BAB IV DATA DAN PEMBAHASAN

4.1 Data

Hasil yang diperoleh dari Ansys Workbench v.13 adalah deformasi, distribusi tegangan, dan kemungkinan kerusakan (*damage*) yang terjadi. Cacat ketidakrataan ketinggian yang terjadi dapat diukur dari *software* Ansys Workbench v.13 dengan menggunakan *command Probe*. Pada *real*-nya cacat ketidakrataan ketinggian yang terjadi dapat diukur dengan menggunakan jangka sorong atau alat ukur panjang lainnya.

Pada proses pengukuran sisi *flange*, tampak ketidakrataan ketinggian sisi *flange* seperti yang terlihat pada gambar 4.1, dengan 2 kondisi yaitu pada bagian 1 (t₁), ketinggian sisi *flange* lebih besar dari seharusnya yang selanjutnya kelebihan ketinggian pada sisi *flange* tersebut dinamakan dt₁, sedangkan pada bagian 2 (t₂), ketinggian sisi *flange* lebih kecil dari seharusnya yang selanjutnya kekurangan ketinggian pada sisi *flange* tersebut dinamakan dt₂. Untuk mendapatkan dt₁ dan dt₂ maka perlu diukur dulu nilai t_{avg} sebagai acuan dari pengukuran. Selanjutnya kita mengukur besar dari t₁ dan t₂, yang hasilnya nanti untuk t₁ apabila kita lakukan penjumlahan dengan t_{avg} akan mendapatkan nilai dari dt₁ dan untuk mendapatkan dt₂ kita lakukan pengurangan antara t_{avg} dengan t₂.

Gambar 4.1. Pengukuran ketidakrataan pada daerah lokal belokan (mm)

Dengan menvariasikan parameter geometri awal dari plat akhirnya diperoleh data seperti yang ditampilkan pada Tabel 4.1 berikut:

		FAKTOR		HASIL	
NO EKSPERIMEN	TEBAL	RADIUS	PANJANG	dt ₁	dt ₂
	(mm)	(mm)	(mm)	(mm)	(mm)
1	1	$R_A > R_B$ (15>5)	$L_A > L_B$ (100>50)	10.407	1.931
2	1	$R_A > R_B$ (15>5)	$L_{A}=L_{B}$ (75=75)	10.393	1.808
3	1	R _A >R _B (15>5)	L _A <l<sub>B (50<100)</l<sub>	10.62	1.956
4	1	R _A =R _B (10=10)	L _A >L _B (100>50)	10.404	2.402
5	1	R _A =R _B (10=10)	L _A =L _B (75=75)	10.126	2.357
6	1	R _A =R _B (10=10)	L _A <l<sub>B (50<100)</l<sub>	10.415	2.569
7	1	R _A <r<sub>B (5>15)</r<sub>	L _A >L _B (100>50)	10.092	2.927
8	1	$\begin{array}{c} R_A < R_B \\ (5 > 15) \end{array}$	L _A =L _B (75=75)	9.746	2.823
9	1	$\begin{array}{c} R_A < R_B \\ (5 > 15) \end{array}$	L _A <l<sub>B (50<100)</l<sub>	10.233	2.936
10	2	$\begin{array}{c} R_{A} > R_{B} \\ (15 > 5) \end{array}$	L _A >L _B (100>50)	10.221	1.181
11	2	$\begin{array}{c} R_A > R_B \\ (15 > 5) \end{array}$	L _A =L _B (75=75)	9.991	0.8
12	2	$\begin{array}{c} R_A > R_B \\ (15 > 5) \end{array}$	L _A <l<sub>B (50<100)</l<sub>	10.233	1.114
13	2	R _A =R _B (10=10)	L _A >L _B (100>50)	10.15	1.357
14	2	R _A =R _B (10=10)	L _A =L _B (75=75)	9.767	1.247
15	2	R _A =R _B (10=10)	L _A <l<sub>B (50<100)</l<sub>	10.096	1.304
16	2	$R_A < R_B$ (5>15)	L _A >L _B (100>50)	9.491	1.583
17	2	$\begin{array}{c} R_A < R_B \\ (5 > 15) \end{array}$	L _A =L _B (75=75)	9.449	1.447
18	2	$\begin{array}{c} R_A < R_B \\ (5 > 15) \end{array}$	L _A <l<sub>B (50<100)</l<sub>	9.486	1.597
19	3	$\begin{array}{c} R_A > R_B \\ (15 > 5) \end{array}$	$\begin{array}{c} L_A > L_B \\ (100 > 50) \end{array}$	9.094	1.173
20	3	$R_A > R_B$ (15>5)	L _A =L _B (75=75)	8.911	0.693
21	3	$\begin{array}{c} R_A > R_B \\ (15 > 5) \end{array}$	L _A <l<sub>B (50<100)</l<sub>	9.028	1.128
22	3	$R_{A}=R_{B}$ (10=10)	L _A >L _B (100>50)	9.912	1.36
23	3	$R_{A}=R_{B}$ (10=10)	L _A =L _B (75=75)	8.897	1.137
24	3	$R_{A}=R_{B}$ (10=10)	L _A <l<sub>B (50<100)</l<sub>	9.5	1.37
25	3	$R_A < R_B$ (5>15)	$L_A > L_B$ (100>50)	8.677	1.447
26	3	$\begin{array}{c} R_A < R_B \\ (5 > 15) \end{array}$	L _A =L _B (75=75)	8.561	1.329
27	3	$\begin{array}{c} R_{A} < R_{B} \\ (5 > 15) \end{array}$	L _A <l<sub>B (50<100)</l<sub>	8.806	1.474

