DAFTAR ISI

LEMBAR PERSETUJUAN ... i
KATA PENGANTAR .. iii
ABSTRAK .. iv
DAFTAR ISI ... vi
DAFTAR TABEL .. vii
DAFTAR GAMBAR .. viii
DAFTAR LAMPIRAN ... ix

BAB I PENDAHULUAN
1.1 Latar Belakang ... 1
1.2 Identifikasi Masalah .. 2
1.3 Batasan Masalah ... 2
1.4 Rumusan Masalah .. 2
1.5 Tujuan dan Manfaat ... 3

BAB II TINJAUAN PUSTAKA
2.1 Umum .. 4
2.2 Terowongan Tekan (Headrace Tunnel) .. 5
2.3 Pipa pesat (Penstock) .. 8
 2.3.1 Diameter Pipa Pesat ... 9
 2.3.2 Tebal Pipa Pesat ... 11
 2.3.3 Koefisien Tinggi Tekan pada Pipa Pesat .. 12
2.4 Tekanan Hidrodinamis ... 12
2.5 Pukulan Air (Water Hammer) ... 13
2.6 Tangki Gelombang (Surge Tank) .. 17
 2.6.1 Perencanaan Hidraulik Tangki Gelombang Sederhana ... 18
 2.6.2 Stabilitas Fluktuasi Muka Air ... 20
2.7 Kekuatan Pipa .. 23
 2.7.1 Perhitungan Kekuatan Pipa Baja .. 23
 2.7.2 Perhitungan Kekuatan Pipa Beton ... 24
2.8 Tile Water Level (TWL) .. 25
2.9 Tinggi Jatuh Efektif (H_{ef}) ... 26
2.10 Turbin ... 27
2.10.1 Klasifikasi Turbin ... 27
2.10.2 Karakteristik Turbin ... 28
2.10.3 Dimensi Turbin ... 30
2.10.4 Kavitasi ... 30
2.10.5 Bangunan Pelengkap .. 32
2.11 Daya .. 33
2.12 Daya Generator .. 33
2.13 Energi ... 34
2.14 Analisa Ekonomi .. 34
 2.14.1 Komponen Manfaat (Benefit) ... 34
 2.14.2 Komponen Biaya (Cost) ... 35
2.15 Indikator Kelayakan Ekonomi ... 39
 2.15.1 BCR (Benefit Cost Ratio) .. 39
 2.15.2 NPV (Net Present Value) .. 40
 2.15.3 IRR (Internal Rate of Return) .. 40

BAB III METODOLOGI STUDI
3.1 Kondisi Umum ... 41
 3.1.1 Kondisi Geografis Kabupaten Sumedang 41
 3.1.2 Batas Wilayah ... 42
3.2 Kondisi Daerah Studi ... 42
3.3 Data-data Yang Dibutuhkan ... 42
3.4 Data Teknis Waduk Jatigede .. 43
3.5 Tahan Perencanaan ... 44

BAB IV ANALISIS DATA DAN PEMBAHASAN
4.1 Outflow Waduk .. 50
 4.1.1 Debit Operasi Waduk ... 50
 4.1.2 Muka Air Operasi Waduk ... 51
4.2 Tinggi Jatuh Bruto (H_{gross}) ... 52
4.3 Terowongan Tekan .. 53
 4.3.1 Perhitungan Kapasitas Pengaliran Terowonga Tekan 53
 4.3.2 Perhitungan Biaya Kehilangan Energi 54
 4.3.3 Perhitungan Biaya Konstruksi Terowongan Tekan 55
 4.3.4 Penentuan Diameter Terowongan Tekan 56
4.4 Diameter Pipa Pesat ... 63
4.5 Tekanan Hidrodinamis pada Power Waterway ...63
 4.5.1 Kehilangan Tinggi pada Power Waterway...63
 4.5.2 Tekanan Hidrodinamis pada Power Waterway..69
4.6 Pukulan Air (Water Hammer) ...73
4.7 Tebal Pipa Pesat ..76
4.8 Kekuatan Pipa ..76
 4.8.1 Kekuatan Pipa Pesat Vertikal ..76
 4.8.2 Kekuatan Pipa Pesat Horisontal ..76
 4.8.3 Kekuatan Pipa Pesat Conduit ...77
4.9 Tangki Peredam (Surge Tank) ...77
 4.9.1 Perencanaan Tangki Peredam ...78
 4.9.2 Stabilitas Tangki Peredam ...81
 4.9.3 Perencanaan Tangki Peredam Hilir ...82
4.10 Tinggi Jatuh Efektif ...84
4.11 Daya dan Energi ..86
 4.11.1 Daya ..86
 4.11.2 Energi ..87
4.12 Turbin ..87
 4.12.1 Pemilihan Turbin ...87
 4.12.2 Dimensi Turbin ...88
 4.12.3 Kavitasi ...89
4.13 Analisis Kelayakan Ekonomi ...90
 4.13.1 Biaya (Cost) ...90
 4.13.2 Manfaat (Benefit) ...97
 4.13.3 Present Value (PV) ...97
 4.13.4 BCR ..98
 4.13.5 NPV ..98
 4.13.6 IRR ...99
 4.13.7 Payback Periode ...99

BAB V PENUTUP
5.1 Kesimpulan ...101
5.2 Saran ...101

DAFTAR PUSTAKA

LAMPIRAN
DAFTAR TABEL

Tabel 2.1 Koefisien Kehilangan karena Pemasukan .. 7
Tabel 2.2 Koefisien Tinggi Tekan pada Penyempitan ... 7
Tabel 2.3 Nilai E_p Bermacam-macam Bahan Pipa .. 17
Tabel 2.4 Kekuatan Baja ... 23
Tabel 2.5 Kekuatan Beton .. 25
Tabel 2.6 Koefisien Manning .. 26
Tabel 2.7 Pengelompokan Turbin .. 27
Tabel 2.8 Jenis Turbin Berdasarkan Tinggi Tekan .. 27
Tabel 2.9 Jenis Turbin Berdasarkan Arah Aliran .. 28
Tabel 2.10 Jenis Turbin Berdasarkan Kecepatan Tertentu 28
Tabel 2.11 Hubungan Antara Elevasi dan Tekanan Atmosfir 31
Tabel 2.12 Hubungan Antara Suhu Air dan Tekanan Uap 32
Tabel 2.13 Besar Biaya Tahunan untuk O & P .. 39
Tabel 4.1 Data Inflow dan Outflow Bulanan Waduk Jatigede dalam Satu Tahun 50
Tabel 4.2 Muka Air Operasi Waduk ... 51
Tabel 4.3 Tinggi Jatuh Bruto (H_{gross}) ... 53
Tabel 4.4 Kapasitas Pengaliran Terowongan Tekan .. 58
Tabel 4.5 Biaya Kehilangan Energi 59
Tabel 4.6 Biaya Konstruksi Terowongan Tekan ... 60
Tabel 4.7 Biaya Tahunan dan Rekapitulasi Biaya Total .. 61
Tabel 4.8 Kehilangan Tinggi pada Terowongan Tekan ... 67
Tabel 4.9 Kehilangan Tinggi pada Pipa Pesat ... 68
Tabel 4.10 Tekanan Hidrodinamis pada Power Waterway 72
Tabel 4.11 Pukulan Air dengan Berbagai Waktu Penutupan Katup 75
Tabel 4.12 Perhitungan Tangki Peredam dengan Berbagai Luasan 80
Tabel 4.13 Tinggi Jatuh Efektif .. 84
Tabel 4.14 Daya yang Dibangkitkan .. 86
Tabel 4.15 Energi yang Dihasilkan .. 87
Tabel 4.16 Kavitasi pada Turbin ... 90
Tabel 4.17 Perhitungan Internal Rate of Return ... 100
DAFTAR GAMBAR

Gambar 2.1 Skema Konversi Energi Pada Pembangkit Listrik Tenaga Air4
Gambar 2.2 Diameter Optimum Pipa Pesat ..10
Gambar 2.3 Kondisi Aliran Dalam Pipa Terhadap Berbagai Operasi Katup14
Gambar 2.4 Tekanan Pukulan Air pada Pipa ..15
Gambar 2.5 Perilaku Pengaruh Kekasaran pada Tekanan dalam Waktu Tertentu ...15
Gambar 2.6 Bentuk Kurva pada Penutupan Katup ..15
Gambar 2.7 Grafik Calame-Gaden’s ...22
Gambar 2.8 Tegangan Tangensial pada Pipa Tipis ..23
Gambar 2.9 Tegangan Tangensial pada Pipa Tebal ..24
Gambar 2.10 Penampang Saluran yang Paling Baik ...25
Gambar 2.11 Grafik Pemilihan Turbin ...28
Gambar 2.12 Karakteristik Utama dari Turbin ..29
Gambar 3.1 Diagram Alir Pengerjaan Skripsi ..46
Gambar 3.2 Lokasi Bendungan Jatigede menurut Peta Administratif47
Gambar 3.3 Lokasi Bendungan Jatigede menurut Google Earth48
Gambar 3.4 Profil Potongan Melintang Main Dam Bendungan Jatigede49
Gambar 4.1 Debit Inflow dan Outflow Waduk Jatigede51
Gambar 4.2 Elevasi Muka Air Bulanan Waduk Jatigede52
Gambar 4.3 Diameter Ekonomis Terowongan Tekan ...62
Gambar 4.4 Pembagian Pias Tekanan Hidrodinamis pada Power Waterway PLTA Jatigede ...71
Gambar 4.5 Fluktuasi Muka Air pada Tangki Peredam PLTA Jatigede83
Gambar 4.6 Tinggi Jatuh Power Waterway PLTA Jatigede85
Gambar 4.7 Diagram Cost-Benefit ..97
DAFTAR LAMPIRAN

General Layout Plan PLTA Bendungan Jatigede
Longitudinal Plan PLTA Bendungan Jatigede
Tabel Bunga pada Bunga Kompon
Tarif Dasar Listrik PT. PLN (Persero)
Suku Bunga Pinjaman Rupiah yang Diberikan Menurut Kelompok Bank
Harga Katup *Butterfly* Stockham
Foto Dokumentasi Lokasi Proyek Bendungan Jatigede