DINAMIKA POPULASI IKAN LEMURU (Sardinella lemuru)
YANG TERTANGKAP DENGAN ALAT TANGKAP PURSE
SEINE DAN DI DARATKAN DI PELABUHAN PERIKANAN
NUSANTARA (PPN) PRIGI KABUPATEN TRENGGALEK
JAWA TIMUR

LAPORAN SKRIPSI
PEMANFAATAN SUMBERDAYA PERIKANAN
MANAJEMEN SUMBERDAYA PERAIRAN

Disusun Oleh
IKA SRI WARDHANI
NIM. 0210820031

FAKULTAS PERIKANAN
UNIVERSITAS BRAWIJAYA
MALANG
2007

Ringkasan

Ika Sri Wardhani. Skripsi tentang Dinamika Populasi Ikan Lemuru (*Sardinella lemuru*) Yang Tertangkap Dengan Menggunakan *Purse Seine* Dan Didaratkan Di Pelabuhan Perikanan Nusantara (PPN) Prigi Trenggalek, Jawa Timur (Di bawah bimbingan **Ir. Tri Djoko Lelono, M.Si** dan **Ir.Sukandar**)

Ikan lemuru pada tahun 2005 menempati peringkat pertama produksi ikan terbanyak di Pelabuhan Perikanan Nusantara (PPN) Prigi. Dinamika populasi meerupakan bagian dari biologi perikanan yang mempelajari perubahan yang terjadi dalam populasi seperti tentang mortalitas, rekruitmen, dan pertumbuhan (Lelono, 1997). Penelitian tentang dinamika populasi pada umunya bersifat kuantitatif sehingga ketepatan data yang digunakan untuk penelitian sangat berpengaruh dalam menghasilkan suatu kesimpulan. Sebagai misal data tentang produksi dan jumlah upaya penangkapan (effort) adalah sangat menetukan ketepatan dalam menduga ukuran populasi atau stok ikandan menganalisis potensi lestari suatu sumber daya ikan (Bintoro, 2005)

Adapun tujuan dari penelitian ini adalah: (1) Menduga parameter biologi ikan meliputi : nisbah kelamin, hubungan panjang berat, TKG, Lm dan Lc, (2) Menduga parameter pertumbuhan ikan lemuru, (3) Menduga laju mortalitas dari ikan lemuru, (4) Menduga tingkat ekploitasi dari ikan lemuru, (5) Menduga jumlah kohort dalam suatu daerah penangkapan, (5) Menduga rekruitmen dari ikan lemuru

Metode yang diguanakan dalam penelitian ini adalah metode deskriptif.. Tujuan utama kita dalam menggunakan metode ini adalah untuk menggambarkan sifat suatu keadaan yang sementara berjalan pada saat penelitian dilakukan, dan memeriksa sebabsebab dari suatu gejala tertentu (Travers(1978) dalam Sevilla et al (1993)). Jenis penelitan deskriptif yang digunakan adalah studi kasus. Sedangkan untuk analisa data menggunakan program Excel dan FiSAT II (FAO ICLARM STOCK ASSESSMENT TOOLS)

Adapun hasil dari penelitian ini yang dilakukan di Pelabuhan Perikanan Nusantara Prigi Trenggalek pada 25 Mei 2006-16 Agustus 2006 dengan pengambilan sample sebanyak 8 kali adalah :

- 1. Parameter biologi ikan lemuru (Sardinella lemuru)
 - Nisbah kelamin untuk data total penelitian menunjukkan tidak ada perbedaan yang nyata antara ikan jantan dan ikan betina (1;1,03). Namun untuk data tiap fishing ground ada daerah yang perbandingan kelamin jantan dan kelamin betina ada perbedaan nyata. Daerah-daerah tersebut adalah Pajer.
 - ➤ Secara keseluruhan perbandingan Tingkat Kematangan Gonad (TKG) ikan lemuru adalah 50,25% ikan belum matang, 38,25% ikan matang dan 11,5% tidak terdeteksi.Ikan yang tidak terdeteksi, diasumsikan ikan-ikan tersebut dalam keadaan rusak. Untuk ikan dengan presentase matang gonad terbesar ada pada bulan Mei yaitu 59,5 %.
 - Nilai b untuk data ikan sample secara keseluruhan yaitu 3,20. Hal itu menunjukkan bahwa ikan-ikan lemuru tersebut secara keseluruhan bersifat allometrik positif (b>3). Sedangkan untuk dilihat dari fishing groundnya, ada

- beberapa daerah yang bersifat allometrik negative (b<3). Fishing ground tersebut adalah Damas, G. Solimo, Karanggongso, Munjungan, Popoh dan Sine. Perbedaan nilai b ikan ini disebabkan ketersediaan makanan.
- > Secara keseluruhan, terdapat perbedaan perbandingan nilai Lc dan Lm. Pada penelitian ini nilai Lc<Lm. Nilai Lc adalah 15,69 cm, sedangkan nilai Lm 17,28 cm. Kondisi ini menunjukkan bahwa ikan lemuru yang tertangkap pada kondisi belum matang gonad
- 2. Dengan menggunakan metode bhattacarya untuk pendugaan kohort didapat pada masing-masing tanggal penangkapan hanya terdapat satu kohort saja
- 3. Parameter pertumbuhan
 - Dengan menggunakan program ELEFAN I dalam FiSAT didapat nilai k=0,81/year, nilai L∞=20.32cm dan nilai to=-0,22. Sedangkan dengan menggunakan persamaan pertumbuhan panjang Von Bertalanffy didapat didapat t pada saat Lmax adalah 2,81 cm.
- 4. Pada penelitian ini presentase rekruitmen tertinggi ada pada bulan Agustus sehingga bisa disimpulkan puncak rekruitmen ada pada bulan Agustus
- 5. Puncak rekruitmen, pada bulan Agustus, terjadi 3 bulan setelah masa pamijahan, yaitu pada bulan Mei
- 6. Nilai Z yang didapat 2,50. Sedangkan nilai M pada suhu 28^oC adalah 1,72 dan nilai F adalah 0,78
- 7. Laju ekploitasi (E) didapat 0,31. hal itu menunjukkan bahwa kondisi penangkapan dalam keadaan under fishing.

KATA PENGANTAR

Puji syukur saya panjatkan kehadirat Tuhan Yang maha Esa yang dengan rahmat dan hidayah-Nya penulisan laporan skripsi ini dapat terselesaikan. Laporan ini disusun sebagai salah satu syarat untuk memperoleh gelar sarjana perikanan di Fakultas Perikanan Universitas Brawijaya.

Atas terselesaikannya laporan skripsi ini penulis mengucapkan banyak terima kasih kepada

- Allah SWT atas rahmat dan hidayah-Nya yang telah diberikan kepada penulis sehingga penulis dapat menyelesaikan laporan ini
- Kedua orang tuaku (Alm.Bapak dan Ibu) dan adik-adiku atas kasih sayang dan dukungannya
- Bapak Ir.Tri Djoko Lelono,M.Si selaku Dosen Pembimbing I, dan Ir. Sukandar, selaku pembimbing II, atas segala petunjuk dan bimbingannya
- Seluruh staf Pelabuhan Perikanan Nusantara (PPN) Prigi dan nelayan *purse seine*Prigi, atas segala bantuan selama penelitian
- Teman-teman PSP 2002 dan semua pihak yang telah memberikan dorongan dan bantuan sehingga dapat tersusunya laporan skripsi ini

Walaupun jauh dari kesempurnaan, semoga laporan ini dapat bermanfaat dan memberikan informasi bagi semua pihak yang memerlukannya.Akhirnya saran dan kritik yang membangun dari pembaca sangat penulis harapkan demi kesempurnaan dari laporan ini

Malang, 1 Februari 2007

Penulis

AWIJAYA

DAFTAR ISI

	Halama
RINGKASAN	i
KATA PENGANTAR	iii
DAFTAR ISI	iv
DAFTAR GAMBAR	. vi
DAFTAR GAMBAR	. vii
DAFTAR LAMPIRAN	. viii
1.PENDAHULUAN 1.1.Latar Belakang. 1.2.Perumusan Masalah. 1.3.Tujuan. 1.4.Kegunaan.	. 1 . 3 . 5 . 5
II. TINJAUAN PUSTAKA 2.1.Deskripsi ikan lemuru. 2.2.Deskripsi alat tangkap. 2.3 Biologi ikan. 2.4. Parameter pertumbuhan. 2.5 Laju mortalitas. 2.5. Status Pemanfaatan. 2.6. Rekruitmen.	. 11 . 11 . 15 . 18 . 19
III. MATERI DAN METODE PENELITIAN 3.1 Materi penelitian. 3.2 Metode Penelitian. 3.3 Analisa data. 3.3.1 Tingkat Kematangan Gonad (TKG). 3.3.2 Nisbah kelamin. 3.3.3 Hubungan panjang-berat. 3.3.4 Panjang ikan pertama kali matang gonad. 3.3.5 Pendugaan pertama kali ikan tertangkap. 3.3.6 Pertumbuhanpanjang ikan. 3.3.7 Pendugaan kohort. 3.3.8 Pola rekruitmen. 3.3.9 Pendugaan laju kematian total (Z), alami (M), dan penangkapan (E)	22 25 25 26 27 29 30 31 32 33

IV. KONDISI UMUM LOKASI PENELITIAN	
4.1.Kondisi geografis dan topografis	36
	39
	39
	40
4.2.3.Produksi perikanan tangkap	42
V. HASIL DAN PEMBAHASAN	
5.1.Deskripsi ikan lemuru (<i>Sardinella spp</i>) hasil penelitian	45
5.2.Parameter biologi	46
5.2.1 Nisbah kelamin.	46
5.2.2 Tingkat Kematangan Gonad	51
5.2.2 Tingkat Kematangan Gonad	51
5.2.4 Panjang ikan pertama kali matang gonad	53
5.2.5 Panjang ikan pertama kali tertangkap	55
5.2.6 Tingkat ekploitasi berdasarkan aspek biologi	56
5.3 Pendugaan kohort	59
5.4 Parameter pertumbuhan	60
5.4 Parameter pertumbuhan. 5.3.1 Pendugaan k, L∞, t _{max} , to	60
5.5 Rekruitmen	63
5.6 Laju mortalitas	62
5.7 Tingkat Ekploitasi	64
VI. KESIMPULAN DAN SARAN	
6.1 Kesimpulan	65
6.2 Saran	66
DAFTAR PUSTAKA.	67
LAMPIRAN.	60
LAIVII IRAN	U

DAFTAR TABEL

Tabel	Halaman
1. Nama local ikan lemuru	7
2. Penelitian mengenai hubungan panjang berat di tempat yang berbeda	12
3. peneltian mengenai panjang ikan yang pertama kali tertangkap (Lc)	. 15
4. Parameter pertumbuhan ikan lemuru (sardinella lemuru)	17
5. Dugaan nilai laju mortalitas	
6. Tingkat Kematangan Gonad (TKG) ikan jantan dan ikan betina	
7. Perhitungan nisbah kelamin ikan lemuru (Sardinella lemuru)	27
8. Peritungan panjang ikan lemuru (Sardinella lemuru) pertama kali	
matang gonad9. Tabel perkembangan alat tangkap di PPN Prigi	29
10. Perkembangan armada penangkapan ikan di PPN Prigi	41
11. Data produksi perikanan tangkap di PPN Prigi tahun 1999-2005	
12. Nisbah kelamin ikan lemuru (<i>Sardinella spp</i>) untuk setiap <i>fishinground</i>	4/
13. Persamaan hubungan panjang berat ikan lemuru (<i>Sardinella spp</i>) pada masing-masing <i>fishing ground</i>	52
pada masing-masing jishing ground	32
14. Hasil analisa pendugaan panjang ikan lemuru (Sardinella spp) yang pertan	
kali matang gonad di setiap fishing ground, bulan penagkapan dan total	54
15. Hasil analisa pendugaan panjang ikan lemuru (Sardinella spp) yang	
pertama kali tertangkap di setiap fishing ground, bulan penangkapan dan te	otal 56
16. Perbandingan nilai Lc dab Lm antar fishing ground, bulan penangkapan	
dan total	57
17. Jumlah ikan yang tertangkap dengan ukuran diatas dan dibawah ukuran	57
ikan yang pertama kali matang gonad	
18. Perhitungan pemisahan kelompok umur dengan menggunakan <i>Bhattacarya</i>	
method untuk ikan lemuru untuk tiap bulan penangkapan	39

DAFTAR GAMBAR

Gamb	par	Halaman
1.	Gambar Sardinella lemuru	8
2.	Peta penyebaran ikan lemuru di Indonesia dan Australi	9
3.	Gambar gonad ikan	14
4.	Grafik produksi ikan lemuru selama kurun waktu	
	1999-2005(dalam ton)	45
5.	Produksi ikan lemuru selama tahun 2005	
6.	Grafik status kematangan gonad ikan lemuru berdasarkan	
	tanggal penangkapan	49
7.	Grafik status kematangan gonad ikan lemuru berdasarkan <i>fishing groud</i>	
	berdasarkan fishing groud.	50
	Grafik ikan lemuru yang <i>mature</i> dan <i>immature</i> yang	
	didapat selama penelitian	51
9.	Grafik probability of capture	
	. Grafik pola rekruitmen ikan lemuru selama penelitian	
	. Length converted curve untuk perhitungan nilai Z, M dan	

DAFTAR LAMPIRAN

a	mp	iran	Halaman
	1.	Gambar ikan lemuru (sardinella lemuru) dibandingkan	
		dengan gambar dari pustaka	69
	2.	Gambar Lokasi Penelitian	70
	3.	Peta lokasi penelitian	
	4.	Peta perkiraan.	
	5.	Gambar kapal purse seine	
	6.	Perhitungan nisbah kelamin ikan lemuru (Sardinella spp) berdasark	can
		fishing groundfishing ground	74
	7.	Perhitungan hubungan panjang-berat ikan lemuru (Sardinella lemur	ru)
		berdasarkan fishing ground,	
	8.	Grafik Hubungan panjang berat ikan lemuru (Sardinella lemuru)	
		berdasarkan fishing ground, bulan penangkapan dan secara total	81
	9.	Perhitungan Lm untuk tiap <i>fishing ground</i> , bulan penangkapan	
		dan secara total	84
	10.	Perhitungan Lc untuk tiap fishing ground, bulan penangkapan	
		dan secara total	92
	11.	. Grafik pemisahan kelompok umur menggunakan metode Bhattacar	•
		untuk tiap bulan penangkapan	
		. Produksi ikan lemuru di Pelabuhan Perikanan Nusantara Prigi	99
	13.	. Tingkat Kematangan Gonad (TKG) untuk tiap fishing ground	
		dan bulan penangkapan	
	14.	. Presentase rekriitmen untuk masing-masing bulan	101

I. PENDAHULUAN

1.1 Latar Belakang

Indonesia sebagai negara kepulauan terletak diantara dua samudra yakni Samudra yakni Samudra Hindia dan Samudra Pasifik, mempunyai kekayaan sumber daya hayati yang beraneka ragam. Sumber daya hayati akan selalu mengalami perubahan kondisi dari waktu ke waktu baik kualitas maupun kuantitasnya. Perubahan tersebut pada dasarnya tergantung pada besarnya populasi, pertumbuhan, penambahan karena perkembangbiakan, kematian alami dan karena faktor penangkapan. Kekayaan sumber daya hayati di laut pemanfaatannya belum sepenuhnya sesuai dengan daya dukungnya. (Anonymous, 1997)

Dinamika populasi meerupakan bagian dari biologi perikanan yang mempelajari perubahan yang terjadi dalam populasi seperti tentang mortalitas, rekruitmen, dan pertumbuhan (Lelono, 1997). Penelitian tentang dinamika populasi pada umunya bersifat kuantitatif sehingga ketepatan data yang digunakan untuk penelitian sangat berpengaruh dalam menghasilkan suatu kesimpulan. Sebagai misal data tentang produksi dan jumlah upaya penangkapan (*effort*) adalah sangat menetukan ketepatan dalam menduga ukuran populasi atau stok ikan dan menganalisis potensi lestari suatu sumberdaya ikan (Bintoro, 2005)

Produksi perikanan dalam periode 1999-2002 mengalami peningkatan rata-rata per tahun sebesar 4,97% yakni dari 4,09 juta ton pada tahun 2002. Kontribusi produksi nasional tersebut masih didominasi oleh usaha penangkapan utamanya penangkapan ikan di laut. Dalam periode yang sama produksi perikanan tangkap di laut tersebut meningkat sekitar 4,09% per tahun yakni dari 4,01 juta ton pada tahun 1999 menjadi

4,52 juta ton pada tahun 2002, dengan laju pertumbuhan produksi perikanan tangkap di laut rata-rata sebesar 4,09% per tahun, pada tahun 2002 telah dicapai tingkat pemanfaatan sebesar 78,33% per tahun dari jumlah tangkapan yang diperbolehkan (JTB) sebesar 5,634 juta ton. Hal ini berarti bahwa tingkat pemanfaatan masih berada dibawah 90% dari potensi lestarinya (Anonymous,2003).

Usaha penangkapan ikan yang dilakukan nelayan di Kabupaten Trenggalek khususnya didaerah Prigi berada pada wilayah penangkapan 500 yaitu perairan selatan Jawa Timur. Menurut penelitian, luas perairan Zona Ekonomi Eklusif (ZEE) Kabupaten Trenggalek seluas 35.558 km², dengan tingkat ekploitasi masih sekitar 9,8% dari potensi yang tersedia. Hal ini memacu pembangunan perikanan di Kabupaten Trenggalek (Anonymous, 2001)

Ada beberapa kebingungan mengenai identifikasi dari lemuru yang tertangkap di Indonesia, khususnya perikanan lemuru di Selat Bali. Sebagai contoh, beberapa referensi mengindikasikan bahwa sebagian besar species lemuru yang tertangkap di Selat Bali adalah *S. longiceps* (Ritterbush 1975;Pet *et al.*, 1997a, b) tapi refrensi yang lain meyebutkan bahwa *S. lemuru* adalah species utama (Venema 1996;merta 1995). Penelitian lanjutan di bagian lain di Indonesia menemukan bahwa species sardine sulit diidentifikasi menggunakan petunjuk FAO, jadi ada kemungkinan bahwa species clupeid di Indonesia tidak digambarkan secara formal (H. van Oostenbrugge, P.Kailola, pers.comm) (Anonymous, 2000b).

Untuk ikan lemuru yang didaratkan di Pelabuhan Perikanan Nusantara Prigi menurut Anonymous (2006) disebutkan merupakan species *Sardinella lemuru*. Hal ini diperkuat Anonymous (2006b) yang menyebutkan bahwa Sardinella lemuru ditemukan di pantai Selatan Jawa Timur dan Bali.

Di dalam Anonymous (2006), disebutkan bahwa ikan lemuru di Prigi produksinya mencapai 3.502 ton (24,42%) pada tahun 2006.. Produksi ikan lemuru tersebut menempati peringkat pertama terbanyak ikan yang tertangkap di perairan Trenggalek Kemudian diikuti dengan produksi tongkol como 2.602 ton (18,13%), laying deles 2.014 ton (14,04%), layur 1.297 ton (9,04%), ubur-ubur 1.245 ton (8,68%), tuna mata besar 1.179 ton (8,22%), cakalang 1.134 ton (7,91%) dan jenis lainnya 1.373 ton (9,57%). Sehingga bisa dikatakan bahwa ikan lemuru merupakan salah satu dari ikan ekonomis penting di Perairan Prigi Trenggalek.

Purse seine adalah salah salah satu alat tangkap jenis jaring kantong yang memilki nilai selektifitas kecil. Alat tangkap ini selain memilki *mesh size* kecil juga memiliki ukuran (panjang dan dalam) yang besar. Sehingga ikan yang tertangkap memiliki ukuran yang bervariasi, artinya ukuran ikan yang tertangkap mulai kecil hingga besar dalam suatu gerombolan ikan, termasuk ikan lemuru (*Sardinella spp*). Menurut Anonymous (2006) dikatakan bahwa alat tangkap *Purse seine* di Kabupaten Trenggalek jumlahnya mencapai 240 unit (13,66%). Dimana jumlah tersebut menempati jumlah alat tangkap terbanyak kedua setelah pancing ulur 1.298 unit (73,88%).

Perumusan Masalah

Proses-proses ekologis seperti pertumbuhan populasi dapat digambarkan sebagai lintasan atau trayektori suatu obyek yang berubah tempat atau berpindah status dari satu titik ke titik berikutnya. Proses perubahan status adalah proses dinamis, dan proses inilah yang menjadi pusat perhatian dalam kajian dinamika populasi. Proses dinamis bekerja pada setiap sistem hayati. Proses ini mengikuti kaidah-kaidah yang berkaitan dengan perubahan alamiah yang berlangsung menurut dimensi waktu. Semua sistem hayati

mengalami perubahan dari waktu ke waktu. Ada perubahan yang berlangsung relatif lambat, ada pula yang lebih cepat. Besaran perubahan juga bermacam-maca ada yang besar, kecil dan ada pula yang besaran perubahannya tidak nyata. Jumlah individu dalam suatu populasi (atau kerapatan populasi) yang terus menerus berubah sepanjang waktu merupakan salah satu fenomena proses dinamis. (Tarumingkeng, 1994)

Sumberdaya ikan sebagai salah satu bagian dari bagian dari ekologi juga mengalami suatu proses dinamis. Salah satu sifat sumber daya ikan adalah bisa menipis (depletable, exhaustible), tetapi juga bersifat mampu pulih atau memperbarui diri dan dapat diperbarui (renewable, replenishable). Sumber daya ikan bisa menipis, jika terjadi suatu penangkapan yang berlebihan ataupun ikan tersebut berada dalam lingkungan yang tidak sesuai dengan kondisi sumber daya ikan itu sendiri. Bersifat mampu pulih atau memperbarui diri jika sumber daya ikan tersebut berada dalam kondisi dapat melakukan pertumbuhan dan rekruitmen.. Dan dapat diperbarui dengan jalan menciptakan kondisi dimana ikan dapat melakukan kedua proses tersebut.

Ikan lemuru merupakan salah satu ikan pelagis yang bersifat menggerombol. Dalam suatu perairan terdapat beberapa *fishing ground*, karena ikan-ikan tersebut biasanya melakukan ruaya ke daerah-daerah dimana mereka menemukan kondisi yang diperlukan oleh fase tertentu dari daur hidupnya. Dalam gerombolan ikan yang melakukan ruaya bersama terdapat kecenderungan memiliki panjang yang relatif sama. Ukuran ikan yang tertangkap perlu mendapatkan perhatian serius karena dengan mengetahui komposisi ukuran ikan yang tertangkap tersebut, secara biologis sumberdaya dapat diketahui.

Tujuan

Tujuan dari penelitian ini antara lain:

- 1. Menduga parameter biologi ikan meliputi : nisbah kelamin, hubungan panjang berat, Tingkat kematangan Gonad (TKG), Panjang ikan pertama kali matang gonad (Lm) dan panjang ikan pertama kali tertangkap (Lc).
- 2. Menduga jumlah kohort dalam suatu daerah penangkapan.
- 3. Menduga parameter pertumbuhan ikan lemuru yang meliputi : panjang asimtotik ikan $(L\infty)$, koefisien pertumbuhan (k), dan umur pada saat panjang ikan 0 cm (to).
- 4. Menduga rekruitmen dari ikan lemuru.
- 5. Menduga laju mortalitas dari ikan lemuru yang meliputi : mortalitas total (Z), mortalitas alami (M) dan mortalitas penangkapan (F).
- 6. Menduga tingkat ekploitasi dari ikan lemuru.

Kegunaan

Hasil penelitian ini diharapkan dapat digunakan sebagai bahan informasi dan acuan bagi instansi pemerintah maupun masyarakat nelayan dalam pengelolaan <u>sumberdaya</u> ikan layang secara rasional sehingga keseimbangan populasi ikan disuatu daerah dapat terjaga dan pemanfaatan sumberdaya hayati laut khususnya ikan dapat mengikuti norma konservasi dengan mengusahakan hasil tangkapan yang optimal, terus-menerus dan lestari.

RSITAS MITAVA

II. TINJAUAN PUSTAKA

2.1 Deskripsi Ikan Lemuru

2. 1.1 Klasifikasi Ikan lemuru

Dalam Anonymous (2007) disebutkan klasifikasi taksonomi dari ikan lemuru

BRAWINAL

yaitu:

Kingdom : Animalia Linnaeus

Subkingdom: Bilateria

Branch : Deuterostomia

Infrakingdom: Chordonia

Phylum : Chordata

Subphylum: Vertebrata

Infraphylum: Gnathostomata auct

Superclass : Osteichthyes

Class : Actinopterygii

Order : Clupeiformes

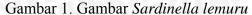
Suborder : Clupeoidei

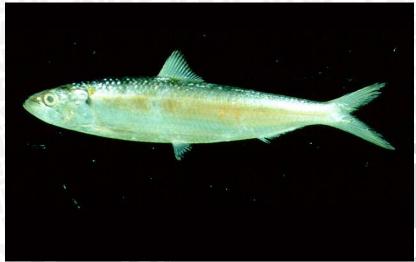
Family : Clupeidae

Genus : Sardinella

Species : Sardinella lemuru

2.1.2 Nama Lokal Dari Ikan Lemuru (Sardinella Spp)


Beberapa nama local dari ikan lemuru di beberapa daerah di Indonesia, menurut Soerjodonoto (1960) dalam Martinus *et al* (2004) , terdapat pada table 1


Tabel 1. Nama local dari ikan lemuru

Nama umum Nama Lokal		Tempat	Daerah
Lemuru	-Sempenit	Muncar	Jawa
OSILATA	-Protolan		
	-Lemuru kucing		160
WHITE !	Tembang mata	Jawa Barat	
	kucing	15 BD	
	.031''		
Tembang			Jawa Barat
moncong			
	<u> </u>		
Lemuru	Seroi		Madura
Lemuru	Kucingan		Bali
Tembang monco	14 P	Makasar	Sulawesi selatan
Bete lelaki	1. St. Cheel	Bugis	\mathcal{S}
Tulasoan	Wahai	Ambon	Seram
Mapikal	(人)	// Hitu	Malaka
	77	医伊朗克	
Sardinya		Haris	Saparua

2.1. 3 Morfologi Ikan Lemuru (Sardinella spp)

Terdapat bintik keperakan dibelakang tutup insang, yang diikuti *mid-lateral line* yang berwarna keperakan. Bintik hitam yang jelas di pinngir belakang dari tutup insang (tidak terdapat pigmen). Tubuhnya panjang, berbentuk *sub cylindrical*. Dapat dibedakan dari clupeid yang lain di timur Samudra India dan barat Pasific dari *pelvic fin ray* yang berjumlah 8. *Sardinella longiceps* dapat dibedakan dari *Sardinella lemuru* dan *Sardinella neglecta* dari kepalanya yang lebih panjang dan jumlah gill rakernya yang lebih sedikit. (Anonymous, 2006b)

2.1. 4 Pemijahan Ikan Lemuru (Sardinella spp)

Ritterbush (1975) *dalam* Poiter dan Nurhakim(1994) menghitung fekunditas ikan lemuru dari perairan selat Bali, yaitu berksar 60.000-70.000 butir pada kedua gonadnya. Selain itu dari hasil pengamatan diketahui bahwa nisbah jantan dan betina ikan lemuru di perairan selat Bali adalah 1:1. Menurut Soerjodinoto (1960) *dalam* Poiter dan Nurhakim (1994), nisbah jantan dan betina ikan lemuru tidak tetap, tetapi jantan biasanya mendominasi populasi.

Dwiponggo (1972) mengatakan bahwa lemuru memijah di bulan Juni-Juli, yang mana diperkuat oleh Ritterbush (1975) dan Burhanudin *et al*, (1984). Dari penelitian mengenai tingkat kematangan gonad, Merta (19(2a&b) menyimpulkan bahwa lemuru di selat bali memijah pada bulan Juli. Hal ini juga diperkuat oleh Dwiponggo (1972). Whitehead (1985) mengatakan bahwa lemuru memijah pada akhir musim hujan setiap tahunnya. (Poiter dan Nurhakim, 1994)

Menurut Soenarjodinoto (1960) dalam Poiter dan Nurhakim (1994), ikan lemuru cenderung datang ke pantai untuk bertelur karena salinitasnya rendah. Menurut nelayan,

BRAWIJAY/

makin banyak hujan yang jatuh ke pantai, adalah merupakan tanda makin dekatnya ikan lemuru, kemudian ikan lemuru akan menghilang karena hujan semakin sedikit yaitu pada bulan maret dan april

2.1.5 Distribusi Ikan Lemuru

Ikan lemuru ini banyak ditemukan di timur Samudra Hindia, Phuket Thailand, pantai utara jawa dan Bali dan bagian barat Australia. Samudra Pasifik bagian barat, Laut Jawa, Philipina, Hongkong, Kepulauan Taiwan, selatan Jepang. Sebelumnya ikan ini tidak bisa dibedakan daerah morfologinya dari *Sardinella aurita* yang terdapat di Samudra Atlantik.(Anonymous, 2006b)

Gambar 2. Peta penyebaran ikan lemuru di Indonesia dan Australia

Jenis ikan lemuru mempunyai daerah penyebaran hanya terbatas pada perairan daerah tropis sepanjang continental shelf. Faktor-faktor alami yang sangat mempengaruhi penyebaran ikan ini adalah suhu, salinitas, daerah *spawning ground*, serta letak lintang suatu tempat. Dilihat dari letak lintang, maka penyebarannya hanya antara 0°-40° LU dan 0°-40° Ls, sedangakan suhu yang disenangi antara 25,5°-30° C dengan salinitas 32,0-34,4 persen. (Damanhuri,1980)

2. 1. 6 Tingkah Laku Ikan Lemuru

Ikan lemuru biasanya membentuk gerombolan yang besar di perairan pantai utamaya di selat Bali. Banyak ditemukan di teluk dan laguna. Memakan fitoplankton dan zooplankton utamanya copepoda. (Anonymous, 2006b).

Ikan lemuru merupakan ikan pemakan plankton, sehingga dalam pergerakannya secara vertical maupun secara horizontal selalu mengikuti pergerakan dari plankton yang menjadi makanannya. Pergerakan vertical dari plankton pada pukul 06.00 pagi populasinya akan mendekati permukaan, tetapi pada pukul 12.00 siang populasinya makin jauh dari permukaan dan akan kembali lagi ke daera permukaan pada pukul 18.00 Oleh sebab itu populasi ikan lemuru jarang dijumpai di daerah permukaan pada siang hari karena ikan-ikan akan lebih cendeerung masuk ke dalam perairan tertentu. Ikan lemuru di dalam migrasi vertical hariannya di selat bali dapat mencapai kedalaman 50-60 m, dan pada malam hari ikan-ikan tersebut akan naik ke permukaan.

Salah satu sifat dari kebanyakan ikan sardine yang sangat menguntungkan dan banyak membantu dalam usaha penangkapannya adalah sifatnya yang suka menggerombol di sekitar sumber cahaya. Sifat ini terkenal dengan istilah *fototaksis* positif. Oleh sebab itu dalam usaha penangkapan lemuru selalu digunakannya juga alat Bantu lampu yang lazim digunakan di Selat Bali adalah jenis lampu tromking. (Damanhuri, 1980)

2.2 Deskripsi Alat Tangkap

Purse seine merupakan alat tangkap yang dibuat dari gabungan beberapa jaring yang dijahit menjadi satu, dimana bagian atas terapung dipermukaan dengan bantuan pelampung, bagian bawah diberi pemberat serta sejumlah cincin yang terikat tetap.

Kontruksi alat tangkap *purse seine* pada mulanya mempunyai kantong seperti jaring lingkar tradisional, tapi lama-kelamaan tanpa kantong lebih praktis. Secara sederhana terdiri dari jaring utama, jaring sayap, saring kantong, srampatan tali-temali (tali ris atas dan bawah, tali pemberat dan tali pelampung), pemberat serta pelampung.

Pengoperasian dilakukan pada malam hari dengan bantuan lampu petromaks. Hasil tangkapan berupa ikan layang (*Decapterus sp*), ikan kembung (*Rastrelliger spp*), lemuru (*Sardinella lemuru*), tembang (*Sardinella fimbriata*) dan lain-lain (Subani dan Barus, 1989).

2.3 Biologi Ikan

2.3.1 Hubungan Panjang Berat

Hubungan panjang berat merupakan factor penting dalam studi biologi ikan dan pengkajian stok ikan. Hubungan panjang berat tertama penting sebagai parameter persamaan hasil dan dalam mengestimasi ukuran stok. Hubungan ini membantu untuk mengestimasi berat dari ikan dari ukuran panjang yang ada da dapat digunakan untuk studi perkembangan gonad, etamorfosis, kematangan dan kondisi (Le Cren *dalam* Abdurahiman, 2004)

Hubungan panjang berat untuk mengestimasi dengan menggunakan persamaan $W = a L^b$

Dimana W = berat dalam gram, L=panjang total dalam cm, a adalah skala konstan dan b adalah parameter pertumbuhan *allometrik*. Transformasi alogaritmik unruk membuat hubungan tersebut linear:

$$Log W = log a + log b L$$

Untuk tiap species regresi tersebut digunakan untuk mengestimasi intercept (log a) dan koefisien regresi atau slope (b), dengan menggunakan Microsoft ExcelTM. Untuk species dengan data yang cukup, hubungan panjang berat digambarkan terpisah untuk masing-masing jenis kelamin.(Abdurahiman, 2004)

Pertambahan panjang ikan lebih cepat dari pertambahan berat apabila nilai (b < 3) atau pertambahan berat lebih besar dari pertambahan panjang (b > 3) disebut *allometrik*. Pertambahan panjang seimbang dengan pertambahan berat (b = 3) disebut *isometrik*.

Nilai koefisien hubungan panjang berat ikan akan mendekati 3, kisaran umumnya antara 2,4-3,5. Nilai diluar itu disebabkan kesalahan perhitungan atau bentuk tubuh ikan yang tidak biasa (Carlander *dalam* Effendie, 1997).

Berikut adlah hasil penelitian mengenai hubungan panjang berat yang dikutip dari Anonymous (2006b) dari berbagai tempat yang berbeda

Tabel 2. