badan air maka akan menyebabkan tertutupnya permukaan air, sehingga menyebabkan transfer oksigen berkurang dan akan menyebabkan suplai oksigen berkurang pula.

4. Bakteri WWTP mati

Bakteri WWTP mati ketika metabolisme mikroorganisme terganggu. Metabolisme mikroorganisme terganggu pada saat lumpur aktif dalam *Biological Treatment* atau Tangki Aerasi berkurang bahkan habis dan ketika suplai oksigen untuk mikroorganisme berkurang, sehingga apabila terjadi kematian pada bakteri akan mempengaruhi aktivitas proses pengolahan limbah menggunakan proses biologi.

5. Pencemaran lingkungan

Pencemaran lingkungan terjadi akibat dari pipa-pipa pada Instalasi Pengolahan Air Limbah yaitu pada *Equalization Tank, Clarifier* dan *Sludge Thickener* mengalanmi kebocoran sehingga lumpur tercecer. Lumpur yang tercecer ini adalah lumpur yang mengandung mikroorganisme dan dapat mencemari tanah.

4.10.2 Analisis Root Cause Analysis

1. Limbah cair tumpah (*Leakage*)

Tumpahnya limbah cair disebabkan karena suplai limbah cair yang berlebihan dari seluruh departemen di pabrik yang terkumpul dalam Tangki 14. Salah satu departemen yaitu dari departemen produksi, dimana jike terjadi kondisi abnormal dari proses produksi seperti mesin atau pompa yang tidak dapat berfungsi dengan baik. Mesin atau pompa yang rusak untuk mengalirkan limbah cairnya ke IPAL dapat menyebabkan suplai limbah cair berlebihan.

Penyebab lain terjadinya limbah cair tumpah adalah pompa pada *Neutralization* dan DAF karena lamanya usia, kualitas pompa yang kurang bagus sehingga memperngaruhi kinerja pompa, dan karena tidak dilakukannya inspeksi pada pompa karena jumlah operator yang kurang untuk melakukan perawatan.

Limbah cair yang tumpah juga disebabkan karena pipa yang berfungsi mengalirkan air limbah dari *Equalization Tank* menuju *Oil Coalesing Separator*, pipa dari *Clarifier* ke *Sand Carbon Filter* dan pipa dari *Sludge Blending* ke *Filter Press* buntu. Serta *overflow* limbah cair dari *Oil Coalesing Separator* ke *Chemical Mix Tank* dapat mengakibatkan limbah cair tumpah.

2. Timbul bau tidak sedap

Timbulnya bau tidak sedap karena terjadi fase anaerob pada proses Aerasi dan *Sludge Blending*. Hal ini disebabkan suplai oksigen berkurang, terjadi pengendapan lumpur yang terlalu lama sehingga mengganggu metabolisme mikroorganisme pada saat *Biological Treatment*. Selain itu juga karena penguraian bakteri yang tidak

sempurna serta ceceran lumpur pada Instalasi Pengolahan Air Limbah dapat menimbulkan bau yang tidak sedap.

3. Penurunan kualitas limbah

Kualitas limbah cair (effluent) menjadi kurang baik ketika warna effluent tidak jernih. Penyebabnya karena keterbatasan atau kelebihan bahan kimia berupa coagulant, flocculant, dan polymer yang digunakan untuk menjernihkan air mengakibatkan warna effluent menjadi keruh atau berwarna putih susu. Disamping itu pada Sand Carbon Filter penyaringan tidak dapat dilakukan dengan sempurna sebab pasir dan karbon sudah jenuh, hal ini disebabkan periode penggantian pasir dan karbon yang terlalu lama.

Penurunan kualitas effluent juga disebabkan karena nilai karakteristik effluent tidak memenuhi standar baku mutu limbah cair dalam arti kadar bahan kimia dalam limbah melebihi batas. Nilai karakteristik yang tidak sesuai ini dapat disebabkan oleh metabolisme mikroorganisme dalam air terganggu atau mati sehingga tidak mampu mengolah limbah cair secara biologis. Hal ini juga dapat dipengaruhi oleh effluent yang masih asam atau basa sebab caustic soda dan NaOH terlalu banyak atau terlalu sedikit.

Bakteri WWTP mati

Bakteri WWTP mati pada proses pengolahan limbah diakibatkan dari lumpur aktif pada Clarifier habis karena bahan kimia yang melebihi batas baku mutu mengakibatkan jumlah populasi mikroorganisme tidak konstan, maka akan mengakibatkan proses IPAL terganggu.

Bakteri WWTP mati juga disebabkan karena kurangnya suplai oksigen untuk mikroorganisme dalam air. Suplai oksigen berkurang karena diffuser dan blower yang berfungsi menyediakan oksigen pada proses biologi rusak. Kerusakan pada diffuser dan blower dapat disebabkan lamanya usia, kualitas blower dan diffuser yang kurang bagus sehingga mempengaruhi kinerja blower dan diffuser, serta karena tidak dilakukannya inspeksi pada *blower* dan *diffuser* karena jumlah operator yang kurang untuk melakukan perawatan.

5. Pencemaran lingkungan

Pencemaran lingkungan disebabkan oleh kebocoran pipa pada Clarifier yang berfungsi mengaliran lumpur kembali ke tangki Aerasi dan mengeluarkan lumpur ke Digester, serta pada pipa Filter Press untuk mengambil lumpur dari Sludge Thickener. Pipa pada Clarifier dan Filter Press bocor disebabkan karena korosi dan perawatan yang tidak dilakukan secara rutin sehingga kebocoran dari pipa ini menyebabkan lumpur keluar dan membuat tanah terkontaminasi.

4.10.3 Analisis Risiko Berdasarkan Likelihood

1. Limbah cair tumpah (*Leakage*)

Risiko limbah cair tumpah pada Instalasi Pengolahan Air Limbah sangat kecil kemungkinanannya terjadi, karena PT ALP Petro Industry telah memiliki satu bangunan yaitu Tangki (TK-14) yang befungsi untuk menampung limbah cair ketika kapasitasnya melebihi debit air limbah pada Sour Water Stripper. Oleh karena itu, risiko limbah cair tumpah dapat digolongkan pada level *Rare* yaitu kemungkinan terjadinya jarang sekali.

2. Timbul bau tidak sedap

Risiko timbul bau tidak sedap sering terjadi sehingga termasuk dalam level *Likely*, hal ini terjadi karena terjadinya fase anaerob pada proses aerasi dan sludge blending dimana disebabkan oleh sistem aerasi udara terganggu sehingga penguraian bakteri tidak sempurna.

3. Penurunan kualitas limbah

Risiko penurunan kualitas limbah ternasuk dalam level *Unlikely*, yaitu kemungkinan terjadi kadang-kadang. Kemungkinan terjadinya penurunan kualitas limbah karena warna *effluent* yang tidak jernih disebabkan keterbatasan bahan kimia yang digunakan untuk mencampur *effluent* pada proses IPAL.

4. Bakteri WWTP mati

Bakteri WWTP mati yang dapat disebabkan berkurangnya suplai oksigen saat ini terjadi. Hal ini terjadi karena *diffuser* dan *blower* aerasi yang tidak berfungsi, penyebabnya adalah korosi, lama usia dan perawatan yang tidak dilakukan secara rutin sehingga mikroorganisme yang ada pada tangki aerasi berkembang terlalu cepat dan banyak atau bahkan berkurang dan habis. Maka risiko bakteri WWTP mati termasuk dalam level *Moderate*, yaitu sedang terjadi

5. Pencemaran lingkungan

Risiko pencemaran lingkungan termasuk dalam level *Rare*, yaitu kemungkinan jarang sekali terjadi. Hal ini dikarenakan perawatan dan pemantauan pipa-pipa yang ada pada Instalasi Pengolahan Air Limbah dilakukan berkala secara internal selama 2-3 hari sekali dan dari pihak eksternal dilakukan tiap satu bulan sekali.

4.10.4 Analisis Risiko Berdasarkan Consequence

1. Limbah cair tumpah (*Leakage*)

Risiko limbah cair tumpah termasuk pada level Insignificant, yang berarti bahwa tidak ada luka-luka, kerugian finansial yang rendah jika terjadi tumpahan limbah cair dalam Instalasi Pengolahan Air Limbah

2. Timbul bau tidak sedap

Risiko timbul bau tidak sedap termasuk pada level Insignificant, yang berarti bahwa tidak ada luka-luka, kerugian finansial yang rendah jika terjadi tumpahan limbah cair dalam Instalasi Pengolahan Air Limbah.

3. Penurunan kualitas limbah

Penurunan kualitas limbah termasuk pada level Major, yang apabila terjadi maka akan menimbulkan kerugian yang luas, luka yang serius, kemampuan proses terganggu, serta kerugian finansial yang besar bagi pihak PT ALP Petro Industry.

Bakteri WWTP mati

Bakteri WWTP mati memiliki tingkat consequence pada level Major, yang berarti bahwa risiko menimbulkan kerugian yang luas, kemampuan proses terganggu dan kerugian finansial yang besar.

5. Pencemaran lingkungan

Risiko pencemaran lingkungan termasuk dalam level Minor, yang berarti bahwa apabila terjadi maka membutuhkan pertolongan pertama dan kerugian finansial sedang.

4.11 Risk Characterization

Dari hasil analisis risiko yang telah dilakukan dan diketahui nilai *likelihood* serta consequences, tahap selanjutnya adalah melakukan pemetaan risiko dengan matriks risiko.

Tabel 4.10 Matriks Risiko Proses WWTP Terganggu

Consequence								
Likelihood	1 Insignificant	2 Minor	3 Moderate	4 Major	5 Catastrophic			
(A) Almost certainly	Н	Н	Е	Е	E			
(B) Likely	Timbul bau tidak sedap	Н	Н	E	Е			
(C) Moderate	L	М	Н	Bakteri WWTP mati	E			
(D) Unlikely	L	L	М	Penuru- nan kualitas limbah	E			
(E) Rare	Limbah cair tumpah	Pencema- ran lingkung- an	M	Н	Н			

Analisis risk characterization:

1. Limbah cair tumpah (*Leakage*)

Risiko limbah cair tumpah termasuk dalam level *low risk*. Artinya risiko ini diterima dengan persetujuan oleh pihak manajemen dan dapat diatasi dengan prosedur yang rutin.

2. Timbul bau tidak sedap

Risiko timbul bau tidak sedap termasuk dalam level *moderate risk*. Artinya risiko ini diterima dengan persetujuan dan memerlukan tanggung jawab yang jelas dari pihak manajemen.

3. Penurunan kualitas limbah

Risiko penurunan kualitas limbah termasuk dalam level *high risk*. Artinya risiko ini tidak diinginkan dan hanya dapat diterima ketika pengurangan risiko tidak dapat dilaksanakan, sehingga memerlukan perhatian khusus dari pihak manajemen.

4. Bakteri WWTP mati

Risiko bakteri WWTP mati termasuk dalam level *extreme risk*. Artinya risiko ini tidak dapat ditoleransi dan memerlukan penanganan dengan segera dari pihak manajemen.

5. Pencemaran lingkungan

Risiko pencemaran lingkungan termasuk dalam level *low risk*. Artinya risiko ini diterima dengan persetujuan oleh pihak manajemen dan dapat diatasi dengan prosedur yang rutin.

4.12 Risk Management

Risk management merupakan upaya yang dilakukan untuk memperkecil atau mengurangi kemungkinan terjadinya risiko dan konsekuensi atau akibat yang ditimbulkan. Upaya ini merupakan mitigasi atau penanganan risiko. Upaya mitigasi risiko pada penelitian ini hanya sebatas memberikan rekomendasi atau usulan kepada perusahaan.

1. Limbah cair tumpah

Upaya mitigasi risiko yang dapat dilakukan untuk meminimalisasi risiko limbah cair tumpah yaitu:

- a. Melakukan inspeksi limbah cair yang masuk ke Instalasi Pengolahan Air limbah melalui Tangki 14 (TK-14) sampai dialirkan ke *Physical Treatment*.
- b. Melakukan perawatan rutin pada pompa di *Neutralization* dan *Dissolved Air Flotation* (DAF).
- c. Memasang alat pendeteksi untuk mengetahui volume limbah cair ketika hampir penuh.
- d. Melakukan inspeksi pada pipa *Oil Coalesing Separator* (OCS), *Chemical Mix Tank* (CMT), *Sand Carbon Filter* dan *Filter Press* untuk menghindari terjadinya *overflow* saat mengalirkan limbah.

2. Timbul bau tidak sedap

Upaya mitigasi risiko yang dapat dilakukan untuk meminimasi risiko timbulnya bau tidak sedap yaitu:

- a. Pemeriksaan dan perawatan berkala pada blower dan diffuser Aerator.
- b. Monitoring secara rutin pada Aerator dan *Sludge Blending* untuk mencegah fase anaerob terjadi.
- c. Mengurangi kebocoran pada pipa agar limbah yang bercampur lumpur tidak tercecer dan tidak menimbulkan bau.
- d. Membuat fasilitas penampung limbah yang bau , dilakukan proses penanganan limbah lebih lanjut untuk meminimalisasi limbah yang kurang sedap.
- e. Limbah yang bau bukan merupakan suatu parameter bahwa limbah itu berbahaya namun hanya dampaknya lebih kepada gangguan indra penciuman belaka. Bahkan bisa saja limbah yang tidak bau namun justru memiliki kandungan yang berbahaya seperti racun dan sebagainya.

3. Penurunan kualitas limbah

Upaya mitigasi risiko yang dapat dilakukan untuk meminimasi risiko penurunan kualitas limbah yaitu:

- a. Melakukan inspeksi atau perawatan pada tanki Aerator.
- b. Memonitor proses di *Biological Treatment*.
- c. Memonitor penginjeksian coagulant dan flocculant serta polymer yang sesuai dosis.
- d. Ketersediaan bahan kimia yang mencukupi kebutuhan dosing agar tidak mengalami penurunan kualitas limbah cair
- e. Meningkatkan ketelitian laboran dalam pengujian laboratorium.
- f. Melakukan inspeksi sumber air limbah yang banyak mengandung bahan kimia kemudian dilakukan pretreatment dilokasi itu hingga kualitasnya sama dengan limbah organik.

4. Bakteri WWTP mati

Upaya mitigasi risiko yang dapat dilakukan untuk meminimasi risiko bakteri WWTP mati yaitu:

- Melakukan inspeksi/ perawatan pada Blower dan Diffuser.
- b. Memonitor proses pengolahan biologis pada Biological Treatment dan Tangki Aerasi.
- c. Memonitor jumlah populasi lumpur aktif agar tidak sampai berkurang dan habis.
- d. Melakukan pembiakan bakteri dalam inkubator sampai kadar yang sesuai dengan kebutuhan limbah.
- Memberikan makanan berupa urea (dengan kandungan Phospat dan Nitrogen) untuk menjamin kelangsungan hidup bakteri pada unit biologis.

5. Pencemaran lingkungan

Upaya mitigasi risiko yang dapat dilakukan untuk meminimasi risiko pencemaran lingkungan yaitu:

- a. Melakukan inspeksi pada pipa untuk menghindari kebocoran.
- b. Memonitor sumber adanya tumpahan atau terjadinya kebocoran.
- Memasang isolasi pada pipa untuk mencegah tumpahan lumpur sehingga tidak terjadi kontaminasi tanah.