Tabel 4.1. Hasil pengukuran ketidakrataan ketinggian plat jogged flange

4.2 Pembahasan

4.2.1 Verifikasi Hasil Pemodelan

Verifikasi dilakukan dengan membandingkan model eksperimen nyata yaitu penelitian Pravin Kulkarni dan Shashikiran Prabhakar (Gambar 4.2). Parameter proses yang dipilih adalah material *aluminum alloy* 2024-O, *straight flange*, radius *bending punch* 6,35 mm, dan cacat yang diteliti ialah cacat *springback*.

Gambar 4.2 Pemodelan penelitian Pravin Kulkarni menggunakan software Ansys Workbench v.13

Software Ansys Workbench v.13 tidak menyediakan fasilitas yang menampilkan secara langsung besar sudut penyimpangan (*springback*) yang terjadi, sehingga digunakanlah pengukuran dengan menggunakan bantuan software Autodesk Inventor Profesional 2012 (Gambar 4.3).

Gambar 4.3 Pengukuran sudut springback menggunakan Autodesk Inventor Profesional 2012

Hasil yang diperoleh dari pengukuran besar sudut *springback* adalah seperti tampak pada tabel 4.2 berikut:

Aluminum Alloy 2024 – O					
Tebal plat (mm)	Radius Bending 6,35 mm				
	Experimental	FEA	Deviation		
	(Degree)	(Degree)	(%)		
0,8	96,29	95,81	0,5		
1,6	93,90	92.22	1,79		

Hasil simulasi model tiga dimensi sedikit berbeda dengan hasil model eksperimen nyata milik Pravin Kulkarni dan Shashikiran Prabhakar. Akan tetapi toleransi penyimpangan dari verifikasi masih dibawah 5% sehingga masih cukup valid.

4.2.2 Analisis Pengaruh Perbandingan Panjang Plat Terhadap Ketidakrataan Belokan *Flange*

Pada pembengkokan plat bentuk *jogged flange*, di bagian belokan cenderung mengalami pemanjangan maupun pengurangan ketinggian *flange*. Kecenderungan tersebut disebabkan karena dua buah gaya yang bekerja pada arah yang berlawanan disekitar daerah belokan plat hal inilah yang dimaksud dengan kedwisumbuan tegangan. Akibatnya dibagian belokan cenderung mengalami pemanjangan yang disebabkan oleh *tension* (gambar 4.4 yang dilingkari coklat) dan pengurangan ketinggian yang disebabkan oleh *compression* pada daerah belokan (Gambar 4.4 yang dilingkari kuning) ketinggian *flange* tersebut.

Gambar 4.4 Kedwisumbuan tegangan yang terjadi pada daerah belokan plat

Strain rate dapat bereaksi sangat berbeda bergantung pada gaya yang diterapkan. Pada kebanyakan kasus deformasi plastis, jika gaya pembebanan dilakukan secara bertahap diterapkan pada material, maka material akan memanjang dalam jumlah besar sebelum rusak. Hal ini dikarenakan molekul di material memiliki cukup waktu untuk mereorientasi diri dan bergerak melewati satu sama lain, yang menyebabkan peregangan terjadi.

epository.ub.a

Gambar 4.5 (a) Grafik pengaruh panjang sisi plat terhadap ketidakrataan belokan *flange* pada dt₁ (b) Grafik pengaruh panjang sisi plat terhadap ketidakrataan belokan *flange* pada dt₂

Berdasarkan data yang telah dipaparkan pada tabel 4.1 dan gambar 4.5 dapat terlihat bahwa nilai ketidakrataan yang paling minimal dari perbandingan panjang plat ($L_A > L_B$; $L_A = L_B$; $L_A < L_B$) terjadi pada perbandingan panjang plat $L_A = L_B$ dimana $L_A = 75$ cm dan $L_B = 75$ cm. Hal ini dikarenakan distribusi tegangan yang lebih merata pada perbandingan panjang plat $L_A = L_B$ dibandingkan dengan perbandingan plat pada $L_A > L_B$ dan $L_A < L_B$ (gambar 4.6).

BRAWIJAYA

Gambar 4.6 Distribusi tegangan pada perbandingan panjang plat L_A=L_B

Perbedaan panjang sisi plat mengakibatkan adanya penumpukan konsentrasi tegangan yang berlebih pada belokan *flange* sehingga mengakibatkan distribusi tegangan yang tidak merata dan adanya peningkatan regangan yang berlebih pada belokan *flange* dt₁ dan pengurangan regangan pada belokan *flange* dt₂ (gambar 4.7).

Gambar 4.7 Distribusi tegangan pada perbandingan panjang plat L_A>L_B

Gambar 4.8 (a) Grafik pengaruh radius belokan plat terhadap ketidakrataan belokan *flange* pada dt₁ (b) Grafik pengaruh radius belokan plat terhadap ketidakrataan belokan *flange* pada dt₂

Berdasarkan data yang telah dipaparkan pada tabel 4.1 dan gambar 4.8 dapat terlihat bahwa nilai ketidakrataan yang paling minimal dari belokan 1 (dt₁) terjadi pada perbandingan radius $R_A < R_B$ dan nilai ketidakrataan yang paling maksimal terjadi pada perbandingan radius $R_A > R_B$. Selanjutnya nilai ketidakrataan yang paling minimal dari belokan 2 (dt₂) terjadi pada

perbandingan radius $R_A > R_B$ dan nilai ketidakrataan yang paling maksimal terjadi pada perbandingan radius $R_A < R_B$. Jadi dapat disimpulkan bahwa semakin besar radius *flange* maka semakin kecil cacat ketidakrataan yang terjadi.

Pada nilai ketidakrataan belokan 1 (dt₁), yang lebih mempengaruhi nilai ketidakrataan ketinggian belokan 1 (dt₁) adalah besar radius belokan 1 (R_A), karena secara geometri ukuran R_A secara langsung mempengaruhi besar deformasi yang terjadi pada daerah lokal belokan 1 (dt₁). Begitu juga sebaliknya pada ketidakrataan belokan 2 (dt₂).

4.2.4 Analisis Pengaruh Tebal Plat Terhadap Ketidakrataan Belokan Flange

Gambar 4.9 (a) Grafik pengaruh radius belokan plat terhadap ketidakrataan belokan *flange* pada dt₁ (b) Grafik pengaruh radius belokan plat terhadap ketidakrataan belokan *flange* pada dt₂

(b)

Berdasarkan data yang telah dipaparkan pada tabel 4.1 dan gambar 4.9 dapat terlihat bahwa dapat terlihat bahwa nilai ketidakrataan yang paling minimal dari belokan 1 (dt₁) terjadi pada tebal 3 mm dan nilai ketidakrataan yang paling maksimal terjadi pada perbandingan radius 1 mm. Selanjutnya nilai ketidakrataan yang paling minimal dari belokan 2 (dt₂) terjadi pada 3 mm dan nilai ketidakrataan yang paling maksimal terjadi pada perbandingan 1 mm. Jadi dapat disimpulkan bahwa semakin besar tebal platnya maka semakin kecil cacat ketidakrataan yang terjadi.

Pada plat yang lebih tebal tidak semua materialnya bersifat plastis apabila diberi beban, semakin tebal plat nya maka semakin besar pula daerah elastis yang terdapat pada bagian dalam platnya (gambar 4.10).

Gambar 4.10 Kemampuan elastis pada plat tebal 1 mm, 2 mm, dan 3 mm

Pada tebal 1 mm warna daerah kemampuan elastis plat nya lebih cenderung bersifat plastis hal ini ditampilkan dengan warna biru hingga biru muda yang lebih dominan pada platnya. Pada tebal 2 mm kemampuan elastis platnya lebih besar daripada tebal 1 mm, hal ini dapat terlihat pada tebal 2 mm daerah kemampuan elastis platnya beragam mulai dari warna biru hingga hijau yang berarti kemampuan elastis platnya

disini lebih cenderung meningkat dibandingkan dengan tebal 1 mm. Sedangkan pada tebal 3 mm kemampuan elastis platnya lebih besar daripada tebal 2 mm, hal ini ditunjukkan dengan keseragaman daerah elastis mulai dari warna biru hingga kuning pada platnya. Pada plat tebal 3 mm terdapat daerah elastis berwarna dominan hijau dan warna kuning yang memiliki kemampuan elastis lebih tinggi daripada sebelumnya. Oleh karena itu semakin tebal platnya maka semakin besar pula kemampuan elastisnya yang mengakibatkan setelah diberi pembebanan plat mencoba berdeformasi kembali ke bentuk semula, hal inilah yang mengakibatkan semakin kecilnya nilai cacat ketidakrataan pada plat yang lebih tebal.