BAB I PENDAHULUAN

1.1 Latar Belakang

Seiring dengan perkembangan zaman yang semakin maju maka manusia dituntut untuk dapat melaksanakan segala sesuatu secara efisien. Hal semacam inilah yang tampak pada semua peralatan yang digunakan oleh manusia. Peralatan yang dipakai oleh manusia selalu mengalami penyempurnaan dari waktu ke waktu.

Penerapan nosel dibidang teknik diantaranya ialah *ejecktor* pada *jet pump* berfungsi untuk meningkatkan kecepatan aliran yang diikuti dengan penurunan tekanan. Pada sistem pembakaran nosel digunakan untuk menghasilkan fluida dalam bentuk *droplet* halus dan menyebar secara merata begitu juga pada *spray gun*, nosel berfungsi agar cat yang keluar menyebar merata mengenai permukaan yang akan di cat. Contoh aplikasi diatas menunjukkan bahwa untuk suatu pemakaian diperlukan nosel dengan desain tertentu, sehingga aliran fluida pada nosel sesuai dengan yang dibutuhkan. Oleh karena itu diperlukan penelitian mengenai pengaruh desain nosel terhadap pola aliran fluida.

Sebelumnya telah dilakukan penelitian pengaruh variasi bentuk nosel terhadap karakteristik aliran keluar nosel (Tratama, 2005) dengan menggunakan metode eksperimen. Untuk mengetahui pola aliran tersebut dapat dilakukan dengan dua cara atau metode yaitu dengan metode eksperimen dan numerik. Dalam hal ini penulis menggunakan metode numerik. Metode eksperimen dapat dijadikan sebagai pembanding terhadap metode numerik. Metode numerik memiliki beberapa kelebihan dibanding metode eksperimen. Kelebihan dari metode Numerik antara lain kita dapat mendapatkan hasil secara cepat, murah dan juga dapat menjangkau semua titik yang di inginkan tanpa harus mengukur satu persatu secara manual yang dapat menyebabkan ketidaktepatan dalam pengukuran. Sehingga jika ditinjau dari segi ini, metode numerik lebih menguntungkan.

Penelitian ini dimaksudkan untuk mempelajari pengaruh bentuk nosel terhadap pola aliran fluida pada nosel yang dilakukan dengan metode numerik. Hasil dari simulasi ini akan dibandingkan dengan hasil secara eksperimen. Selanjutnya dapat disimulasikan aliran fluida pada nosel dengan berbagai desain. Dengan diketahuinya pola fluida pada bermacam-macam desain nosel tersebut diharapkan dapat digunakan sebagai bahan pertimbangan untuk merencanakan dan memilih nosel agar sesuai dengan kebutuhan.

1.2 Rumusan Masalah

Berdasarkan latar belakang seperti tersebut diatas, maka disusun rumusan masalah sebagai berikut :

- Bagaimana pola aliran fluida pada nosel *conic* dan *countur* yang digunakan dalam eksperimen sebelumnya (Tratama, 2005) dengan menggunakan metode numerik ?
- 2. Bagaimana perbandingan atau verifikasi pola aliran fluida pada nosel yang diperoleh dengan metode numerik dan eksperimen ?
- 3. Bagaimana hasil simulasi secara numerik aliran fluida pada berbagai bentuk nosel lain ?

1.3 Batasan Masalah

- 1. Fluida kerja yang dipakai adalah air.
- 2. Aliran fluida berupa aliran aksisimetrik.
- 3. Aliran fluida bersifat *steady*.
- 4. Jenis nosel adalah conic dan contour.
- 5. Simulasi digunakan dengan FLUENT 6.0.

1.4 Tujuan Penelitian

Tujuan penelitian ini adalah untuk mengetahui pola aliran fluida pada nosel *conic* dan *contour* yang digunakan dalam penelitian sebelumnya (Tratama, 2005) dengan menggunakan metode numerik, serta membandingkan pola aliran fluida pada nosel *conic* dan *contour* yang diperoleh dengan metode eksperimen dan numerik. Selanjutnya akan diteliti bagaimana pola aliran fluida pada berbagai bentuk nosel yang lain.

1.5 Manfaat Penelitian

Manfaat yang dapat diambil dari penelitian skripsi ini adalah :

1. Bagi dunia pendidikan menjadi tambahan refrensi dalam bidang teknik konversi energi mengenai pola aliran fluida dengan metode numerik.

- 2. Bagi dunia industri akan mampu menjadi acuan dalam melakukan perencanaan atau pemilihan nosel terhadap aplikasi yang diperlukan pada aliran fluida.
- 3. Bagi penulis menambah pengetahuan dalam hal simulasi hasil eksperimen dengan metode numerik,mampu menerapkan teori-teori yang telah didapat selama perkuliahan khususnya mengenai Komputasi dinamika fluida.

AS

INERS

BRAWIUAL

BAB II TINJAUAN PUSTAKA

2.1 Penelitian Sebelumnya

Tratama, teddy (Jurusan Mesin, Fakultas Teknik, Universitas Brawijaya) "Pengaruh variasi bentuk nosel terhadap karakteristik aliran keluar nosel" (2005)

Dalam penelitian sebelumnya telah dilakukan eksperimen untuk mengetahui pengaruh bentuk nosel terhadap pola aliran keluar nosel. Variabel bebas dalam penelitian ini adalah bentuk nosel yang divariasikan seperti pada gambar 2.1 berikut :

Gambar 2.1 a) Conical Nozzle b) Contour Nozzle

Pada nosel *contour* kecepatan aliran lebih kecil serta tekanan keluar dan *losses* lebih besar bila dibandingkan dengan kecepatan aliran, tekanan keluar dan *losses* pada nosel *conic*.

Pada tekanan 20 kPa, kapasitas aliran fluida melewati nosel dengan bentuk *contour* adalah 0,0000927 m³ s⁻¹ dengan bilangan Re 5096,8734. Kapasitas aliran fluida melewati nosel dengan bentuk conic adalah sebesar 0,0000927 m³ s⁻¹ dengan bilangan Re 5650,85773, aliran fluida yang masuk ke dalam nosel adalah turbulen, semakin besar tekanan masuk nosel maka kapasitas alir (debit) dan kecepatan fluida pada nosel juga akan semakin besar. Semakin besar tekanan fluida masuk nosel, maka tekanan fluida keluar nosel dan *losses* yang terjadi juga semakin besar, tetapi efisiensi cenderung konstan.

2.2 Definisi dan Sifat-Sifat Fluida

Fluida didenifisikan sebagai suatu zat yang secara terus-menerus berubah bentuk apabila dikenakan tegangan geser, walaupun tegangan geser tersebut sangat kecil.

Fluida akan bergerak dan berubah bentuk secara terus-menerus selama tegangan itu bekerja.

Semua fluida mempunyai sifat-sifat yang penting dalam dunia rekayasa. Adapun sifat fluida antara lain kerapatan, kompresibilitas, dan viskositas. Kerapatan adalah ukuran untuk konsentrasi zat dan dinyatakan dalam massa zat yang per satuan volume, sifat ini ditentukan dengan cara menghitung perbandingan massa zat yang terkandung dalam suatu bagian tertentu terhadap volume bagian tersebut.

Kompresibilitas adalah ukuran perubahan kerapatan fluida akibat geseran viskos atau kompresi oleh suatu tekanan dari luar dan yang bekerja terhadap suatu volume fluida, dinyatakan dengan perbandingan tekanan yang bekerja dari luar dengan perubahan volume fluida tiap satuan volumenya.

Viskositas adalah sifat fluida yang didasari dengan diberikannya tahanan terhadap tegangan geser oleh fluida tersebut. Viskositas tergantung oleh dua hal yaitu akibat dari gaya kohesi antar molekul-molekul zat itu sendiri, dan akibatnya dari pertukaran momentum molekular. Zat cair yang memiliki molekul yang lebih rapat daripada gas, gaya kohesinya cenderung lebih dominan sebagai penyebab viskositas, sementara kohesi berkurang sejalan dengan peningkatan suhu sehingga viskositas berkurang. Sebaliknya pada gas, dimana molekulnya lebih renggang daripada zat cair, pertukaran momentum molekulnya lebih dominan sebagai faktor viskositasnya. Laju perpindahan momentum bergantung pada laju perpindahan molekul yang melintasi batas-batas fluida tersebut.

2.3 Klasifikasi Fluida

Fluida diklasifikasikan berdasarkan kekentalan dibagi menjadi dua yaitu viscid dan inviscid. Yang membedakan kedua jenis fluida tersebut adalah viskositasnya, dimana inviscid kekentalannya bernilai nol.

Berdasarkan pola alirannya fluida dibagi menjadi dua yaitu laminar dan turbulen. Aliran laminar adalah aliran yang bergerak dalam lapisan-lapisan, dimana pertukaran momentum dan massa yang terjadi secara molekular dalam skala submikropis dari lapisan yang mempunyai kecepatan relatif tinggi menuju lapisan yang lain yang memiliki kecepatan lebih rendah. Pada aliran ini fluida mengikuti aliran yang lebih lancar serta kontinyu dengan kecepatan yang tetap. Partikel-partikel fluida dalam lapisan tetap ada dalam urutan yang benar.

BRAWIJAYA

Aliran turbulen adalah aliran dimana partikel fluida yang bergerak secara acak dengan kecepatan yang berfluktuasi yang saling interaksi antara gumpalan-gumpalan fluida yang tersuperposisikan pada geseran viskos. Pada aliran turbulen tidak terlihat lagi adanya lapisan fluida (lamina-lamina) sehingga aliran fluida dibayangkan sebagai bongkahan fluida ini bergerak dengan acak.

Aliran diklasifikasikan sebagai aliran laminer atau turbulen ditentukan berdasarkan pada bilangan Reynolds. Bilangan Reynolds merupakan parameter tak berdimensi yang menunjukkan perbandingan antara gaya inersia terhadap gaya fiskos dari suatu fluida. Hal ini dapat dirumuskan sebagai persamaan berikut

 $Re = \frac{V.d}{v}$ (Cengel, 1998 : 335)

dimana V = kecepatan aliran fluida $(m.s^{-1})$

d = diameter pipa (m)

v = viskositas kinematik (m².s⁻¹)

Selain bilangan Reinolds terdapat beberapa faktor yang mempengaruhi terjadinya turbolensi pada suatu aliran yaitu :

- a. Kekasaran pada permukaan
- b. Perubahan luas penampang
- c. Hambatan pada aliran

Berdasarkan mampu mampat fluida dibagi menjadi dua yaitu *incompressible* dan *compressible*. Fluida *incompressible* adalah fluida yang tidak mampu mampat dan perubahan kerapatan fluida akibat perubahan tekanan dapat diabaikan. Contoh fluida incompressible adalah air. Sedangkan fluida *compressible* adalah fluida yang mampu mampat dan kerapatan fluidanya dipengaruhi oleh tekanan. Contoh fluida *compressible* adalah udara.

2.4 Hukum Dasar dan Analisa Differensial pada Suatu Aliran Fluida.

Dalam menganalisa fluida ada bebrapa hukum dasar yang digunakan, sebagai berikut :

- 1. Hukum Konservasi Massa : laju perubahan massa pada suatu sistem sama dengan laju aliran massa yang masuk ke dalam sistem tersebut.
- 2. Hukum II Newton : laju perubahan momentum pada suatu sistem sama dengan jumlah gaya-gaya yang bekerja pada sistem tersebut.

Fluida dianggap sebagai suatu yang bergerak terus menerus. Sifat dari fluida pada kondisi sifat makroskopik seperti kecepatan, tekanan, rapat jenis, dan temperatur pada fungsi ruang dan waktu, untuk analisa ini digunakan sebuah elemen kecil dari fluida dengan sisi δx , δy dan δz seperti ditunjukan gambar 2.2 berikut :

Gambar 2.2 : Elemen fluida untuk hukum konversi. Sumber : H.K. Versteeg and W. Malalasekera, 1995 : 11.

Pada sisi masing-masing juga diberikan label *N*,*S*,*E*,*W*,*T*,*B*. Petunjuk arah positif dan negatif juga diberikan pada elemen tersebut. Pusat dari elemen tersebut terletak pada posisi (*x*, *y*, *z*). Semua properti dari fluida adalah fungsi ruang dan waktu, sehingga dapat dituliskan $\rho(x,y,z,t)$, p(x,y,z,t), T(x,y,z,t) dan $\vec{V}(x,y,z,t)$ untuk rapat jenis, tekanan, temperatur, dan vektor kecepatan secara berturut-turut.

Untuk mengevaluasi properti pada tiap sisi dari elemen fluida, digunakan ekspansi deret Taylor pada pusat dari elemen tersebut, yaitu posisi (x, y, z). Sebagai contoh tekanan (p) pada sisi E dan sisi W, dimana keduanya terletak pada jarak $\frac{1}{2}\delta x$ dari pusat elemen dapat dituliskan :

Untuk sisi W :
$$p - \left[\frac{\delta p}{\delta x}\right]\frac{\delta x}{2}$$
, dan untuk sisi E : $p + \left[\frac{\delta p}{\delta x}\right]\frac{\delta x}{2}$

2.4.1 Konservasi massa

Kesetimbangan massa untuk elemen fluida menyatakan laju perubahan massa pada suatu elemen sama dengan total laju aliran massa yang masuk ke dalam elemen tersebut. Laju perubahan massa pada elemen fluida adalah :

$$\frac{\partial}{\partial t} \left(\rho \, \delta x \, \delta y \, \delta z \right) = \frac{\partial \rho}{\partial t} \, \delta x \, \delta y \, \delta z \tag{2-1}$$

Laju aliran massa yang masuk elemen fluida melewati sisi elemen diberikan oleh perkalian antara rapat massa, luas dan komponen kecepatan fluida pada masing-masing sisi elemen seperti ditunjukkan pada gambar 2.3 dibawah ini.

Gambar 2.3: Aliran massa masuk dan keluar pada elemen fluida. Sumber: H.K. Verstegg and W. Malalasekera, 1995: 12

Dari gambar 2.3 diatas, aliran massa masuk pada elemen fluida diberi tanda positif dan aliran massa yang keluar dari elemen fluida diberi tanda negatif, sehingga dituliskan secara umum:

$$\left(\rho u - \frac{\partial(\rho u)}{\partial x}\frac{1}{2}\delta x\right)\delta y \delta z - \left(\rho u + \frac{\partial(\rho u)}{\partial x}\frac{1}{2}\delta x\right)\delta y \delta z + \left(\rho v - \frac{\rho(\rho v)}{\partial y}\frac{1}{2}\delta y\right)\delta x \delta z - \left(\rho v + \frac{\partial(\rho v)}{\partial y}\frac{1}{2}\delta y\right)\delta x \delta y + \left(\rho w - \frac{\partial(\rho w)}{\partial z}\frac{1}{2}\delta z\right)\delta x \delta y - \left(\rho w + \frac{\partial(\rho w)}{\partial z}\frac{1}{2}\delta z\right)\delta x \delta y (2-2)$$

Selanjutnya persamaan 2-1 dan 2-2 disamakan dan keduanya dibagi dengan volume elemen δxδyδz. Hasilnya adalah

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0$$
(2-3)

Dalam notasi vektor menjadi

$$\frac{\partial \rho}{\partial t} + div \left(\rho \vec{V} \right) = 0 \tag{2-4}$$

Persamaan diatas merupakan persamaan konservasi massa pada elemen tiga dimensi, *unsteady*, dan aliran *compressible*. Sedangkan untuk aliran *incompressible* dimana ρ konstan persamaan 2-4 menjadi,

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \qquad atau \quad div(\vec{V}) = 0$$
(2-5)

2.4.2 Persamaan momentum

Laju perubahan momentum pada suatu sistem sama dengan jumlah gaya-gaya yang bekerja pada sistem tersebut. Dalam suatu volume kontrol, persamaan momentum

dapat dinyatakan dengan $\vec{F} = \left(\frac{d\vec{p}}{dt}\right)_{sistem}$.

Momentum linier sistem adalah $\vec{P}_{sistem} = \int \vec{V} dm$. Untuk partikel massa sistem

yang sangat kecil hukum kedua newton dapat ditulis $d\vec{F} = \left(dm.\frac{d\vec{V}}{dt}\right)_{sistem}$. Dimana

$$d\vec{F} = dm.\frac{D\vec{V}}{Dt} = dm\left(u\frac{\partial\vec{V}}{\partial x} + v\frac{\partial\vec{V}}{\partial y} + w\frac{\partial\vec{V}}{\partial z} + \frac{\partial\vec{V}}{\partial t}\right), \quad \text{karena} \quad \text{dm}=\rho.\text{dx.dy.dz} \quad \text{maka}$$

dijabarkan menjadi

$$d\vec{F} = \rho \left(u \frac{\partial \vec{V}}{\partial x} + v \frac{\partial \vec{V}}{\partial y} + w \frac{\partial \vec{V}}{\partial z} + \frac{\partial \vec{V}}{\partial t} \right) dx.dy.dz$$
(2-6)

Gaya yang bekerja pada partikel fluida terdiri dari 2 macam, yaitu :

- 1. Gaya permukaan, terdiri dari:
 - Gaya tekanan (gaya normal)
 - Gaya *viscous* (gaya gesek)
- 2. Gaya bodi, terdiri dari
 - Gaya grafitasi
 - Gaya sentrifugal
 - Gaya elektromagnetik

Komponen gaya pada elemen fluida terdiri dari tekanan dan tegangan gesek (*viscous stress*). Gaya permukaan dan gaya bodi dinyatakan dengan :

$$d\vec{F} = d\vec{F}s + d\vec{F}B$$

(2-7)

Gambar 2.4 Tegangan dalam arah *x* pada elemen fluida Sumber: W Fox, Robert, And T MacDonald, Alan, 1994: 217

Gambar 2.4 yang menunjukkan semua tegangan yang bekerja pada permukaan suatu elemen fluida, dalam arah x.

$$d\vec{F}_{Sx} = \left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z}\right) dx dy dz$$
(2-8)

$$d\vec{F}_{Bx} = (\rho g_x) dx dy dz$$
(2-9)

$$d\vec{F}_{x} = d\vec{F}_{Bx} + d\vec{F}_{Sx} = \left(\rho g_{x} + \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z}\right) dx dy dz$$
(2-10)

Maka dengan cara yang sama dapat diketahui juga persamaan differensial momentum Dalam arah y

$$d\vec{F}_{Sy} = \left(\frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{zy}}{\partial z}\right) dx dy dz$$
(2-11)

$$d\vec{F}_{By} = (\rho g_y) dx.dy.dz \tag{2-12}$$

$$d\vec{F}_{y} = d\vec{F}_{By} + d\vec{F}_{Sy} = \left(\rho g_{y} + \frac{\partial \sigma_{yy}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z}\right) dx.dy.dz$$
(2-13)

Dalam arah z

$$d\vec{F}_{sz} = \left(\frac{\partial\sigma_{zz}}{\partial x} + \frac{\partial\tau_{xz}}{\partial y} + \frac{\partial\tau_{yz}}{\partial z}\right) dx.dy.dz$$
(2-14)

$$d\vec{F}_{Bz} = (\rho g_z) dx.dy.dz \tag{2-15}$$

$$d\vec{F}_{z} = d\vec{F}_{Bz} + d\vec{F}_{Sz} = \left(\rho g_{x} + \frac{\partial \sigma_{zz}}{\partial x} + \frac{\partial \tau_{xz}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z}\right) dx.dy.dz$$
(2-16)

Untuk fluida newtonian, bentuk tegangan dapat dijabarkan dalam gradien dan properties fluida dalam koordinat rektangular,

$$\tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$$
(2-17)

$$\tau_{yz} = \tau_{zy} = \mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right)$$
(2-18)

$$\tau_{zx} = \tau_{xz} = \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)$$
(2-19)

$$\sigma_{xx} = -p - \frac{2}{3} \mu \nabla \cdot \vec{V} + 2\mu \frac{\partial u}{\partial x}$$
(2-20)

$$\sigma_{yy} = -p - \frac{2}{3} \mu \nabla \cdot \vec{V} + 2\mu \frac{\partial v}{\partial y}$$
(2-21)

$$\sigma_{zz} = -p - \frac{2}{3} \mu \nabla \cdot \vec{V} + 2\mu \frac{\partial w}{\partial z}$$
(2-22)

$$\nabla \cdot \vec{V} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$
(2-23)

Jika persamaan bentuk tegangan untuk fluida newtonian yang dijabarkan dalam gradien dan properties fluida dalam koordinat rektangular, disubtitusikan ke persamaan differensial momentum diatas dan disederhanakan maka diperoleh

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = \rho g_x - \frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$
(2-24)

$$\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = \rho g_y - \frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right)$$
(2-25)

$$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = \rho g_w - \frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right)$$
(2-26)

Untuk kondisi tanpa gesekan (μ =0) untuk persamaannya dapa dinyatakan dalam bentuk persamaan vektor

$$\rho \frac{D\vec{V}}{Dt} = \rho \vec{g} - \nabla p \tag{2-27}$$

2.5 Nosel

Nosel adalah pipa atau tabung dengan diameter yang berbeda pada ujungnya dan digunakan untuk mengarahkan atau memodifikasi aliran cair atau gas. Fungsi utama nosel adalah mengubah energi tekanan fluida masuk nosel menjadi energi kecepatan fluida keluar nosel.

Nosel ada 3 macam:

a. Nosel Konvergen

Nosel konvergen adalah nosel yang memiliki diameter *inlet* lebih besar daripada diameter *outlet*. Biasanya nosel jenis konvergen ini dipakai untuk fluida bilangan mach kurang atau sama dengan satu($M \le 1$).

b. Nosel Divergen

Nosel Divergen adalah nosel yang memiliki diameter inlet lebih besar daripada diameter outlet. Nosel ini sering dipakai pada penggunaan fluida yang mempunyai bilangan mach lebih dari satu ($M \ge 1$).

c. Nosel Konvergen Divergen

Nosel konvergent divergen adalah merupakan gabungan antara nosel konvergen dan divergen, selain itu nosel ini memiliki throat. Nosel ini biasa disebut juga Delaval Nosel. Nosel ini sering dipakai pada penggunaan fluida yang memiliki bilangan mach kurang dari satu, dan diharapkan setelah melewati throat memiliki nilai bilangan mach lebih dari satu ($M \le 1$ menjadi $M \ge 1$). Bagian-bagian pada nosel konvergen dapat dilihat pada gambar 2.5 berikut ini.

Gambar 2.5 Nosel konvergen divergen (a) konvergen, (b) throat, (c) divergen Adapun bentuk nosel konvergen dapat dilihat pada gambar 2.6 berikut ini

Gambar 2.6 Bentuk nosel

Sumber : www.visionenginee.com/aero/nozzle.html

Untuk nosel *conical* dalam penentuan geometrinya berdasarkan pada sudut nozzle tersebut. Sedangkan untuk nosel *contour* penentuan geometrinya berdasarkan pada radius yang membentuk dinding nosel tersebut.

2. Komputasi Dinamika Fluida

Komputasi dinamika fluida adalah analisis dari sebuah sistem yang melibatkan aliran fluida, perpindahan panas dan gejala yang berhubungan seperti reaksi kimia dengan menggunakan simulasi berbasis komputer. Komputasi dinamika fluida mempunyai beberapa keuntungan dalam analisis desain suatu sistem fluida, yaitu :

- 1. Mempunyai pengurangan waktu dan biaya untuk desain baru.
- 2. Kemampuan untuk mempelajari sistem yang tidak mungkin dilakukan secara eksperimen, seperti pada sistem yang besar.
- 3. Kemampuan untuk mempelajari sistem dibawah kondisi penuh resiko dan diluar kemampuan batas normal manusia, seperti pada eksperimen yang berbahaya.
- 4. Tingkatan detail hasil yang tak terbatas.

Penyelesaian pada komputasi dinamika fluida berisi tiga unsur utama, yaitu preprocessor, solver dan post-processor.

Pre-Processor

Pre-processor terdiri atas masukan dari suatu problem kepada suatu program komputasi dinamika fluida. Adapun langkah-langkah dalam tahap *pre-processor* meliputi :

- 1. Menentukan domain fisik yang akan dibuat, yaitu dengan membuat gambar geometri yang akan disimulasikan.
 - 2. Grid generation

Grid Generation atau pembagian kisi adalah suatu cara pembagian suatu benda pada daerah tertentu menjadi kontrol volume-kontrol volume yang lebih kecil.

3. Menentukan Persamaan Atur.

Persamaan atur yang digunakan adalah persamaan konservasi massa dan persaman momentum dan persamaan energi yang dituliskan sebagai berikut : Untuk konservasi massa :

$$\frac{\partial \rho}{\partial t} + div \left(\rho \vec{V} \right) = 0$$

Untuk Persamaan Momentum :

Persamaan momentum sumbu x :

Untuk konservasi massa :

$$\frac{\partial \rho}{\partial t} + div \left(\rho \vec{V}\right) = 0$$
Untuk Persamaan Momentum :
Persamaan momentum sumbu x :

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}\right) = \rho g_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$

Persamaam momentum sumbu y

$$\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = \rho g_y - \frac{\partial p}{\partial y} + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right)$$

Untuk persamaan Energi

$$\frac{\partial(\rho i)}{\partial i} + div(\rho i \vec{V}) = -div(p \vec{V}) + div(k \operatorname{grad} T) + \phi + S_E$$

4. Menentukan Kondisi Batas (Boundary Conditions)

Kondisi batas adalah syarat yang tergantung variabel atau turunan yang harus dipenuhi pada batas daerah dari PDE. Macam-macam tipe dari kondisi batas adalah:

- The Dirichlet Boundary Condition adalah jika variabel tergantung pada batas sistem ditentukan.
- The Neuman Boundary Condition adalah jika gradien normal dari variabel tergantung ditentukan pada batas sistem.
- The Robin Boundary Condition adalah jika kondisi batas yang ditentukan adalah kombinasi linier dari tipe Dirichlet dan Neuman.
- The Mixed Boundary Condition merupakan gabungan dari tipe Dirichlet dan Neuman.

Tahap-tahap di atas merupakan langkah-langkah dari pre-processor, dimana solusi untuk sebuah problem aliran (kecepatan, tekanan, temperatur, dan lain-lain) didefinisikan pada titik di dalam masing-masing sel. Akurasi dari solusi komputasi dinamika fluida diatur oleh jumlah sel dalam grid. Jumlah sel yang lebih banyak memberikan solusi akurasi yang lebih baik.

Solver

Secara garis besar metode numerik yang berbentuk dasar *solver*, terdiri dari langkah-langkah berikut:

1. Diskretisasi

Diskretisasi merupakan langkah untuk mengubah persamaan atur yang telah ditentukan dalam *pre-processor* menjadi persamaan aljabar yang lebih sederhana. Metode diskretisasi dibagi menjadi beberapa macam, yaitu *finite difference method*, *finite element method* dan *finite volume method*.

Finite difference methods mendeskripsikan suatu sifat skalar *f* yang tidak diketahui dari problem aliran titik-titik pada sebuah grid dan garis koordinat. *Finite element method* menggunakan persamaan aljabar sederhana (seperti linier atau kuadrat) yang benar pada elemen untuk membuat variasi lokal dari variabel aliran yang tidak diketahui. *Finite volume method* merupakan pengembangan dari *finite difference method*, metode ini menggunakan kontrol volume pada sistem yang akan dianalisis.

Dalam penelitian ini diskretisasi persamaan menggunakan metode *Finite volume*. Diskretisasi persamaan atur menggunakan metode *finite volume* terdiri dari beberapa tahap, yaitu:

- 1. Integrasi persamaan atur dalam kontrol volume.
- Diskretisasi persamaan atur yang telah diintegrasi menjadi persamaan aljabar.
 Dalam persamaan atur terdapat suku konveksi dan difusi.

Suku difusi merupakan suku yang berbentuk turunan. Suku difusi didiskretasikan menggunakan *forward differencing*, *central differencing*, atau *backward differencing* seperti yang terdapat dalam metode diskretisasi *finite difference*. Ketiganya diperoleh dengan menggunakan ekspansi deret taylor.

Untuk *forward differencing*, turunan pertama suatu sifat f disatu titik i ditentukan berdasarkan nilai f dititik i dan dititik i + 1. Misalnya untuk menentukan turunan pertama f terhadap x, persamaanya adalah:

$$\frac{\partial f}{\partial x}\Big|_{i} = \frac{f_{i+1} - f_{i}}{\Delta x} + O(\Delta x)$$
(2-28)

Gambar 2.7 Pendekatan *forward differencing* Sumber: Klaus A Hoffman, 1989, hal. 20

Backward differencing, turunan pertama suatu sifat f disatu titik i ditentukan berdasarkan nilai f dititik i dan titik i -1. untuk menentukan turunan pertama f terhadap x, persamaanya adalah :

Gambar 2.8 Pendekatan *backward differencing* Sumber: Klaus A Hoffman, 1989, hal. 21

Central differencing, turunan pertama suatu sifat *f* disatu titik i ditentukan berdasarkan nilai *f* dititik i + 1dan i – 1. untuk menentukan turunan pertama terhadap x, persamaanya adalah :

$$\frac{\partial f}{\partial x}\Big|_{i} = \frac{f_{i+1} - f_{i-1}}{2\Delta x} + \mathcal{O}(\Delta x)^{2}$$
(2-30)

Gambar 2.9 Pendekatan *Central differencing* Sumber: Klaus A Hoffman, 1989, hal. 22

Metode yang dapat digunakan untuk mendiskretisasi suku konveksi, yaitu :

• *Central Differencing Scheme*, adalah suatu metode diskretisasi yang menentukan suatu sifat di suatu permukaan kontrol volume dengan menggunakan interpolasi linier.

Gambar 2.10 Metode *Central Differencing Scheme* Sumber: H.K. Versteeg and W. Malalasekera, 1995 hal. 104.

Jadi, dari gambar 2.10 diatas dapat ditentukan harga ϕ pada setiap permukaan kontrol volum yaitu

$$\phi_{e} = \frac{\left(\phi_{P} + \phi_{E}\right)}{2}$$

$$\phi_{w} = \frac{\left(\phi_{w} + \phi_{P}\right)}{2}$$

$$(2-31)$$

$$(2-32)$$

Adapun kelebihan dari metode ini adalah, metode ini lebih mudah dilakukan dan mempunyai ketelitian hasil yang relatif tinggi. Sedangkan kekurangannya adalah hasilnya tidak sesuai dengan fenomena fisik yang terjadi apabila suatu kasus mempunyai harga Pe > 2, dimana Pe adalah harga kekuatan relatif dari konveksi terhadap difusi.

 Upwind Differencing Scheme, adalah suatu motode diskretisasi yang menentukan nilai suatu sifat φ pada permukaan control volume sama dengan nilai sifatφ pada upstream. Hal ini ditunjukkan pada gambar 2.11 berikut:

Gambar 2.11 Metode *Up Wind Differencing Scheme* Sumber: H.K. Verstegg and W. Malalasekera, 1995 hal. 115

Pada gambar 2.11, bila arah aliran kekanan maka $\phi_e = \phi_P \operatorname{dan} \phi_w = \phi_W$. Apabila arah aliran kekiri maka $\phi_e = \phi_E \operatorname{dan} \phi_w = \phi_P$.

Adapun kelebihan dari metode ini adalah terutama pada teknik diskretisasinya yang lebih mudah dilakukan. Sedangkan kekurangannya adalah adanya penyimpangan terhadap hasil yang diperoleh apabila dibandingkan dengan hasil eksak yaitu cenderung lebih besar atau lebih kecil, tetapi trend grafik yang diperoleh masih sama.

Hybrid Differencing Scheme, adalah suatu metode diskretisasi yang merupakan gabungan antara Central Differencing Scheme (CDS) dengan Upwind Differencing Scheme (UDS). Apabila harga Pe < 2 maka akan berlaku CDS, sedangkan apabila harga Pe ≥ 2 maka akan berlaku UDS. Adapun kelebihan dari metode ini adalah,

hasil yang diperoleh mempunyai keakuratan yang tinggi sebab menggunakan dua metode langsung dalam satu kasus. Sedangkan kekuranganya adalah, metode ini mempunyai ketelitian yang tinggi dari hasil simulasi yang tidak menyimpang dari penyelesaian secara eksak maupun eksperimen.

- *Power Law Scheme*, adalah suatu metode diskretisasi yang menggunakan polinomial dalam evaluasinya. Adapun kelebihan dari metode ini adalah mempunyai ketelitian yang lebih tinggi (mendekati penyelesaian eksak) dibandingkan dengan *Hybrid Differential Scheme*. Sedangkan kekuranganya adalah, metode ini mempunyai ketelitian yang tinggi hanya pada kasus satu dimensi saja.
- *Quick Scheme*, adalah suatu metode diskretisasi yang menggunakan tiga titik untuk menentukan harga sifat (ϕ) pada permukaan control volume. Harga ϕ pada permukaan control volume diperoleh dari fungsi kuadrat yang melalui 2 titik pada downstream sisi dan 1 titik pada sisi upstream seperti ditunjukkan pada gambar 2.12 berikut :

Gambar 2.12 Metode Quick Scheme Sumber: H.K. Verstegg and Malalasekera, 1995 hal. 126

Adapun kelebihan dari metode ini adalah mempunyai ketelitian yang paling tinggi bila dibandingkan dengan metode yang lainnya dan juga metode ini dapat menyelesaikan problem aliran fluida yang kompleks. Sedangkan kekuranganya adalah pada diskretisasinya yang sulit dilakukan.

Dalam persamaan aliran fluida terdapat besaran skalar dan vektor (densitas, tekanan, kecepatan) dalam satu persamaan, sehingga akan sulit untuk diselesaikan apabila nilai dari kedua besaran tersebut tidak diketahui. Apabila besar tekanan dalam medan aliran telah diketahui, maka besar kecepatan dapat ditentukan dengan metode diskretisasi seperti telah dijelaskan sebelumnya. Jika nilai besaran skalar dan vektor belum diketahui maka digunakan *staggered grid. Staggered grid* merupakan

metode untuk menentukan nilai besaran skalar dan besaran vektor dalam kontrol volum yang berbeda, seperti ditunjukkan pada gambar 2.13

Gambar 2.13 Penentuan kontrol volume dan kontrol skalar Sumber: H.K. Versteeg and W. Malalasekera, 1995 hal. 138

Pada gambar 2.13 diatas, titik P (I,J) adalah nodal poin untuk kontrol volum besaran skalar, nodal poin untuk kontrol volum besaran vektor terletak pada permukaan kontrol volum besaran skalar. Nodal poin untuk kontrol volum u adalah titik (J,i) dan nodal poin untuk kontrol volume v adalah titik (I,j). Titik P bersinggungan dengan sisi cell dari kontrol volum u. Gradien tekanan $\frac{\partial p}{\partial x}$ pada kontrol volume u diberikan oleh persamaan :

$$\frac{\partial p}{\partial x} = \frac{P_p - P_W}{\delta x_u} \tag{2-33}$$

dimana δx_u adalah lebar dari kontrol volum u dengan cara yang sama $\frac{\partial p}{\partial y}$ untuk kontrol volum v diberikan oleh persamaan :

$$\frac{\partial p}{\partial y} = \frac{P_P - P_S}{\delta y_u} \tag{2-34}$$

Untuk menghitung besarnya tekanan dan kecepatan yang tidak diketahui pada staggered grid digunakan metode SIMPLE algoritma. SIMPLE algoritma

merupakan prosedur iterasi untuk menghitung tekanan dan kecepatan. Metode ini dimulai dengan mengasumsikan besar tekanan p^* . Langkah-langkahnya adalah sebagai berikut :

- 1. Masukkan besarnya medan tekanan disetiap titik p^* .
- 2. Masukkan p^* kedalam persamaan momentum yang telah didiskretisasi untuk mendapatkan besar kecepatan (u^*, v^*) .
- 3. Masukkan u^* dan v^* kedalam persamaan kontinuitas, diperoleh besarnya koreksi tekanan p'.
- 4. Persamaan momentum untuk mendapatkan koreksi kecepatan (u^* dan v^*).

SITAS

 $u = u^* + u^*$ $v = v^* + v'$

dengan:

$$u = u^{*} + u'$$

$$v = v^{*} + v'$$
dengan:
$$u'_{i,J} = \frac{A_{i,J}}{a_{i,J}} \left(p'_{I-1,J} - p'_{I,J} \right)$$

$$v'_{il,J} = \frac{A_{i,J}}{a_{i,J}} \left(p'_{I,J-1} - p'_{I,J} \right)$$
(2-36)

- 5. Cek apakah nilai p, u, dan v konvergen, bila belum konvergen ulangi langkah 2 sampai 4 dengan mengasumsikan $p^* = p$, $u^* = u$, dan $v^* = v$.
- 2. Solusi dari persamaan aljabar.

Hasil dari diskretisasi persaman atur akan didapatkan persamaan aljabar, dimana untuk menyelesaikanya dapat dilakukan dengan menggunakan metode matrik subtitusi atau metode lainya.

Post-processor

Post-processor merupakan tahap akhir dari program komputasi dinamika fluida, dimana dalam post-processor mempunyai kemampuan dalam menampilkan grafik dan visualisasi data yang lengkap. Yang meliputi:

- 1. Domain dan geometri dan gambaran grid.
- 2. Plot vektor
- 3. Plot permukaan

Baru-baru ini juga digunakan animasi sebagai pendukung dalam penggambaran hasil yang bergerak, yang bertujuan untuk mempermudah penggunaan.

Ketiga unsur diatas merupakan langkah-langkah dalam pembuatan program komputasi dinamika fluida.

2.6 Hipotesa

Dari uraian pada tinjauan pustaka dapat dirumuskan hipotesa sebagai berikut :

Pola aliran fluida pada nosel *conic* dan *contour* dapat diperoleh dengan metode numerik menggunakan Fluent 6.0, dan pola aliran fluida pada nosel yang diperoleh secara eksperimen dan numerik dengan program Fluent 6.0 mempunyai kecenderungan yang hampir sama. Selanjutnya dengan metode numerik dapat diperoleh pola aliran fluida pada berbagai bentuk nosel yang lain.

BAB III METODE PENELITIAN

3.1 Metode Penelitian

Metode yang digunakan dalam menyelesaikan skripsi ini adalah :

- 1. Studi literatur yang berkaitan dengan masalah yang dibahas
- 2. Metode numerik untuk melakukan simulasi pengaruh variasi bentuk nosel terhadap pola aliran fluida pada nosel dengan menggunakan FLUENT 6.0

3.2 Rancangan Penelitian

Dalam penelitian sebelumnya telah dilakukan eksperimen untuk mengetahui pengaruh bentuk nosel terhadap karakteristik aliran pada nosel. Dalam penelitian sebelumnya nosel yang diuji memiliki diameter inlet sebesar 23 mm dan diameter outlet 5 mm dengan sudut 20° dan divariasikan berdasarkan bentuknya yaitu *contour* dan *conic*. Pada penelitian tersebut tekanan masuk nosel divariasikan antara antara 20 kPa sampai 160 kPa kemudian dilakukan pengambilan data karaktersitik aliran fluida berupa kecepatan dan tekanan fluida masuk dan keluar nosel.

Dalam penelitian dilakukan simulasi aliran fluida pada nosel seperti tersebut diatas. Selanjutnya pola aliran fluida yang diperoleh dari simulasi diverifikasi atau dibandingkan dengan data yang diperoleh secara eksperimen. Bila pada aliran fluida yang diperoleh secara numerik mempunyai kecenderungan yang sama dengan data yang diperoleh secara eksperimen.

Dengan cara yang sama peneliti membuat desain nosel yang lain dan disimulasikan menggunakan metode numerik untuk mendapatkan pola aliran fluida pada nosel, bentuk nosel yang dibuat adalah variasi dari bentuk nosel countur.

3.3 Variabel Penelitian

1. Variabel bebas dalam penelitian ini adalah :

Variasi bentuk nosel yaitu berupa bentuk *countur* dan *conic*. Pada simulasi nosel diberi tambahan saluran pipa sepanjang 25 mm. seperti pada gambar 3.1 dan 3.2 berikut :

Gambar 3.2 Bentuk-bentuk nosel *contour* lain yang akan disimulasikan
1) Nosel *contour* bentuk *error functions*, 2) Nosel *contour* bentuk parabola tertutup
3) Nosel *contour* bentuk hiperbola tertutup, 4) Nosel *contour* bentuk parabola terbuka,
5) Nosel *contour* bentuk hiperbola terbuka

No	Nama	Panjang	Diameter inlet	Diameter outlet	Shape parameter	Titik puncak (x,y)
1	Nosel conic	24.73	23	S 5	-	-
2	Nosel contour	24.73	23	5	-	R 38.469
3	Nosel contour bentuk error function				-	-
4	Nosel <i>contour</i> bentuk parabola tertutup	25	23	5	0.5	12,10
5	Nosel <i>contour</i> bentuk hiperbola tertutup	25	23	5	0.85	12,10
6	Nosel <i>contour</i> bentuk parabola terbuka	25	23	5	0.5	12,5
7	Nosel <i>contour</i> bentuk Hiperbola terbuka	25	23	5	0.85	12,5

Tabel 3.1	Spesifikasi Nosel
-----------	-------------------

- 2. Variabel terikat adalah variabel yang besarnya dipengaruhi oleh variabel bebas yang telah ditentukan. Variabel terikat dalam penelitian ini adalah
 - Distribusi kecepatan aliran pada nosel
 - Distribusi tekanan statis aliran pada nosel
- 3. Variabel kontrol

Merupakan variabel yang besarnya dijaga konstan. Variabel kontrol dalam penelitian ini adalah tekanan masuk nosel.

3.4 Prosedur Penelitian

Untuk menganalisa pola aliran fluida keluar nosel dengan variasi tekanan aliran fluida menggunakan FLUENT 6.0, terdapat langkah-langkah berikut :

- Menentukan domain fisik yang akan dibuat.
- Melakukan grid generation.
- Menentukan persamaan atur
- Menentukan kondisi batas
- *Solver*, yang terdiri dari diskretisasi persamaan atur dan penyelesain persamaan aljabar.
- Menampilkan grafik dan visualisasi data.

3.5 Validasi Program

Validasi program dilakukan dengan tujuan untuk mengetahui apakah prosedur dan rangkaian program yang telah dibuat adalah layak atau tidak untuk dipakai sebagai alat simulator penelitian. Validasi ini dilakukan dengan cara menverifikasi hasil dari peneliti lain (Tratama,2005) dengan hasil program yang telah dibuat untuk penyelesaian permasalahan yang sama, jika hasil dari keduanya menunjukkan adanya kemiripan maka prosedur dan rangkaian program yang telah dibuat dianggap valid dan layak dipakai sebagai alat simulator penelitian.

3.6 Diagram Alir Penelitian

Keseluruhan proses diatas dapat digambarkan pada diagram 3.3 berikut :

Gambar 3.3 Diagram Alir.

Dalam penelitian sebelumnya (Tratama, teddy; 2005) telah dilakukan eksperimen untuk mengetahui pengaruh bentuk nosel terhadap pola aliran keluar nosel. Pada penelitian tersebut diteliti pola aliran pada nosel *conic* dan *contour*. Pengukuran debit dilakukan pada tiap nosel dengan tekanan masuk bervariasi yaitu 20 kPa, 40 kPa, 60 kPa, 80 kPa, 100 kPa, 120 kPa, dan 140 kPa. Dari hasil penelitian didapatkan bahwa nosel *contour* memiliki kapasitas alir aliran fluida keluar nosel lebih kecil daripada nosel *conic* yaitu pada tekanan masuk 20 kPa, untuk nosel *contour* memiliki tekanan keluar nosel lebih besar 0,0001027 m³. Selanjutnya nosel *contour* memiliki tekanan keluar nosel lebih besar daripada nosel *conic* yaitu pada tekanan masuk 20 kPa, untuk *contour* sebesar -548,929 N/m² dan untuk *conic* sebesar -554,734 N/m² . Nosel *contour* memiliki head losses lebih besar dibanding dengan nosel conic yaitu pada tekanan masuk 20 kPa, untuk *conic* sebesar 0,7262 m. Data selengkapnya dapat dilihat pada lampiran.

Dalam penelitian ini disimulasikan aliran fluida pada nosel *conic* dan *contour*. Kondisi batas pada sisi masuk nosel adalah besar tekanan masuk yang diperoleh dari hasil eksperimen. Dari hasil simulasi akan didapatkan distribusi kecepatan dan distribusi tekanan pada masing-masing nosel. Hasil simulasi selanjutnya akan diverifikasi (dibandingkan) dengan hasil penelitian sebelumnya (Tratama, teddy; 2005). Setelah pola aliran pada nosel *conic* dan *contour* diverifikasi, akan disimulasikan pola aliran fluida pada berbagai bentuk nosel lainnya.

4.1 Simulasi Pola Aliran Fluida pada Nosel Conic dan Contour

Langkah-langkah untuk melakukan simulasi aliran fluida melalui nosel conic dan contour menggunakan program *Fluent* 6.0 adalah sebagai berikut :

A. Pre-Processor

Tahap-tahap pre-processor meliputi :

1. Menentukan domain fisik yang akan disimulasi :

Adapun domain fisik dari simulasi ini ditunjukkan oleh gambar 4.1 dan 4.2 berikut ini :

2. Melakukan Grid Generation

Grid Generation dilakukan dengan cara membagi-bagi domain fisik menjadi control volume-control volume yang lebih kecil, sesuai dengan gambar 4.3 dan 4.4 berikut ini :

Gambar 4.3 Grid generation pada nosel conic

BRAWIJAYA

Gambar 4.4 Grid generation pada nosel contour

Grid generation dilakukan pada separuh nosel, dan akan ditampilkan pada *fluent* dengan tampilan *display grid* dengan melakukan pencerminan terhadap separuh nosel yang dibuat sehingga utuh seperti pada gambar 4.3 dan 4.4.

3. Menentukan kondisi batas

Kondisi batas terdiri dari :

- Bagian atas dan bawah nosel yang merupakan dinding nosel, dimana kecepatan aliran fluida pada dinding nosel untuk arah x dan y adalah 0, pada *Fluent* kondisi batas ini disebut dengan *Wall*.
- Pada sisi masuk diketahui tekanan masuk fluida, pada *Fluent* kondisi batas ini disebut dengan *pressure inlet*
- Pada sisi keluar aliran fluida keluar ke atmosfer, dan tekanan fluida keluar nosel besarnya sama dengan tekanan atmosfer diketahui dan pada *Fluent* kondisi batas ini disebut dengan *pressure outlet*
- Pada bagian tengah nosel dibuat sumbu, pada *Fluent* kondisi batas ini disebut dengan axis.

Gambar 4.5 Kondisi Batas

Langkah-langkah tersebut diatas dibuat pada program Gambit. Gambit adalah program yang digunakan untuk membuat gambar *domain* fisik nosel, *grid generation* serta menentukan nama-nama atau jenis dari kondisi batas. Selanjutnya gambar *domain* fisik yang telah di *grid* (gambar 4.3 dan 4.4) di import ke program *Fluent*.

• Mengimpor domain fisik yang telah dibuat pada program gambit ke program *Fluent*.

Langkah-langkah pada *fluent* sebagai berikut : Membuka Program *FLUENT* untuk menyelesaikan masalah 2 dimensi dengan memilih 2d dan tekan *Run* untuk menjalankan program. Untuk membuka gambar domain fisik yang telah di *grid* digunakan perintah sesuai dengan urutan dibawah ini :

File -> Read -> Case...

• Setelah domain fisik yang akan disimulasikan dipilih dan dibuka pada program *fluent* maka dilakukan pengecekan-pengecekan terhadap domain fisik, yaitu pengecekan *grid generation* untuk memastikan tidak ada kesalahan pada model dan memastikan tidak ada kontrol volume yang mempunyai volume negatif. Langkah-langkah pada fluent dengan memilih perintah sesuai dengan urutan

berikut Grid ->Check ... Setelah dipastikan tidak ada kesalahan pada domain fisik dan grid generation maka dilakukan pengecekan satuan dari model, dalam hal ini model di ubah ke satuan mm, sesuai dengan satuan yang digunakan pada percobaan secara eksperimen.

Langkah-langkah pada fluent dengan memilih perintah sesuai dengan urutan berikut

Grid -> Scale...

• Langkah selanjutnya adalah menampilkan domain fisik dan *grid generation* dengan *display grid*. Langkah-langkah pada *fluent* dengan memilih perintah berikut.

Display -> Grid...

4. Menentukan persamaan atur.

Persamaan atur akan ditentukan pada saat menjalankan program *Fluent*. Persamaan atur yang digunakan adalah persamaan konservasi massa dan persamaan momentum sebagaimana dibawah ini :

• Persamaan Konservasi Massa (Kontinuitas).

0

Persamaan konservasi massa untuk aliran dua dimensi adalah sebagai berikut :

$$\frac{\partial \rho}{\partial t} + div \left(\rho \vec{V} \right) =$$

Dimana : $\vec{V} = u \vec{i} + v \vec{j}$

Asumsi : Fluida incompressible $\left(\frac{\partial \rho}{\partial t} = 0\right)$

Maka persamaannya menjadi :

 $div(\rho \vec{V}) = 0$

sehingga persaman kontinuitas (persamaan konservasi massa) menjadi :

$$\frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} = 0$$

• Persamaan Momentum

Persamaan momentum untuk aliran dua dimensi dinyatakan dengan persamaan sebagai berikut :

Arah sumbu x :

$$\left(\frac{\partial\rho u}{\partial t} + u\frac{\partial\rho u}{\partial x} + v\frac{\partial\rho u}{\partial y}\right) = \rho g_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$

Arah sumbu y :

$$\left(\frac{\partial\rho v}{\partial t} + u\frac{\partial\rho v}{\partial x} + v\frac{\partial\rho v}{\partial y}\right) = \rho g_y - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

Asumsi :

Aliran fluida *steady*
$$\left(\frac{\partial u}{\partial t} = 0; \frac{\partial v}{\partial t} = 0\right)$$

- Tidak ada *body force* $(\rho g_x = 0; \rho g_y = 0)$ -
- Properti fluida ($\rho \, dan \, \mu$) konstan

Dengan asumsi diatas, persamaan momentum menjadi : AVIIVAN

Arah sumbu *x* :

$$\left[u\frac{\partial\rho u}{\partial x} + v\frac{\partial\rho u}{\partial y}\right] = \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) - \frac{\partial p}{\partial x}$$

Arah sumbu y :

$$\left(u\frac{\partial\rho v}{\partial x} + v\frac{\partial\rho v}{\partial y}\right) = \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) - \frac{\partial p}{\partial y}$$

Pada penentuan persamaan atur terdapat pilihan untuk menentukan models terdiri dari solver dan viscous, pada solver akan ditentukan aliran yang mengalir dalam pipa yaitu axisymmetric yaitu jenis aliran yang mengalir pada pipa yang bulat, jenis alirannya steady. Untuk penyelesain pada viscous dipilih jenis aliran yang mengalir pada nosel yaitu k-epsilon untuk jenis aliran turbulen. Langkah-langkah pada fluent dengan memilih perintah sebagai berikut :

Define -> Models -> Solver, kemudian menentukan jenis aliran yaitu steady, memilih axisymetric untuk aliran dua dimensi dalam pipa bulat.

Define -> Models -> Viscous, menentukan jenis aliran yaitu turbulen, dengan memilih k-epsilon.

Dalam persamaan atur terdapat terdapat parameter vikositas dan densitas fluida kerja, fluida kerja yang digunakan adalah water-liquid (H₂O), dengan properties sebagai berikut viscosity 0,001003kg/m-s, density 998,2 kg/m³.untuk menentukan jenis fluida, viskositas, densitas serta properties lainnya pada fluent, dilakukan langkah-langkah sebagai berikut :

Define -> Materials, menentukan jenis fluida yang akan digunakan dengan memilih perintah database, pilih fluida yang digunakan, tekan copy setelah

B. Solver

Pada langkah ini persamaan atur yang telah ditentukan akan diselesaikan secara numerik dengan menentukan *discretisation*, *discretisation* merupakan langkah untuk mengubah persamaan atur yang telah ditentukan dalam *pre-processor* menjadi persamaan aljabar yang lebih sederhana.

1. Untuk diskretisasi persamaan atur terdapat perintah *Solve* pada *fluent*, yang akan membuka *form control solution* yang didalamnya terdapat pilihan metode diskretisasi persamaan atur, disini digunakan metode *upwind*. Metode *upwind* mempunyai kelebihan yaitu proses diskretisasinya relatif lebih mudah dan hasil yang diperoleh tidak menyimpang atau mempunyai kecenderungan yang sama dengan hasil eksak atau eksperimen. Langkah-langkah pada fluent sebagai berikut :

Solve -> Controls -> Solution, maka akan muncul *form* yang didalamnya berisi pilihan untuk menentukan besarnya *under-relaxation factors* dari *turbulence kinetic energy, turbulent dissipation rate,* dan *turbulent viscosity.* Kemudian juga terdapat pilihan untuk menentukan metode diskretisasi persamaan atur pada *form discretizattion.*

2. Pada *fluent* diskretisasi persamaan atur untuk control volume yang letaknya berdekatan dengan batas sistem maka diskretisasi persamaan aturnya dipengaruhi oleh bagaimana kondisi batasnya. Kondisi batas yang dimaksud terdiri dari inlet, oulet, wall. Pada posisi inlet ditentukan tekanan masuknya yaitu 20 kPa, pada form ini juga terdapat *turbulence specification method* yaitu *turbulen intensity*, dan *Hidraulic diameter*/diameter masuk nosel yaitu 23 mm. Pada sisi outlet juga diset tekanan pada sisi outlet yaitu 0 kPa, dan *turbulen intensity*, serta *hydraulic diameter*/diameter pada sisi outlet yaitu 5 mm. Langkah-langkah pada fluent sebagai berikut :

Define -> Boundary Conditions, pada *form* akan muncul *zone* dimana pada *form* ini terdapat nama-nama dari kondisi batas, untuk menyesuaikan kondisi batas dan memasukkan nilai-nilainya pilih jenis kondisi batas yang akan disesuaikan.

3. Penyelesaian persamaan atur dilakukan setelah menentukan metode diskretisasinya. Pada fluent langkah-langkahnya sebagai berikut :

Solve -> Initialize -> Initialize, maka akan muncul *form solution initialization* dan akan tampak kolom *compute form*, pilih dan tekan inlet akan muncul secara otomatis nilai dari *axial velocity*, dan *turbulence kinetic energy*, setelah itu tekan *init* dan *close*.

- Langkah selanjutnya pada pemyelesaian persamaan atur adalah memilih perintah *Residual*, mengaktifkan *Plot* pada *residual*, untuk menampilkan grafik saat iterasi berjalan. Memilih perintah pada *fluent* sesuai dengan urutan berikut Solve -> Monitors -> Residuals, pilih *plot* dan *close*.
- 5. Langkah akhir dari penyelesaian persamaan atur adalah melakukan iterasi dengan memilih perintah *Iterate*, *Iterate* digunakan untuk mengiterasi persamaan atur hingga konvergen.

Urutan perintah pada fluent sebagai berikut :

Solve -> Iterate, muncul *form iteration* tentukan jumlah dari iterasi pada *number of iteration* yaitu 1000 dan tekan *iterate*.

C. Post-processor

Langkah akhir dari simulasi ini adalah *Post-processor* merupakan tahap akhir dari program komputasi dinamika fluida, dimana dalam *post-processor* mempunyai kemampuan dalam menampilkan hasil dari simulasi.

Langkah-langkah pada fluent sebagai berikut :

Display -> Contours, kemudian akan muncul *form contours* dimana terdapat pilihan kolom *contours of* yang terdiri dari *contours of static pressure,contours of velocity magnitude* dan lain-lain, serta kolom *options*, untuk menampilkan gambar pilih *filled* pada *options*, dan tekan *display*, maka gambar *contours* yang kita pilih akan ditampilkan secara otomatis.

Semua langkah diatas diulangi untuk bentuk nosel lain yang telah dibuat, pada tekanan inlet yang besarnya adalah 20 kPa, 60 kPa, 10 kPa, dan 140 kPa, dan pada sisi outlet besarnya nilai tekanan untuk semua bentuk nosel adalah 0 kPa, pada lampiran dapat dilihat tampilan dari tiap langkah pada *fluent*.
4.2 Hasil Simulasi pada Nosel Conic dan Contour

4.2.1 Distribusi kecepatan pada nosel conic dan contour

Distribusi kecepatan untuk aliran fluida pada nosel *conic* dengan tekanan masuk fluida pada sisi inlet 20 kPa dapat dilihat pada gambar 4.6 dibawah ini.

Dari gambar kontur kecepatan aliran fluida pada nosel terlihat daerah dimana terjadi perubahan besaran kecepatan. Daerah dimana terjadi perubahan besar kecepatan terdapat didekat sisi masuk nosel. Pada daerah dekat dinding kecepatan aliran fluida lebih rendah jika dibandingkan dengan sisi tengah dari nosel, hal ini disebabkan karena pada dinding terdapat *no slip condition* dimana kecepatan antara fluida dan dinding nosel adalah sama yaitu 0, dan pada sisi tengah kecepatan fluida semakin besar karena pengaruh kondisi tanpa slip pada dinding makin ke tengah makin berkurang.

Ketika aliran fluida memasuki nosel kecepatan aliran fluida berubah, terlihat semakin kecil luas penampang nosel maka kecepatan aliran fluida semakin tinggi. Pada outlet nosel besar kecepatan adalah 5,73 m/s.

Gambar 4.7 Kontur besar kecepatan nosel contour pada tekanan masuk 20 kPa

Distribusi kecepatan pada nosel *contour* dengan tekanan masuk fluida pada sisi inlet sebesar 20 kPa dapat dilihat pada gambar 4.7. Kontur kecepatan pada sisi masuk nosel mempunyai warna yang sama bila dibandingkan dengan kecepatan pada pipa, setelah masuk nosel kecepatan semakin besar terutama didaerah dekat outlet. Hal ini berarti besar aliran fluida pada nosel mengalami perubahan yang signifikan pada daerah dekat sisi outlet karena perubahan luas penampang yang besar baru terjadi didekat sisi outlet, sementara pada sisi inlet perubahan luas penampang kecil sehingga tidak mengakibatkan memperliahtkan perubahan besar kecepatan yang berarti. Pada daerah dekat dinding kecepatan aliran fluida lebih lambat jika dibandingkan dengan bagian tengah dari nosel. Pada daerah nosel besar kecepatan aliran fluida berubah, terlihat semakin kecil luas penampang nosel maka kecepatan aliran fluida semakin tinggi. Pada sisi keluar nosel kecepatan aksial fluida adalah 5,17 m/s.

Pada tekanan masuk 20 kPa , kecepatan aliran fluida pada sisi outlet nosel untuk nosel *conic* 5,73 m/s dan untuk nosel *contour* 5,17 m/s. Pada sisi keluar nosel, kecepatan aliran fluida pada nosel conic lebih besar dibandingkan dengan nosel contour ini berarti nosel dengan bentuk *contour* memiliki hambatan terhadap aliran lebih besar dibandingkan dengan hambatan terhadap aliran yang terjadi pada nosel *conic*. Pada sisi masuk nosel terlihat perubahan besar kecepatan aliran fluida terjadi lebih awal pada nosel *conic*, hal ini diakibatkan kerena adanya perubahan luas penampang nosel yang terjadi secara linear pada nosel *conic* sehingga sejak sisi masuk nosel telah terjadi perubahan luas penampang yang mengakibatkan perubahan kecepatan. Pada nosel *contour* perubahan besar aliran fluida terjadi pada nosel

karena perubahan luas penampang nosel contour tidak sebesar pada nosel conic pada sisi masuk nosel.

Untuk aliran fluida inkompresibel (ρ = konstan) berlaku $V_1.A_1 = V_2.A_2$ = konstan. Dari persamaan tersebut diperoleh :

$$V_2 = \frac{V_1 A_1}{A_2},$$

$$\Delta V = V_2 - V_1,$$

$$\Delta V = \frac{V_1 A_1}{A_2} - V_1 = V_1 \left(\frac{A_1}{A_2} - 1\right)$$

Semakin besar kecepatan aliran masuk nosel maka semakin besar juga perubahan kecepatan aliran didalam nosel.

Perubahan kecepatan aliran fluida dalam nosel antara nosel *conic* dan *contour* yang disebabkan oleh perbedaan perubahan luas penampang dimana pada nosel conic penanpang gradien yang linear hanya mengakibatkan perubahan besar aliran lebih kecil, pada nosel contour yang memiliki penampang gradient parabolic, dimana pada sisi tertentu trdapat penampang gradien yang lebih besar. Semakin besar gradient penampang maka akan mengakibatkan semakin besar perubahan besar aliran yang terjadi dalam nosel sehingga akan mengakibatkan banyaknya terjadi tumbukan antara partikel fluida inilah yang mengikbatkan meningkatnya turbulensi. Pada aliran turbulen aliran bergerak secara acak dengan kecapatan yang berfluktuasi dan saling interaksi antar gumpalan fluida, sehingga aliran fluida dibayangkan sebagai bongkahanbongkahan fluida. Hal ini menyebabkan hambatan pada aliran keluar nosel yang akan memperkecil kecepatan aliran keluar nosel sehingga sesuai dengan persamaan $\Delta V = V_2 - V_1$ bahwa semakin kecil kecepatan aliran keluar nosel (V_2) maka kecepatan aliran fluida (ΔV) didalam nosel semakin kecil.

4.2.2 Distribusi tekanan statis pada nosel conic dan contour

Distribusi tekanan statis pada nosel *conic* ditunjukan pada gambar 4.39 dibawah ini.

Gambar 4.8 Kontur besar tekanan pada nosel conic pada tekanan masuk 20 kPa

Distribusi tekanan pada pipa sebelum masuk nosel *conic* memperlihatkan tekanan yang konstan. Tekanan pada pipa memiliki warna yang sama hingga pada sisi masuk nosel, hal ini berarti besar tekanan fluida pada sisi masuk nosel sama dengan tekanan pada fluida. Pada kontur distribusi tekanan statis pada nosel *conic* diatas terlihat terjadinya perubahan tekanan seiring dengan adanya perubahan luas penampang nosel. Pada bagian yang luas penampangya kecil, tekanannya terlihat lebih rendah, terutama pada sisi outlet nosel yang kecepatannya sangat tinggi. Distribusi tekanan nosel didapatkan pada kecepatan fuida masuk nosel 0,2866 m/s.

Gambar 4.9 Kontur besar tekanan pada nosel contour pada tekanan masuk 20 kPa

Pada nosel countur distribusi tekanan memperlihatkan adanya kemiripan dengan nosel conic, di mana pada sepanjang pipa hingga pada sisi masuk nosel memiliki besar tekanan yang konstan. Perubahan distribusi tekanan statik pada nosel contour terlihat pada bagian dekat outlet nosel. Pada sisi masuk nosel perubahan luas penampang nosel kecil sehingga perubahan tekanan kecil hal ini diperlihatkan dengan warna yang sama. Pada daerah dekat sisi oulet nosel perubahan luas penampang nosel besar sehingga perubahan kecepatan dan tekanannya juga besar, inilah yang mengakibatkan terjadinya perubahan distribusi besar tekanan statik pada nosel baru terlihat dengan warna yang berbeda pada dekat sisi outlet nsel.

Pada nosel *conic* dan *contour* terlihat adanya perubahan distribusi tekanan terutama pada sisi outlet nosel. Nosel *conic* memperlihatkan perubahan distribusi tekanan lebih awal jika dibandingkan dengan nosel *contour*. Hal ini disebabkan pada nosel *conic* perubahan luas penampang terjadi secara linear dimulai dari sisi inlet hingga sisi uotlet nosel, sedangkan pada nosel *contour* perubahan luas penampang pada sisi outlet besar sehingga pada jarak tertentu dari sisi masuk nosel, luas penampang nosel *conic* lebih kecil dari pada perubahan kecepatan dan tekananan pada nosel *contour*. Sehingga perubahan warna pada kontur distribusi tekanan pada nosel *conic* terjadi lebih awal bila dibandingkan dengan nosel *contour*. Pada nosel *contour* perubahan dari luas penampang pada sisi inlet hingga pada jarak tertentu dari sisi tekanan pada nosel *conic* terjadi lebih awal bila dibandingkan dengan nosel *contour*. Pada nosel *contour* perubahan dari luas penampang pada sisi inlet nosel kecil sehingga pengaruhnya terhadap perubahan tekanan tidak besar dan dianggap masih dalam satu interval, hingga warna dari kontur tekanan nosel *contour* ini terlihat sama pada kontur tekanan pada sisi pipa dan inlet nosel.

Terlihat pula pada nosel *conic* maupun *contour* pada bagian yang luas penampangnya kecil maka tekanannya kecil, dan pada bagian yang luas penampangnya besar maka tekananya juga besar. Pada bagian yang luas penampangnya kecil tekanan yang dihasilkan kecil dan pada sisi dimana luas penampangnya besar tekanannya besar, hal ini dapat dijelaskan dengan persamaan Bernoulli (tanpa *losses*) sebagai berikut :

$$\frac{P_1}{\rho \cdot g} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\rho \cdot g} + \frac{V_2^2}{2g} + Z_2$$

Berdasarkan persamaan hukum kontuinitas pada fluida inkompresibel :

Jika luas penampang kecil maka kecepatan besar, dan jika luas penampang besar maka kecepatan kecil. Jumlah energi dalam fluida harus sama sepanjang saluran bila tidak ada kehilangan energi (*losses*). Pada saluran yang mendatar energi elevasi (Z) sama

pada setiap bagian, fluida terdiri dari energi tekan dan energi kecepatan. Sehingga pada bagian yang luas penampangya kecil dimana kecepatannya besar, maka tekanannya akan kecil dan pada bagian yang luas penampangnya besar dimana kecepatannya kecil, maka tekanannya akan besar.

Simulasi ini dilakukan pada tekanan yang bervariasi yaitu 20 kPa, 60 kPa, 100 kPa, dan 140 kPa, hasil simulasi untuk berbagai tekanan lainnya dapat dilihat pada lampiran.

4.2.3 Perbandingan hasil secara simulasi dan hasil secara penelitian pada nosel *conic* dan *contour*.

Berikut tabel perbandingan antara hasil simulasi dan ekperimen pada nosel conic dan contour pada berbagai tekanan masuk yang disimulasikan :

Tekanan masuk (kPa)	Tekanan keluar (kPa)	Kecepa pada nose	atan masuk el <i>conic</i> (m/s)	Kecepat pada nc (n	tan keluar osel <i>conic</i> n/s)
(III u)		Simulasi	eksperimen	simulasi	eksperimen
20	0	0,2866	0.2474	5.4456	5.2351
60	0	0.4970	0.4264	9.4442	9.0232
100	0	0.6422	0.5352	12.2028	11.3253
140	0	0.7604	0.6288	14.4479	13.3064

Tabel 4.1 Perbandingan hasil simulasi dan eksperimen untuk nosel conic

Tekanan	Tekanan	Kecepatan masuk Kecepatan			an keluar
masuk	keluar	pada nosel <i>countur</i> (m/s)		pada nosel <i>c</i>	ontour (m/s)
(kPa)	(kPa)	Simulasi	eksperimen	simulasi	Eksperimen
20	0	0,2584	0,2231	4.9777	4.7219
60	0	0.4512	0.3537	8.5737	7.4852
100	0	0.5820	0.4622	11.0593	9.7805
140	0	0.6885	0.5398	13.0816	11.4228

T 1 1 4 0	D 1 1'	1 1	. 1		1	•		
Tabel 47	Perhandingan	hagil	simila	si dan	eks	nerimen	unfuk nosel	contour
1 4001 4.2	1 of bananigan	nasn	Sinnana	Si uun	UND	permen	untuk nosei	comon

Dari tabel 4.1 dan 4.2 di atas dapat diketahui bahwa pada dasarnya hasil secara simulasi mempunyai kecenderungan besar kecepatan yang sama dengan hasil secara eksperimen, tetapi mempunyai nilai yang agak berbeda. Hal ini dikarenakan, pada salah satu proses simulasi yaitu diskretisasi, menggunakan metode *upwind* pada suku konveksinya dimana telah diketahui sebelumnya bahwa metode *upwind* mempunyai kelemahan yaitu adanya perbedaan nilai dari hasil yang diperoleh. Tetapi Metode *upwind* juga mempunyai kelebihan yaitu proses diskretisasinya relatif lebih mudah dan hasil yang diperoleh tidak menyimpang. Adapun sebab lain adalah pada salah satu langkah yaitu simulasi pembagian grid pada daerah pengamatan (domain). Pembagian grid tersebut mempunyai luasan yang tidak sama dengan nol sehingga menyebabkan ketidak tepatan nilai yang diperoleh, seperti yang kita ketahui bahwa semakin kecil luas kontrol volume maka semakin tepat pula perhitungannya.Bila panjang, luas atau volume control volume mendekati nol maka hasil yang diperoleh dari simulasi akan sama (mendekati) hasil yang diperoleh secara eksak atau eksperimen.

Dari hasil perbandingan hasil simulai dan eksperimen diatas dapat dilihat adanya kemiripan atau kecenderungan yang sama, sehingga berdasarkan hal tersebut, selanjutnya akan disimulasikan aliran fluida pada nosel *contour* dengan berbagai bentuk dengan langkah simulasi yang sama seperti tersebut pada bagian sebelumnya.

4.3.1 Distribusi kecepatan pada berbagai bentuk nosel lain

Pada gambar berikut ini adalah gambar dari hasil simulasi pada berbagai bentuk nosel lain yang terdiri dari nosel berbentuk : *error functions*, hiperbola terbuka, parabola terbuka, hiperbola tertutup, dan parabola tertutup, bentuk nosel ini dibuat pada program *Gambit*. Simulasi dilakukan sebagaimana pada nosel *conic* dan *countur*, dengan tekanan masuk 20 kPa, 60 kPa, 100 kPa, dan 140 kPa, *grid generation* juga dibuat sama pada semua bentuk nosel, perbedaannya hanya pada bentuk nosel.

Dari hasil simulasi didapatkan kontur dari besar kecepatan dan tekanan statis pada nosel. Distribusi kecepatan pada berbagai bentuk nosel diperlihatkan pada gambar berikut :

b)

BRAWIJAY

Gambar 4.10 Kontur besar kecepatan pada nosel dengan kontur berbentuk : a) *Error functions*, b) Hiperbola terbuka, dan c) Parabola terbuka pada tekanan masuk 20 kPa

Gambar 4.10 a,b,c Parabola terbuka menunjukkan kontur besar kecepatan pada nosel dengan kontur berbentuk Error functions, hiperbola terbuka, dan parabola terbuka pada tekanan masuk 20 kPa, gambar diatas menunjukkan bahwa sebelum sisi masuk nosel telah terjadi besar perubahan kecepatan. Pada gambar juga terlihat bahwa kontur dari besar kecepatan terlihat berbeda pada setiap nosel. Pada gambar 4.10 a terlihat kontur kecepatan pada sisi dekat inlet nosel berbentuk segi empat, pada gambr 4.10 b kontur kecepatan yang terlihat pada bagian inlet berbentuk oval lancip, dan pada gambar 4.10 c kontur yang terlihat berbentuk oval. Hal ini diakibatkan adanya perubahan luas penampang pada masing-masing nosel yang berbeda. Pada gambar nosel dengan kontur berbentuk error function perubahan luas penampang kecil pada bagian inlet dan outlet dan terjadi secara berangsur-angsur, dan pada bagian tengah perubahan luas penampang berubah secara linear. Pada nosel dengan kontur berbentuk hiperbola terbuka perubahan luas penampang nosel pada bagian inlet hingga pada bagian tengah nosel lebih besar dibandingkan dengan nosel parabola terbuka. Perubahan nosel dengan kontur berbentuk parabola terbuka mirip dengan perubahan luas penampang pada nosel dengan kontur berbentuk hiperbola terbuka, tetapi perubahan luas penampangnya terjadi secara seragam sepanjang nosel dari inlet sampai outlet. Pada bagian depan nosel, pada jarak yang sama dari sisi inlet nosel dengan kontur berbentuk hiperbola terbuka mempunyai luas penampang yang lebih kecil bila dibandingkan dengan nosel dengan kontur berbentuk error functions dan parabola terbuka. Akibatnya perubahan kecepatan dan hambatan aliran yang terjadi pada nosel dengan kontur hiperbola terbuka lebih besar, pada bagian dekat dinding aliran fluida mengalami perlambatan dan pada bagian tengah aliran fluida mengalami percepatan.

Jika dibandingkan pada nosel berbentuk *conic* perubahan luas penampang pada nosel berbentuk hiperbola terbuka, dan parabola terbuka lebih besar. Pada nosel berbentuk *Error functions* perubahan luas penampangnya lebih kecil jika dibandingkan pada nosel *conic*, pada nosel *conic* perubahan luas penampang terjadi secara linear dari inlet hingga outlet nosel, pada nosel berbentuk *error function* perubahan luas penampang linear terjadi hanya pada bagian tengan nosel, pada bagian inlet dan outlet nosel perubahan luas penampangnya kecil dan halus. Pada nosel berbentuk *Error functions*, hiperbola terbuka, dan parabola terbuka perubahan luas penampang terbesar terjadi pada nosel berbentuk hiperbola terbuka, sehingga perubahan kecepatan terjadi paling awal sebelum sisi masuk nosel.

Besar kecepatan aliran fluida keluar pada nosel berbentuk Error functions, hiperbola terbuka, dan parabola terbuka adalah 6.33 m/s, 6,06 m/s dan 6,16 m/s, besar kecepatan keluar nosel yang paling besar terjadi pada nosel berbentuk Error functions, berarti hambatan pada nosel ini lebih kecil, karena perubahan luas penampang yang terjadi secara berangsur-angsur dan halus, sehingga aliran fluida dalam nosel tidak mengalami perubahan aliran fluida yang besar, sehingga gesekan dan penurunan tekanan (hambatan) yang terjadi pasa aliran fluida kecil. Semakin besar perubahan luas penampang maka akan mengakibatkan semakin besar perubahan arah aliran yang terjadi dalam nosel, sehingga akan menimbulkan banyak terjadi tumbukan antar partikel fluida. Akibat banyaknya tumbukan antara partikel fluida akan mengakibatkan ketidak teraruran dalam aliran fluida. Partikel fluida bergerak secara acak dengan kecepatan yang berfluktuasi akan saling berinteraksi antar partikel atau gumpalan fluida. Akibat interaksi antar partikel fluida atau gumpalan fluida yang bergerak secara acak akan mengakibatkan gesekan yang terjadi lebih besar. Hal ini mengakibatkan dissipasi energi kinetik pada aliran atau losses, maka semakin banyak losses yang terjadi maka hambatan yang dialami fluida juga semakin besar dalam nosel.

Gambar 4.11 Kontur besar kecepatan pada nosel dengan kontur berbentuk : a) Hiperbola tertutup, b) Parabola tertutup pada tekanan masuk 20 kPa

Gambar 4.11 a dan b menunjukkan kontur besar kecepatan pada nosel dengan kontur berbentuk hiperbola tertutup dan Parabola tertutup. Pada gambar terlihat bahwa warna distribusi besar kecepatan sepanjang pipa hingga pada sisi inlet nosel digambarkan dengan warna yang sama. Pada gambar warna yang sama antara bagian pipa dan nosel menunjukkan besar perubahan kecepatan aliran fluida pada bagian ini tidak berbeda jauh atau dalam satu interval, pada bagian nosel besar kecepatan aliran fluida lebih kecil dibandingkan pada bagian pipa, hal ini disebabkan adanya perubahan luas penampang yang terjadi pada sisi masuk nosel. Perubahan luas penampang pada bagian sisi masuk nosel kecil dibandingkan perubahan luas penampang pada bagian dekat sisi keluar nosel, hal ini mengakibatkan warna distribusi besar kecepatan aliran fluida pada bagian keluar nosel berbeda dan kecepatannya lebih besar. Besar distribusi kecepatan pada nosel dengan kontur berbentuk hiperbola tertutup dan Parabola tertutup pada sisi outlet adalah 5.56 m/s dan 4.40 m/s. Ini berarti hambatan pada nosel dengan kontur berbentuk hiperbola tertutup lebih kecil dibandingkan dengan hambatan pada nosel dengan kontur berbentuk parabola tertutup.

4.3.2 Distribusi tekanan statis pada berbagai bentuk nosel lain

Distribusi tekanan statis pada bentuk nosel lainnya diperlihatkan pada gambar

Gambar 4.12 Kontur besar tekanan statis pada nosel dengan kontur berbentuk : a) *Error functions*, b) Hiperbola terbuka, dan c) Parabola terbuka pada tekanan masuk 20 kPa

Pada kontur tekanan satis pada nosel dengan kontur berbentuk a) *Error functions*, b) Hiperbola terbuka dan c) Parabola terbuka di tunjukkan pada gambar 4.12. Terlihat warna yang sama pada bagian pipa hingga pada bagian masuk nosel, hal ini disebabkan karena perubahan besar distribusi tekanan pada nosel kecil. Pada gambar 4.12 a, perubahan distribusi tekanan terlihat baru terjadi pada bagian dekat outlet nosel dan tekanan yang dihasilkan pada sisi outlet lebih kecil. Pada gambar 4.12 b,c distribusi tekanan statis lebih besar pada bagian outlet nosel, perubahan warna kontur distribusi tekanan statis terjadi pada bagian nosel, lebih awal bila dibandingkan dengan perubahan besar tekanan pada nosel berbentuk *Error functions*, hal ini disebabkan karena perubahan luas penampang nosel dengan kontur berbentuk hiperbola terbuka dan arabola terbuka lebih besar pada bagian ini. Hal ini sesuai dengan persamaan *Bernoulli* bahwa pada sisi yang luas penampangnya kecil maka tekanan kecil dengan kecepatan besar dan sebaliknya pada sisi yang luas penampangnya besar maka tekanannya besar

Berikut gambar besar distribusi tekanan statis pada nosel dengan kontur berbentuk Hiperbola tertutup dan Parabola tertutup untuk tekanan masuk 20 kPa :

Pada gambar 4.13 kontur tekanan pada nosel dengan kontur berbentuk Hiperbola tertutup dan Parabola tertutup, terlihat bahwa perubahan warna kontur besar tekanan statik baru terjadi pada bagian outlet nosel, hal ini terjadi karena pada bagian inlet nosel perubahan luas penampang nosel kecil hal ini mengakibatkan perubahan kecepatan dan tekanan juga besar. Sehingga distribusi kecepatan statis nosel yang dihasilkan memperlihatkan interval besar tekanan yang tak jauh berbeda dan besarnya dianggap sama hingga bagian inlet nosel. Sementara pada bagian oulet nosel perubahan luas penampang nosel besar, hal ini mengakibatkan perubahan besar kecepatan dan tekanan juga besar, terlihat dengan adanya perubahan warna yang berbeda. Perubahan luas penampang yang besar inilah yang mengakibatkan terjadinya perubahan distribusi besar tekanan statik pada nosel baru terjadi pada bagian outlet nosel. Dari hasil distribusian kecepatan dan tekanan statis untuk berbagai bentuk nosel yang dibuat terlihat, bahwa besar kecepatan aliran fluida keluar nosel terbesar terdapat pada gambar 4.10 a yaitu pada bentuk nosel dengan kontur berbentuk *error function*, dan distribusi tekanan statik terendah juga terjadi pada nosel ini sebesar -3,21 kPa.dari hasil simulasi diketahui bahwa pada tekanan masuk nosel yang sama, nosel dengan kontur berbentuk *error function* menghasilkan kecepatan keluar nosel yang paling besar yaitu 6.33 m/s. Ini berarti dari semua bentuk nosel yang dibuat maka nosel yang memiliki hambatan terkecil adalah nosel dengan kontur berbentuk *error function*.

NERSITA

BRAWINAL

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil simulasi dan analisa data yang telah dilakukan dapat diambil kesimpulan sebagai berikut :

- Besarnya distribusi kecepatan aliran fluida pada bagian inlet untuk hasil simulasi nosel *conic* dan *contour* pada tekanan masuk 20 kPa adalah, untuk nosel *conic* sebesar 0.2866 m/s dan untuk nosel *contour* 0,2568 m/s. Pada bagian outlet besar distribusi kecepatan untuk nosel *conic* 5.4456 m/s, untuk nosel *contour* 4.9777 m/s.
- 2. Besarnya distribusi kecepatan aliran fluida masuk nosel antara eksperimen dan hasil simulasi untuk tekanan masuk 20 kPa pada nosel conic dan contour adalah, pada nosel *conic* hasil eksperimen sebesar 0,2472 m/s pada hasil simulasi 0.2866 m/s, untuk nosel *contour* hasil eksperimen 0.2231 m/s dan hasil simulasi sebesar 0.2584 m/s. Pada bagian outlet untuk hasil eskperimen dan simulasi pada nosel *conic* hasil eksperimen 5.2351 m/s dan hasil simulasi 5.4456m/s, pada nosel countur untuk hasil eksperimen 4.7219 m/s dan untuk hasil simulasi 4.9777 m/s, sehingga antara hasil eksperimen dan simulasi tidak jauh berbeda.
- Pada tekanan masuk nosel 20 kPa, besar kecepatan pada inlet nosel dengan kontur berbentuk *Error functions*, hiperbola terbuka, Parabola terbuka, hiperbola tertutup, dan Parabola tertutup adalah 0,3164 m/s, 0,3029 m/s, 0.3078 m/s, 0.2313 m/s, 0.2200 m/s, dan besar kecepatan pada outletnya adalah 6.33 m/s, 6.06 m/s, 6.16 m/s, 5.56 m/s, 4.40 m/s.

5.2 Saran

• Perlu dilakukan penelitian lanjut secara eksperimen untuk nosel dengan kontur bentuk lainnya.

DAFTAR GAMBAR

No.	Judul	Halamar
Gambar 2.1	: a) Conical Nozzle b) Contour Nozzle	. 4
Gambar 2.2	: Elemen fluida untuk hukum konversi	. 7
Gambar 2.3	: Aliran massa masuk dan keluar pada elemen fluida	. 8
Gambar 2.4	: Tegangan dalam arah x pada elemen fluida	. 10
Gambar 2.5	: Nosel konvergen divergen	. 12
Gambar 2.6	: Bentuk nosel	. 13
Gambar 2.7	: Pendekatan forward differencing	. 16
Gambar 2.8	: Pendekatan backward differencing	. 16
Gambar 2.9	: Pendekatan Central differencing	. 17
Gambar 2.10	: Metode Central Differencing Scheme	. 17
Gambar 2.11	: Metode Up Wind Differencing Scheme	18
Gambar 2.12	: Metode Quick Scheme	19
Gambar 2.13	: Penentuan kontrol volume dan kontrol skalar	20
Gambar 3.1	: Model eksperimen yang disimulasikan pada penelitian	
	sebelumnya	24
Gambar 3.2	: Bentuk-bentuk nosel contour lain yang akan disimulasikan	26
Gambar 3.3	: Diagram Alir	28
Gambar 4.1	: Domain fisik nosel <i>conic</i>	30
Gambar 4.2	: Domain fisik nosel contour	30
Gambar 4.3	: Grid generation pada nosel conic	30
Gambar 4.4	: Grid generation pada nosel contour	31
Gambar 4.5	: Kondisi Batas	32
Gambar 4.6	: Kontur besar kecepatan nosel conic pada tekanan	
	masuk 20 kPa	37
Gambar 4.7	: Kontur besar kecepatan nosel contour pada tekanan	
	masuk 20 kPa	38
Gambar 4.8	: Kontur besar tekanan pada nosel conic pada tekanan	
	masuk 20 kPa	40
Gambar 4.9	: Kontur besar tekanan pada nosel contour pada tekanan	
	masuk 20 kPa	40

Gambar 4.10	: Kontur besar kecepatan pada nosel dengan kontur berbentuk :	
	a) <i>Error functions</i> , b) Hiperbola terbuka, dan c) Parabola	
	terbuka pada tekanan masuk 20 kPa	45
Gambar 4.11	: Kontur besar kecepatan pada nosel dengan kontur berbentuk :	
	a) Hiperbola tertutup, b) Parabola tertutup	
	pada tekanan masuk 20 kPa	47
Gambar 4.12	: Kontur besar tekanan statis pada nosel dengan kontur berbentuk	
	a) <i>Error functions</i> , b) Hiperbola terbuka, dan c) Parabola	
	terbuka pada tekanan masuk 20 kPa	59
Gambar 4.13	: Kontur besar tekanan statis pada nosel dengan kontur berbentuk	
	a) Hiperbola tertutup, b) Parabola tertutup pada tekanan	5
	masuk 20	50

S

DAFTAR ISI

Halaman

Kata Pengantar	i
Daftar Isi	ii
Daftar Tabel	iv
Daftar Gambar	v
Daftar Lampiran	vii
Ringkasan	viii

I. PENDAHULUAN

1.1. Latar Belakang	1
1.2. Rumusan Masalah	2
1.3. Batasan Masalah	2
1.4. Tujuan Penelitian	2
1.5. Manfaat Penelitian	2

II. TINJAUAN PUSTAKA

2.1. Penelitian Sebelumnya	4
2.2. Definisi dan Sifat – Sifat Fluida	4
2.3. Klasifikasi Fluida	5
2.4. Hukum Dasar dan Analisa Differensial pada Suatu Aliran Fluida	6
2.4.1 Konservasi massa	7
2.4.2 Persamaan momentum	9
2.5. Nosel	12
2.5. Komputasi Dinamika Fluida	13
2.6. Hipotesa	22

III. METODE PENELITIAN

3.1. Metode Penelitian	23
3.2. Rancangan Penelitian	23
3.3. Variabel Penelitian	23
3.4. Prosedur Penelitian	27
3.5. Validasi Program	27
3.5. Diagram Alir	28

IV. HASIL DAN PEMBAHASAN

4.1. Simulasi Pola Aliran Fluida pada Nosel Conic dan Contour	29
4.2. Hasil Simulasi pada Nosel Conic dan Contour	37
4.2.1 Distribusi kecepatan pada nosel conic dan contour	37
4.2.2 Distribusi tekanan statis pada nosel conic dan contour	40
4.2.3 Perbandingan hasil secara simulasi dan hasil secara penelitian pada nose	1
conic dan contour	42
4.3. Hasil Simulasi Untuk Bentuk Nosel Lainnya	44
4.3.1 Distribusi kecepatan pada berbagai bentuk nosel lain	44
4.3.2 Distribusi tekanan statis pada berbagai bentuk nosel lain	48

V. KESIMPULAN DAN SARAN

5.1. Kesimpulan		
5.2. Saran	Γ Θ Λ Λ Λ Λ Λ	52

DAFTAR PUSTAKA LAMPIRAN

DAFTAR LAMPIRAN

No.	Judul Halar	nan
Lampiran 1 :	Form pilihan perintah pada program FLUENT 6.0	54
Lampiran 2 :	Hasil simulasi pada nosel dengan kontur berbentuk error function	72
Lampiran 3 :	Hasil simulasi pada nosel dengan kontur berbentuk hiperbola	
	terbuka	72
Lampiran 4 :	Hasil simulasi pada nosel dengan kontur berbentuk parabola	
	terbuka	72
Lampiran 5 :	Hasil simulasi pada nosel dengan kontur berbentuk parabola	
	tertutup	73
Lampiran 6 :	Hasil simulasi pada nosel dengan kontur berbentuk hiperbola	
	tertutup	73
Lampiran 7 :	Besar distribusi kecepatan dan tekanan pada kontur nosel berbentuk con	nic
	dengan tekanan masuk 60 kPa, 10kPa, dan 140 kPa	74
.Lampiran 8 :	Besar distribusi kecepatan dan tekanan pada kontur nosel berbentuk	
	contour dengan tekanan masuk 60 kPa, 10kPa, dan 140 kPa	76
.Lampiran 9 :	Besar distribusi kecepatan dan tekanan pada kontur nosel berbentuk	
	error function dengan tekanan masuk 60 kPa, 10kPa,	
	dan 140 kPa	78
Lampiran 10	: Besar distribusi kecepatan dan tekanan pada kontur nosel berbentuk	
	hiperbola terbuka dengan tekanan masuk 60 kPa, 10kPa,	
	dan 140 kPa	80
Lampiran 11	: Besar distribusi kecepatan dan tekanan pada kontur nosel berbentuk	
	parabola terbuka dengan tekanan masuk 60 kPa, 10kPa,	
	dan 140 kPa	82
Lampiran 12	: Besar distribusi kecepatan dan tekanan pada kontur nosel berbentuk	
	hiperbola tertutup dengan tekanan masuk 60 kPa, 10kPa,	
	dan 140 kPa	84.
Lampiran 13	: Besar distribusi kecepatan dan tekanan pada kontur nosel berbentuk	
	parabola tertutup dengan tekanan masuk 60 kPa, 10kPa,	
	dan 140 kPa	86

DAFTAR PUSTAKA

Anonimous. 2006. *Nozzle*. <u>http://en.wikipedia.org/wiki/Nozzle</u>

Anonimous. 2001. FLUENT 6.0 User's Guide. FLUENT Inc. Lebanon.

Bhaskaran, Rajesh. 2003. Introduction to CFD Basics. http://instruct1.cit.cornell.edu/courses/fluent/cfd/index.htm

Fox, et.al. 1994. Introduction to Fluid Mechanics.

Fox, R.W dan Alan T. McDonald. 1985. Introduction of Fluid Mechanics. Third Edition. New York: John Willey & Son, Inc.

Hoffman, Klauss A, 1989. *Computational Fluid Dynamics for Engineers*. Texas: Engineering Education SystemTM.

http://www.visioengineer.com/aero/nosel/nosel.shtml

Malalasekera, W. dan Versteeg, H.K. 1996. An Introduction to Computational Fluid Dynamics. Lougbhorough. Longman.

Streeter, V.L. dan Wylie, E.B. 1991. *Fluid Mechanic*. 2nd edition. McGraw Hill Book Company. New York.

Olson, R.M dan Steven J.Wrigth. 1990. Dasar-Dasar Mekanika Fluida Teknik. Edisi kelima. Jakarta : PT. Gramedia Pustaka Utama

DAFTAR TABEL

No.	Judul Halar	nan
Tabel 3.1	Spesifikasi Nosel	26
Tabel 4.1	Perbandingan hasil simulasi dan eksperimen untuk nosel conic	42
Tabel 4.2	Perbandingan hasil simulasi dan eksperimen untuk nosel contour	43

KATA PENGANTAR

Puji syukur kami panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat, taufiq dan hidayah-Nya sehingga penulis dapat menyelesaikan skripsi ini dengan baik. Penulis sadar bahwa selama dalam penulisan skripsi ini telah dibantu oleh banyak pihak.

Oleh sebab itu penulis menyatakan terima kasih yang tulus kepada semua pihak yang telah membantu dalam penyelesaian skripsi ini, yaitu:

- Orang tua, saudara-saudaraku, dan orang-orang yang kusayangi (siapa hayooo..)yang tidak pernah berhenti memberikan doa, kasih sayang dan dukungan kepada penulis.
- 2. Bapak Ir. Bambang Indrayadi, MT, selaku ketua jurusan mesin fakultas teknik universitas brawijaya.
- 3. bapak Ir. Djoko Sutikno, M.eng. Sc, selaku sekretaris jurusan mesin fakultas teknik universitas brawijaya.
- 4. bapak moch. Syamsul Ma'arif St. Mt, selaku dosen wali, atas semua bantuandan perhatiannya selama ini.
- 5. bapak Dr. Ir. Rudy Soenoko, M.eng. sc. Selaku ketua kelompok konsentrasi teknik konversi energi jurusan mesin fakultas teknik universitas brawijaya sekaligus sebagai dosen pembimbing I, atas semua bantuan, masukan, nasehat hingga terselesaikannya skripsi ini.
- Ibu Lilis Yuliati, St, Mt, selaku dosen pembimbing II, atas segala saran, bimbingan, bantuan dan nasihatnya selama mendampingi penyusunan skripsi ini hingga selesai.
- 7. Kepada semua bapak ibu dosen yang tak bisa saya sebutkan satu persatu namanya disini, atas bimbingannya dan ilmu yang telah diberikan pada kami hingga akhir studi kami disini.
- 8. Seluruh teman teman yang secara langsung atau tidak langsung telah membantu dalam kelancaran terselesaikannya skripsi ini dengan baik.

Penyusun menyadari sepenuhnya bahwa skripsi ini masih banyak terdapat kekurangan, karena itu kritik dan saran yang sifatnya membangun sangat kami harapkan dalam kesempurnaan skripsi ini.

Malang, Pebruari 2007

penyusun

AS

Lampiran 1 : Form pilihan perintah pada program FLUENT 6.0

Pre-processor

1. Membuka Program FLUENT 6.0 dengan 2D.

FLUENT Version	
Versions	I
2d 2ddp 3d 3ddp	
Selection	I
2d	I
Run Exit	

Gambar Form Fluent

Pilih 2d dan tekan Run untuk menjalankan program.

Langkah-langkah dan solusi pada Fluent sebagai berikut :

Langkah 1: Grid

File -> Read -> Case...

💶 FLUENT [2d,	segregated, lam]		
File Grid Define	Solve Adapt Surfac	e Display Plot Report Parallel Help	
Read 🕨 🕨	Case		~
Write 🕨	Data	12	
Import 🕨	Case & Data Pdf	Inc.	
Export	Rays		
Interpolate	View Factors	nt6.0\lib\fl_s112.dmp"	
Hardcopy	Profile		
Save Layout	Scheme	ן-jan-v. אוויאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאאא	
Run	Journal	in -2552 days.	
Exit	lease contact	your distributor for renewal.	
>			
			~
<			>

Gambar Form file

WIUR -

💶 FLUENT [2d, se	gregated, lam]	_ 🗆 🛛
File Grid Define So	lve Adapt Surface Display Plot Report Parallel Help	
		6
Welcome t	Select File 🛛 💽 🔀	
Conuriant	Look in: 🕞 ntv96	
All Right		
	GAMBIT.2864 GAMBIT.2864	
Loading "E:\FL	🛅 opengl 🔟 setengahconicpanjang50	
license for fl	xdll 🔤 setengahconicpanjang50	
*****	setebgahcontourElipstertutup50.msh isstengahcontour50.msh	
Li	setebganconcourclipstercutup50m0DIPARE.cas isstenganconcourclipstercutup50colutionEix.cas isstengahcontour50colutionEix.cas	

**********	<	
>		
	Lase File setengahconicpanjang50	
	Files of type: Case Files	
		4
<		2
	Gambar Form <i>select file</i> .msh	
		-
	segregated, lam]	
File Grid Define	Solve Adapt Surface Display Plot Report Parallel Help	
		~
Welcome	e to Fluent 6.0.12	
Copyrig	jht 2001 Fluent Inc.	
All Rig	jhts Reserved	
Loading "E:\	<pre>\FLUENT.INC\fluent6.0\lib\fl_s112.dmp"</pre>	
License for	fluent expires 1-jan-0.	
*******		****
	License expires in -2552 days. Please contact your distributor for renewal.	

-		*###
> Reading "E	:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh"	****
> Reading "E 2132 noc	:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" les. pressure-outlet faces zone 2	***
> Reading "E 2132 noc 40 2D 51 2D	:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" les. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3.	****
> Reading "E 2132 noc 40 2D 51 2D 51 2D 51 2D	:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" les. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-ilet faces, zone 5.	:###
> Reading "E 2132 noc 40 2D 51 2D 51 2D 40 2D 3989 2D	E:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" les. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-inlet faces, zone 5. interior faces, zone 7.	
> Reading "E 2132 noc 40 2D 51 2D 51 2D 40 2D 3989 2D 2040 qua	:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" les. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-inlet faces, zone 5. interior faces, zone 7. odrilateral cells, zone 1.	****
> Reading "E 2132 not 40 2D 51 2D 51 2D 40 2D 3989 2D 2040 qua Building	:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" des. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-inlet faces, zone 5. interior faces, zone 7. adrilateral cells, zone 1.	
<pre>> Reading "E 2132 not 40 2D 51 2D 51 2D 40 2D 3989 2D 2040 qua Building grid, materia</pre>	E:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" des. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-inlet faces, zone 5. interior faces, zone 7. adrilateral cells, zone 1.	
<pre>> Reading "E 2132 not 40 2D 51 2D 51 2D 40 2D 3989 2D 2040 qua Building grid, materia interfa</pre>	E:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" des. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-inlet faces, zone 5. interior faces, zone 7. adrilateral cells, zone 1.	
<pre>> Reading "E 2132 not 40 2D 51 2D 51 2D 40 2D 3989 2D 2040 qua Building grid, materia interfa domains zones</pre>	E:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" des. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-inlet faces, zone 5. interior faces, zone 7. adrilateral cells, zone 1.	
<pre>> Reading "E 2132 not 40 2D 51 2D 51 2D 40 2D 3989 2D 2040 qua Building grid, materia interfa domains zones, defa</pre>	E:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" des. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-inlet faces, zone 5. interior faces, zone 7. adrilateral cells, zone 1.	
<pre>> Reading "E 2132 not 40 2D 51 2D 51 2D 40 2D 3989 2D 2040 qua Building grid, materia interfa domaing zones, defa inle</pre>	E:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" Jes. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-inlet faces, zone 5. interior faces, zone 7. adrilateral cells, zone 1. als, ace, ;, mult-interior et	
<pre>> Reading "E 2132 not 40 2D 51 2D 51 2D 2040 qua Building grid, materia interfa domains zones, defa inte cent wall</pre>	E:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" des. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-inlet faces, zone 5. interior faces, zone 7. adrilateral cells, zone 1. als, ace, bult-interior et	
<pre>> Reading "E 2132 not 40 2D 51 2D 51 2D 2040 qua Building grid, materia interfa domains zones, defa inte cent wall out]</pre>	:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" des. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-inlet faces, zone 5. interior faces, zone 7. adrilateral cells, zone 1. als, ace, 5, oult-interior et ier	
<pre>> Reading "E 2132 not 40 2D 51 2D 51 2D 2040 qua Building grid, materia interfa domains zones, defa inle cent wall out flui</pre>	E:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" des. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-inlet faces, zone 5. interior faces, zone 7. adrilateral cells, zone 1. als, ace, 5, ault-interior 2t cer 1 d conduction zones,	
<pre>> Reading "E 2132 not 40 2D 51 2D 51 2D 2040 qua Building grid, materia interfa domains zones, defa inte cent wall out flui shell c Done.</pre>	<pre>:\GAMBIT\ntbin\ntx86\setengahconicpanjang50.msh" des. pressure-outlet faces, zone 2. pressure-outlet faces, zone 3. axis faces, zone 4. pressure-inlet faces, zone 5. interior faces, zone 7. adrilateral cells, zone 1. als, ace, 5, ault-interior et cer l let d conduction zones,</pre>	

Gambar Form *file reading*

File untuk membuka model yang dibuat pada gambit. Caranya memilih *read* setelah itu *case* dan pilih file model yang akan dijalankan misal setengahconicpanjang50.msh seperti pada gambar.

2. Mengecek grid.

Grid ->Check ...

Gambar Form grid check

Prosedur ini berguna untuk mengecek apakah terdapat kesalahan pada model, pastikan nilai dari volume bernilai positif. 3. mengecek skala dari model. Grid -> Scale...

FLUENT [2d, segregated, lam]	
File Grid Define Solve Adapt Surface Display Plot Report Parallel Help	
Check Pa (m2): 1,812185e+88	~
Ct Info > f nodes per cell.	
Ct f faces per cell.	
Ch ^{Merge} ointers.	
Ct Separate + f cells per face.	
Cr Fuse 15.	
Ctaces.	
Ct Reorder Maded Cells.	
Ch Scale dedness.	
Ch type consistency.	
cr types:	
Gi Smooth/Swap houndarios	
Checking node count	
Checking node count.	
Checking nosolve face count.	
Checking face children.	
Checking cell children.	
Checking storage.	
Done.	
	~
K	>
Gambar Form <i>grid</i> scale	
Guinour i offit gria scare	
FILIENT [2d segregated lam]	
Hie and Denne Solve Adapt Surrace Display Plot Report Parallel Help	1.000
maximum face area (m2)· 1 0121850+00	^
Checking number Scale Grid	
Checking number	
Checking thread Scale Factors Units Conversion	
Checking number	
Checking Face ce 1 0.001	
Checking bridge	
Checking Face ha	
Checking element	
Checking boundar	
Checking face pa Xmin (m) a east Xmax (m) a east 2	
Checking periodi	
Checking node co Ymin (m) o Ymax (m) o ettr	
Checking nosolve	
Checking nosolve	
Checking face ch	
Checking cell ch Scale UnScale Close Help	
Unecking storage	
vone.	
	*
8	>

Gambar Form scale grid

Sesuaikan satuan ukuran nosel pada form *scale grid*, dengan memilih satuan mm sesuai satuan ukuran nosel. Kemudian tekan *Scale*.

4. Menampilkan tampilan grid.

Display -> Grid...

FLUENT [2d, segregated, lam]				
File Grid Define Solve Adapt Surfac	e Display Plot R	eport Parallel	Help	
maximum face area (m2):	1 Grid			<u>^</u>
Checking number of nodes p	e Contours			
Checking number of faces p Checking thread pointers	Vectors			
Checking cureau poincers.	Path Lines			
Checking Hamber of Cerrs , Checking face cells.	Particle Tracks			
Checking bridge faces.	DTRM Graphics	5		
Checking right-handed cell	Sweep Surface	9		
Checking face handedness.	Options			
Checking element type cons	i Scene			
Checking boundary types:	Apimata			
Checking face pairs.	Animate			
Checking periodic boundary	Le Views			
Checking note count.				
Checking nosolve cell cour Checking nosolue face cour	t Colormaps			
Checking face children.				
Checking cell children.	Annotate			Ξ.
Checking storage.				
Done.				
				~
<				
	C 1 F		. 1	
	Gambar F	orm displa	ly grid	
FLUENT [2d_segregated_lam]				
File Grid Define Solve Adapt Surfa	Grid Display		X	
maximum face area (m2)	0	F.J	0.4	~
Checking number of nodes	Options	Eage Type	Surfaces = =	-
Checking number of faces	☐ Nodes	• All	center	
Checking thread pointers	Edges	C Feature	default-interior	
Checking number of cells	Faces	C Outline	inlet	
Checking face cells.	C Partitions		outlet	
Checking bridge faces.				
1.0PLKI00 FI001-0400PD 1P			wall	
Checking face handedness	Shrink Factor F	eature Angle	wan	
Checking face handedness Checking element tune cou	Shrink Factor F	eature Angle	wall	
Checking face handedness Checking element type co Checking boundary types:	Shrink Factor F 0	eature Angle 20	wall	
Checking face handedness Checking element type co Checking boundary types: Checking face pairs.	Shrink Factor F 0 2 Surface Name F	eature Angle 20 Pattern	Surface Types =	
Checking face handedness Checking element type col Checking boundary types: Checking face pairs. Checking periodic bounda	Shrink Factor F 0 2 Surface Name F	eature Angle 20 Pattern	Surface Types = =	
Checking face handedness Checking element type co Checking boundary types: Checking face pairs. Checking periodic bounda Checking node count.	Shrink Factor F Surface Name F	eature Angle 20 Pattern Match	Surface Types = = axis clip-surf	
Checking face handedness Checking element type co Checking boundary types: Checking face pairs. Checking periodic bounda Checking node count. Checking nosolve cell co	Shrink Factor F Surface Name F	eature Angle 20 Pattern Match	Surface Types = = axis clip-surf exhaust-fan	
Checking face handedness Checking element type co Checking boundary types: Checking face pairs. Checking periodic bounda Checking node count. Checking nosolve cell co Checking nosolve face co	Shrink Factor F 0 2 Surface Name F	eature Angle 20 Pattern Match	Surface Types = = axis clip-surf exhaust-fan fan	
Checking face handedness Checking element type co Checking boundary types: Checking face pairs. Checking periodic boundar Checking node count. Checking nosolve cell co Checking nosolve face co Checking face children.	Shrink Factor F Ø 2 Surface Name F	eature Angle 20 Pattern Match	Surface Types = = axis clip-surf exhaust-fan fan	
Checking face handedness Checking element type co Checking boundary types: Checking face pairs. Checking periodic boundar Checking node count. Checking nosolve cell co Checking nosolve face co Checking face children. Checking cell children.	Shrink Factor F Ø 2 Surface Name F	eature Angle 20 Pattern Match	Surface Types = = axis clip-surf exhaust-fan fan Outline Interior	
Checking face handedness Checking element type co Checking boundary types: Checking face pairs. Checking periodic boundar Checking node count. Checking nosolve cell co Checking nosolve face co Checking face children. Checking cell children. Checking storage.	Shrink Factor F Ø 2 Surface Name F	eature Angle 20 Pattern Match	Surface Types = = axis clip-surf exhaust-fan fan Outline Interior	
Checking face handedness Checking element type co Checking boundary types: Checking face pairs. Checking periodic boundar Checking node count. Checking nosolve cell co Checking nosolve face co Checking face children. Checking cell children. Checking storage. Done.	Shrink Factor F 0 2 Surface Name F	eature Angle 20 Pattern Match Colors	Surface Types = = axis clip-surf exhaust-fan fan Outline Interior	
Checking face handedness Checking element type co Checking boundary types: Checking face pairs. Checking periodic boundar Checking node count. Checking nosolve cell co Checking nosolve face co Checking face children. Checking cell children. Checking storage. Done.	Shrink Factor F 0 2 Surface Name F Display	eature Angle 20 Pattern Match Colors	Surface Types == axis clip-surf exhaust-fan fan Outline Interior Close Help	
Checking face handedness Checking element type co Checking boundary types: Checking face pairs. Checking periodic boundar Checking node count. Checking nosolve cell co Checking nosolve face co Checking face children. Checking cell children. Checking storage. Done.	Shrink Factor F 0 2 Surface Name F Display	eature Angle 20 Pattern Match Colors	Surface Types = = axis clip-surf exhaust-fan fan Outline Interior Close Help	

Gambar Form grid display

Pada langkah ini berguna untuk menampilkan grid yang telah dibuat, caranya pilih *display* kemudian *grid* dan akan muncul form *grid display* tekan *display*.

Langkah 2: Models

1. Penyelesaian untuk model pada kondisi batas ini digunakan axisymmetric.

Define -> Models -> Solver ...

	FLUEN	IT [2d	, segre	gated,	lam]						
File	Grid	Define	Solve	Adapt	Surface	Display	Plot	Report	Parallel	Help	
	maxi hecki hecki hecki hecki hecki hecki hecki hecki	Mode Mate Phas Oper Boun Perio Grid Dyna Mixin Turb	rials es ating Co idary Con dic Cond dic Cond Interface amic Mesl ig Planes o Topolo	nditions. nditions. litions es h gy	•	Solver. Multiph Viscous Energy Radiatii Species Discrete Solidific Pollutar	ase on e Phase ation 8 hts	e k Melting.			
	necki hecki hecki hecki hecki hecki	Injec Ray Custi Profil Units	tions Tracing om Field les	Functior	ıs	:. :.					III
Do	ne.	User	-Defined		•						>

Gambar Form define

Pada form *define* ini terdapat perintah model, material, dan boundary condition. Pertama kita pilih perintah *model*, kemudian memilih perintah *solver*, untuk menentukan jenis aliran *steady*, *solver*, dan *space* seperti pada gambar. kemudian tekan Ok.

Gambar Form viscous

Setelah menentukan *solver*, kemudian kita mimilih perintah *viscous*, untuk menentukan jenis aliran,digunakan *K-epsilon (2 eqn)* karena alirannya turbulen. Tekan Ok. Lihat gambar.

BRAWIJAYA

💶 FLUENT [axi, couple	ed imp, ske]			
File Grid Define Solve /	Adapt Surface Display P	lot Report Parallel	Help	
maximum face ar Checking number o Checking number o Checking thread p Checking number o	rea (m2): 1.012185 of nodes per cell. of faces per cell. oointers. of cells per face.	e+00 Viscous Model		
Checking face cel	lls.	Model		
Checking bridge f	aces.	Muuei		
Checking face har	ndedness.	Inviscid		
Checking element	type consistency.	C Snalart-Alln	naras (1 egn)	
Checking face pai	rypes:	C k-epsilon	(2 eqn)	
Checking periodic	boundaries.	🤆 k-omega (2 eqn)	
Checking node cou Checking nosolve	int. cell count.	C Reynolds S	tress (5 eqn)	
Checking nosolve	face count.	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	
Checking face chi Checking cell chi	lldren. Idren.	OK Can	icel Help	=
Checking storage.				
Done.				
7				~
	•			
	Gamba	ar Form viscou	s model	
	5			
	<u> </u>		JA Y	
💶 FLUENT [axi, couple	ed imp, lam]			
File Grid Define Solve .	Adapt Surface Display P	lot Report Parallel	Help	
maximum face an	Viscous Model		×	_
Checking number (Mandal		Madal Caratasta	4
Checking thread p		1	Model Constants	
Checking number of	C Inviscid		Cmu	
Checking face ce Checking bridge f	C Snalart-Allmaras	: (1 ean)	0.09	
Checking right-ha	• k-epsilon (2 eq	n)	C1-Epsilon	
Checking face har Checking element	🤆 k-omega (2 eqn	1	1.44	
Checking boundary	© Reynolds Stress	s (5 ean)		
Checking face pair		. (C2-Ensilon	
Checking periodio	k-epsilon Model	. (C2-Epsilon	
Checking periodic Checking node cou	k-epsilon Model • Standard	. (C2-Epsilon 1.92	
Checking periodic Checking node cou Checking nosolve	k-epsilon Model Standard RNG		C2-Epsilon 1.92 TKE Prandtl Number	
Checking periodic Checking node cou Checking nosolve Checking nosolve Checking face chi	k-epsilon Model G Standard G RNG G Realizable		C2-Epsilon 1.92 TKE Prandtl Number 1	
Checking periodic Checking node cou Checking nosolve Checking nosolve Checking face chi Checking cell chi	k-epsilon Model Standard RNG Realizable Near-Wall Treatment	t	C2-Epsilon 1.92 TKE Prandtl Number 1 User-Defined Functions	
Checking periodic Checking node cou Checking nosolve Checking nosolve Checking face chi Checking cell chi Checking storage Done.	k-epsilon Model Standard RNG Realizable Near-Wall Treatment Standard Wall F	t	C2-Epsilon 1.92 TKE Prandtl Number 1 User-Defined Functions Turbulent Viscosity	
Checking periodic Checking node cou Checking nosolve Checking nosolve Checking face chi Checking cell chi Checking storage Done.	k-epsilon Model Standard RNG Realizable Near-Wall Treatment Standard Wall F Non-Equilibrium	t unctions Wall Functions	C2-Epsilon 1.92 TKE Prandtl Number 1 User-Defined Functions Turbulent Viscosity none	
Checking periodic Checking node cou Checking nosolve Checking nosolve Checking face chi Checking cell chi Checking storage Done.	k-epsilon Model Standard RNG Realizable Near-Wall Treatment Standard Wall F Non-Equilibrium Enhanced Wall	t unctions Wall Functions Treatment	C2-Epsilon 1.92 TKE Prandtl Number 1 User-Defined Functions Turbulent Viscosity none	
Checking periodic Checking node cou Checking nosolve Checking nosolve Checking face chi Checking cell chi Checking storage Done.	k-epsilon Model Standard RNG Realizable Near-Wall Treatment Standard Wall F Non-Equilibrium Enhanced Wall	t unctions Wall Functions Treatment	C2-Epsilon 1.92 TKE Prandtl Number 1 User-Defined Functions Turbulent Viscosity none	
Checking periodic Checking node cou Checking nosolve Checking nosolve Checking face chi Checking cell chi Checking storage Done.	k-epsilon Model Standard RNG Realizable Near-Wall Treatment Standard Wall F Non-Equilibrium Enhanced Wall	t unctions Wall Functions Treatment OK Canc	C2-Epsilon 1.92 TKE Prandtl Number 1 User-Defined Functions Turbulent Viscosity none	

Gambar Form viscous model

Langkah 3: Materials

1. Menentukan jenis material.

Define -> Materials...

Gambar Form *define material*

11

13.5		
E FLUENT	[axi, coupled imp, ske	
File Grid D	efine Solve Adapt Surfa	te Display Plot Report Parallel Help
maxin	Materials	
Checkir	Name	Material Type Order Materials By
Checkir	air	fluid T C Name
Checkir	Chamical Formula	Eluid Materiala
Checkir		
Checkir Checkir		an Database
Checkir	Properties	Database Materials 🛛 🔀
Checkir Checkir	Density (kg/m3)	Fluid Materials Material Type
Checkir		toluene-vapor (c7h8) 🔼 fluid 🗸
Checkir Checkir		tungsten-hexafluoride (wf6) turpentine (c10b16) Order Materials By
Checkir	Viscosity (kg/m-s)	water-liquid (h2o<1>) • Name
Checkir Checkir		water-vapor (h2o) C Chemical Formula
Checkir		
Done.		Properties
<		Density (kg/m3) constant
		008 2
		Cp (j/kg-k) constant View
		4182
	Change	Thermal Conductivity (w/m-k) constant
		0.6
		Viscosity [kg/m-s] constant View
		0.001003
		Conul Close Hole
		Lopy Liose Help

Gambar Form database material

Pada form *define material* digunakan untuk menentukan jenis fluida yang mengalir pada nosel. Fluida yang dipilih adalah *water-liquid*. Tekan *copy* setelah menentukan jenis fluida kemudian close,dan pada form *material* tekan*Change/Create* dan *close*.

Langkah 4: Operating Conditions

Define -> Operating Conditions...

File Grid Define Solve Adapt	Surface Display Plot Report Parallel	Help	
maximum face area (Checking number of no Checking number of fa Checking thread point Checking face cells. Checking face cells. Checking right-handed Checking face handed Checking face handed Checking face pairs. Checking face pairs. Checking node count. Checking nosolve cell Checking face childre Checking face childre Checking cell childre	M2): 1.012185e+00 Operating Conditions Pressure Operating Pressure (pascal) 0 Reference Pressure Location X (mm) 9 Y (mm) 0 OK Cancel	Gravity Gravity Gravity	
Done.			

Gambar Form operating conditiions

Pada *operating condition* diset ke angka 0 karena secara otomatis telah terukur dengan tekanan absolute.

Langkah 5: Boundary Conditions

1. mengatur boundary conditions untuk *fluid*, *inlet* dan *outlet*.

Define -> Boundary Conditions...

💶 FLUENT [axi, coupled imp, ske]		
FILVENT [axi, coupled imp, ske] File Grid Define Solve Adapt Su maximum face area (m2 Checking number of node Checking number of face	undary Conditions	
Checking number of cell Checking face cells. Checking bridge faces. Checking right-handed c Checking face handednes Checking element type c Checking boundary types Checking face pairs. Checking periodic bound Checking node count.	uid let utlet all Zone Name fluid Material Name air Source Term water-liquid	Edit
Checking nosolve cell c Checking nosolve face c Checking face children. Checking cell children. Checking storage. Done.	Fixed Values ^{air} Laminar Zone Porous Zone Set Motion Type Stationary	
	OK Cancel	Help

💶 FLUENT [axi, coupled imp, ske]

X Define Solve Adapt Surface Display Zone Туре maximum face area (m2): 1.012185e Checking number of nodes per cell. center inlet-vent ~ Checking number of faces per cell. default-interior intake-fan Checking thread pointers. fluid interface Checking number of cells per face. mass-flow-inlet inlet Checking face cells. outlet nutflow Checking bridge faces wall outlet-vent Checking right-handed cells. pressure-far-field Checking face handedness. pressure-inlet Checking element tupe consistencu Checking boun Pressure Inlet Checking face Checking peri Zone Name Checking node inlet Checking noso Checking noso Gauge Total Pressure (pascal) 20000 Checking face constant • Checking cell Supersonic/Initial Gauge Pressure (pascal) constant • Checking stor Done. Direction Specification Method Normal to Boundary • Turbulence Specification Method Intensity and Hydraulic Diameter • Turbulence Intensity (%) Hydraulic Diameter (mm) 23 0K Cancel Help Gambar Form pressure inlet 💶 FLUENT [axi, coupled imp, ske] × Туре Zone maximum face area (m2): 1.012185e Checking number of nodes per cell. center inlet-vent ^ Checking number of faces per cell. default-interior intake-fan Checking thread pointers. fluid interface Checking number of cells per face. inlet mass-flow-inlet Checking face cells. outlet outflow Checking bridge faces. wall outlet-vent Checking right-handed cells. pressure-far-field Checking face handedness. pressure-inlet Checking element type consistency. pressure-outlet Checking boundary types: symmetry Checking Pressure Outlet Checking Checking Zone Name Checking Checking outlet Checking Checking Gauge Pressure (pascal) constant + Checking Done. Turbulence Specification Method Intensity and Hydraulic Diameter -Backflow Turbulence Intensity (%) 2 Backflow Hydraulic Diameter (mm) 5 0K Cancel Help

Gambar Form fluid

Gambar Form pressure outlet

- 🗆 🗙
Pada define pilih perintah *boundary conditions* kemudian pilih perintah *fluid* tekan *set* dan tentukan jenis *fluid* tekan Ok. Kemudian mengeset untuk perintah *inlet* dan *outlet* dengan cara yang sama tentukan tekanan inlet dan outlet tekan Ok. Seperti pada gambar.

Solver

Langkah 6: Solution

Solve -> Controls -> Solution ...

File	UENT [axi, coupled imp, ske Grid Define Solve Adapt Surfa] ce Display Plot Report Parallel Help	_ 🗆 🗙
		4 04040500	
Ch	Solution Controls		X
Ch	Equations 📃 :	Under-Relaxation Factors	
Ch Ch	Flow Turbulence	Turbulence Kinetic Energy	0.8
Ch Ch		Turbulence Dissipation Rate	0.8
Ch		Turbulent Viscosity	1
Ch			
Ch Ch	Solver Parameters	Discretization	
Ch	Courant Number 5	Flow	Second Order Upwind 🚽
Ch		Turbulence Kinetic Energy	
Don		Turbulence Dissipation Rate	First Order Upwind 🚽
<			First Order Upwind
			Second Order Upwind
		OK Default Cancel	QUICK
_			

Gambar Form solution control

Pada langkah solution ini adalah langkah penyelesaian dengan menggunakan metode komputasi, dengan menentukan *discretizattion* yang akan digunakan kemudian tekan Ok.

Langkah 7: *Initialize the flow*. Solve -> Initialize -> Initialize...

🖴 FLUENT Laxi, coupled imp, ski	•] 📃 🗖 🔀				
File Grid Define Solve Adapt Surfa	ice Display Plot Report Parallel Help				
maximum f Checking nu Checking nu Checking nu Checking th Checking th Checking fa Checking fa Checking face handedness Checking face handedness Checking face pairs. Checking face pairs. Checking node count. Checking nosolve cell cou Checking nosolve face cou Checking face children. Checking cell children. Checking storage. Done.	<pre>> 2185e+00 > Initialize Patch Patch Reset DPM Sources S ills. ries. int. int.</pre>				
<	<u>×</u>				
Gambar Form initialize					
Checking element type co Checking boundary types: Checking face pairs. Checking periodic bounda Checking node count. Checking nosolue cell co	Solution Initialization Compute From Reference Frame inlet Relative to Cell Zone				
Checking nosolve face co Checking face children. Checking cell children. Checking storage. Done. WARNING: non-positive vol	all-zones inlet outlet wall Axial Velocity (m/s) 6.330255 Radial Velocity (m/s) 6				
Checking nosolve face co Checking face children. Checking cell children. Checking storage. Done. WARNING: non-positive vol WARNING: non-positive vol	Axial Velocity (m/s) 6.336255 Radial Velocity (m/s) 6 Turbulence Kinetic Energy (m2/s2) 6.02464328				

Gambar Form solution initialization

Initialize digunakan untuk menyelesaikan inisialisasi. Tekan Init.

Langkah 8: Residual

Solve -> Monitors -> Residuals...

💶 FLUENT [axi,	coupled imp,	ske]					
File Grid Define	Solve Adapt Si	urface Displa	y Plot R	eport Parallel	Help		
total v minimum 2 maximum 2 Face area s minimum f maximum f Checking nu Checking nu Checking fau Checking fau Checking fau Checking fau Checking fau Checking fau Checking fau Checking fau Checking fau Checking nu Checking nu Checking nu Checking nu Checking nu Checking nu	Controls Initialize Monitors Animate Execute Commu Iterate mber of face read pointer mber of cell ce cells. idge faces. ght-handed of ce handednes r nodes that ement type of undary types ce pairs. riodic bound de count. solve cell of	<pre></pre>	e-05 779e-09 Residual Statistic Force Surface Volume Ce.	x-axis.			
		(Gambar	Form res	idual	V	
			\mathcal{S}	(Link)	2		

total volume (m3): 1 minimum 2d volume (m3)	k719280-85 Residual Monit	ors			
maximum 2d volume (m3) ace area statistics:	Options	Storage	4 1441A	Plotting	
minimum face area (m2) maximum face area (m2) necking number of nodes	✓ Print✓ Plot	Iterations	1000	Wind	low 0
hecking number of faces hecking thread pointers		Normalizatio	on	Iterations	1000 🛨
necking number of cells necking face cells.		□ Normali	ze 🗹 Scale	Axes	Curves
necking bridge faces. Necking right-handed ce Necking face bandedness	Residual	Ch Monitor Co	eck (nvergence (Convergence Criterion	*
ecking for nodes that	continuity	•		0.0001	
ecking element type co ecking boundary types:	x-velocity	•		0.001	
ecking face pairs. ecking periodic bounda	y-velocity	N	▼ [0.001	
necking node count. Necking nosolve cell co	k	~		0.001	
1	oncilon			0 001	

Gambar Form residual monitors

Langkah 9 : Iterate

Solve -> Iterate...

E FLUENT [axi, coupled imp, ske]				
File Grid Define Solve Adapt Surface Display Plot Report Parallel Help				
total u Controls 0e-05 minimum 2 Initialize 6779e-09 maximum 2 Monitors 2574e-07 Face area 5 Animate 7494e-09 maximum 6 Execute Commands 1terate Checking nu Iterate 0000e-05 Checking number of faces per cell. cell. Checking number of cells per face. checking face cells. Checking face cells. checking bridge faces. Checking right-handed cells. checking face handedness.				
Checking for nodes that lie below the x-axis. Checking element type consistency. Checking boundary types: Checking face pairs. Checking periodic boundaries. Checking node count.				
Checking hospive cell count.	>			

Gambar Form *iterate*

FLUENT [axi, coupled imp, ske]		
ile Grid Define Solve Adapt Surface Display Plot	: Report Parallel Help	
20 6.5608e-02 1.2404e-01 2.8200e-	-02 2.0656e-02 1.7003e-02 0:03:24	+ 980 🖌
21 5.4738e-02 1.0096e-01 3.0622e-	-02 1.8585e-02 1.5417e-02 0:02:43	3 979
22 4.3090e-02 7.9644e-02 3.0283e-	-02 1.6788e-02 1.4039e-02 0:02:1	1 978
iter continuity x-velocity y-veloci	ity k epsilon time	e/iter
23 3.2539e-02 6.3782e-02 2.7654e-	-02 1.5392e-02 1.3139e-02 0:01:44	4 977
24 2.4129e-02 5.4275e-02 2.3557e-	-02 1.4360e-02 1.2522e-02 0:01:23	3 976
25 1.8921e-02 5.0706e-02 1.8816e-	-02 1.3692e-02 1.2329e-02 0:01:07	7 975
1	02 1.3200e-02 1.1825e-02 0:00:53	3 974
nerate	03 1 20410 02 1 11720 02 1:00:43	3 973
Iteration	-03 1 Working 🛛 🔀 :00:34	+ 972
	03 1 :00:27	7 971
Number of Iterations 1000	-03 1 (i) Iterating :00:22	2 970
	-03 1 💎	969
Reporting Interval 1	03 1 :02:49	968
	·03 1 :02:1	5 967
UDF Profile Update Interval 1	ty Cancer time	e/iter
	03 1 :44	3 966
	03 1.5544e-02 1.7902e-02 0:01:20	5 965
	03 1.6410e-02 2.0067e-02 0:01:0	964
Iterate Apply Close Help	03 1.7314e-02 2.2628e-02 0:00:5	5 963
		~
		>

Gambar Form *iteration*

Iterate digunakan untuk mengiterasi persamaan atur sampai konvergen, mulai perhitungan dengan merunning 1000 iterasi. Tekan *iterate*.

Postprocessing

Menampilkan hasil simulasi yang terdiri dari *contours of static pressure* dan *contours of velocity magnitude*. Tekan *display*.

Display -> Contours...

Contours	
Options	Contours of
🗹 Filled	Pressure
☑ Node Values ☑ Global Range	Static Pressure
Auto Range	Min (pascal) Max (pascal)
Clip to Range	20911.78 203260.5
Draw Grid	Surfaces =
Levels Setup 20 1 -	axis default-interior inlet outlet
Surface Name Pattern	wall
	Surface Types 📃 📃
Match	axis
	fan 💌
Display Cor	npute Close Help

Gambar Form <i>contours</i> of st	tatic pressure
-----------------------------------	----------------

Contours	
Options	Contours Of
 ✓ Filled ✓ Node Values ✓ Global Range ✓ Auto Range Clip to Range Draw Profiles Draw Grid Levels Setup 20 ↓ 1 ↓	Velocity Velocity Magnitude Min Max 0 0 Surfaces = center default-interior inlet outlet
Surface Name Pattern	wall
	Surface Types = =
Match	axis A clip-surf exhaust-fan fan V
Display Com	pute Close Help

Gambar Form contours of velocity magnitude

7

Tekanan masuk (kPa)	Tekanan keluar (kPa)	Kecepatan masuk (m/s)	Kecepatan keluar (m/s)
20	0	0.3164	6.33
60	0	0.5486	11.00
100	0	0.7086	14.20
140	0	0.8388	16.80

Lampiran 2 :	Hasil simulasi	pada nosel d	lengan kontur	berbentuk en	rror function.
--------------	----------------	--------------	---------------	--------------	----------------

Lampiran 3 : Hasil simulasi pada nosel dengan kontur berbentuk hiperbola terbuka.

1.

Tekanan masuk (kPa)	Tekanan keluar (kPa)	Kecepatan masuk (m/s)	Kecepatan keluar (m/s)
20	0	0.3029	6.06
60	0	-0.5266	10.50
100	0	0.6804	13.60
140	0	0.8053	16.10

Lampiran 4 : Hasil simulasi pada nosel dengan kontur berbentuk parabola terbuka.

Tekanan masuk (kPa)	Tekanan keluar (kPa)	Kecepatan masuk (m/s)	Kecepatan keluar (m/s)
20	0	0.3078	6.16
60	0	0.5353	10.70
100	0	0.6941	13.90
140	0	0.8242	16.50

Tekanan masuk (kPa)	Tekanan keluar (kPa)	Kecepatan masuk (m/s)	Kecepatan keluar (m/s)
20	0	0.3029	5.32
60	0	0.5266	9.31
100	0	0.6804	12.00
140	0	0.8053	14.30
		STAD B	RAD.

Lampiran 5 :	Hasil si	mulasi pada	nosel	dengan	kontur	berbentul	k hiperbola	tertutup

Lampiran 6 : Hasil simulasi pada nosel dengan kontur berbentuk parabola tertutup

Tekanan masuk (kPa)	Tekanan keluar (kPa)	Kecepatan masuk (m/s)	Kecepatan keluar (m/s)
20	0	0.2660	4.40
60	0	-0.4567	7.58
100	0	0.6020	9.77
140	0	0.7129	11.80

Contours of Velocity Magnitude (m/s)

Jan 27, 2007 FLUENT 6.0 (axi, coupled imp, ske)

Gambar distribusi tekanan statik aliran fluida pada kontur nosel berbentuk *conic* pada tekanan masuk 140 kPa

Gambar distribusi kecepatan aliran fluida pada kontur nosel berbentuk *contour* pada tekanan masuk 100 kPa

Gambar distribusi tekanan statik aliran fluida pada kontur nosel berbentuk *contour* pada tekanan masuk 100 kPa

Gambar distribusi tekanan statik aliran fluida pada kontur nosel berbentuk *contour* pada tekanan masuk 140 kPa

Gambar distribusi kecepatan aliran fluida pada kontur nosel berbentuk *error function* pada tekanan masuk 100 kPa

Gambar distribusi tekanan statik aliran fluida pada kontur nosel berbentuk *error function* pada tekanan masuk 100 kPa

Gambar distribusi tekanan statik aliran fluida pada kontur nosel berbentuk *error function* pada tekanan masuk 140 kPa

Gambar distribusi kecepatan aliran fluida pada kontur nosel berbentuk hiperbola terbuka pada tekanan masuk 100 kPa

Gambar distribusi kecepatan aliran fluida pada kontur nosel berbentuk hiperbola terbuka pada tekanan masuk 140 kPa

Gambar distribusi tekanan statik aliran fluida pada kontur nosel berbentuk hiperbola terbuka pada tekanan masuk 100 kPa

Gambar distribusi tekanan statik aliran fluida pada kontur nosel berbentuk hiperbola terbuka pada tekanan masuk 140 kPa

Gambar distribusi kecepatan aliran fluida pada kontur nosel berbentuk parabola terbuka pada tekanan masuk 100 kPa

Gambar distribusi kecepatan aliran fluida pada kontur nosel berbentuk parabola terbuka pada tekanan masuk 140 kPa

Gambar distribusi kecepatan aliran fluida pada kontur nosel berbentuk hiperbola tertutup pada tekanan masuk 100 kPa

Gambar distribusi tekanan statik aliran fluida pada kontur nosel berbentuk hiperbola terbuka pada tekanan masuk 100 kPa

Gambar distribusi tekanan statik aliran fluida pada kontur nosel berbentuk hiperbola terbuka pada tekanan masuk 140 kPa

Gambar distribusi kecepatan aliran fluida pada kontur nosel berbentuk parabola tertutup pada tekanan masuk 100 kPa

SIMULASI POLA ALIRAN FLUIDA PADA NOSEL DENGAN VARIASI BENTUK KONTUR MENGGUNAKAN FLUENT 6.0

SKRIPSI

KONSENTRASI KONVERSI ENERGI

Diajukan Untuk Memenuhi Sebagian Persyaratan Memperoleh Gelar Sarjana Teknik

DISUSUN OLEH :

BASO RIZAL NIM. 0310623017-62

Telah diperiksa dan disetujui oleh :

Dosen pembimbing I :

Dosen pembimbing II :

Dr. Ir. Rudy soenoko, M.Eng.Sc Nip. 131 411 121 Lilis Yuliati,St., MT. Nip. 132 258 191

SIMULASI POLA ALIRAN FLUIDA PADA NOSEL DENGAN VARIASI BENTUK KONTUR MENGGUNAKAN FLUENT 6.0

DISUSUN OLEH :

BASO RIZAL NIM. 0310623017-62

Skripsi ini telah diuji dan dinyatakan lulus Pada tanggal 22 februari 2007

DOSEN PENGUJI

<u>Skripsi I</u>

Ir. Achmad as'ad Sonief, MT. Nip. 131 756 003 Dr. Slamet Wahyudi, St., MT. Nip. 132 159 708

Skripsi II

Komprehensif

Ir. Winarno Yahdi Atmojo, MT. Nip. 131 280 655

Mengetahui, Ketua jurusan teknik mesin

Ir. Bambang indraydi, MT. Nip. 131 653 469

RINGKASAN

Baso Rizal, 2007. Universitas Brawijaya. Simulasi pola aliran fluida pada nosel dengan variasi bentuk kontur menggunakan FLUENT 6.0. Dosen Pembimbing : Dr. Ir. Rudy Soenoko, M.Eng. Sc. & Lilis Yuliati, ST, MT.

Penerapan nosel dibidang teknik diantaranya ialah *ejecktor* pada *jet pump* berfungsi untuk meningkatkan kecepatan aliran yang diikuti dengan penurunan tekanan. Pada sistem pembakaran nosel digunakan untuk menghasilkan fluida dalam bentuk *droplet* halus dan menyebar secara merata begitu juga pada *spray gun*, nosel berfungsi agar cat yang keluar menyebar merata mengenai permukaan yang akan di cat. Contoh aplikasi diatas menunjukkan bahwa untuk suatu pemakaian diperlukan nosel dengan desain tertentu, sehingga aliran fluida pada nosel sesuai dengan yang dibutuhkan. Oleh karena itu diperlukan penelitian mengenai pengaruh desain nosel terhadap pola aliran fluida.

Penelitian ini dimaksudkan untuk mempelajari pengaruh bentuk nosel terhadap pola aliran fluida pada nosel, yang dilakukan dengan metode numerik menggunakan program FLUENT 6.0. Variabel bebas dalam penelitian ini adalah bentuk kontur nosel, variabel terikatnya adalah kecepatan dan tekanan. Nosel yang digunakan dalam penelitian ini mempunyai diameter *inlet* 23 mm dan diameter *outlet* 5 mm. Pada penelitian ini disimulasikan pola aliran fluida pada nosel *conic* dan *countour* yang sebelumnya telah diteliti dengan metode eksperimen sebagai verifikasi. Selanjutnya disimulasikan pola aliran fluida pada nosel dengan berbagai bentuk kontur yaitu *Error functions*, hiperbola terbuka, Parabola terbuka, hiperbola tertutup, dan Parabola tertutup. Pola aliran fluida pada setiap bentuk nosel disimulasikan pada tekanan masuk sebesar 20 kPa sampai dengan 140 kPa.

Besarnya distribusi kecepatan aliran fluida masuk nosel antara eksperimen dan simulasi untuk tekanan masuk 20 kPa pada nosel *conic* sebesar 0,2472 m/s dan 0.2866 m/s, untuk nosel *contour* sebesar 0.2231 m/s dan 0.2584 m/s. Pada bagian outlet untuk hasil eskperimen dan simulasi pada nosel *conic* 5.2351 m/s dan 5.4456m/s, pada nosel countur 4.7219 m/s dan 4.9777 m/s. Pada tekanan masuk nosel 20 kPa, besar kecepatan pada inlet nosel dengan kontur berbentuk *Error functions*, hiperbola terbuka, Parabola terbuka, hiperbola tertutup, dan Parabola tertutup adalah 0,3164 m/s, 0,3029 m/s, 0.3078 m/s, 0.2313 m/s, 0.2200 m/s, dan besar kecepatan pada outletnya adalah 6.33 m/s, 6.06 m/s, 6.16 m/s, 5.56 m/s, 4.40 m/s. Besar kecepatan aliran fluida keluar nosel terbesar terjadi pada nosel dengan kontur berbentuk *Error functions* yaitu 6.33 m/s.

SIMULASI POLA ALIRAN FLUIDA PADA NOSEL DENGAN VARIASI BENTUK KONTUR MENGGUNAKAN FLUENT 6.0

SKRIPSI

KONSENTRASI KONVERSI ENERGI

Diajukan Untuk Memenuhi Sebagian Persyaratan Memperoleh Gelar Sarjana Teknik

DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN MESIN MALANG 2007

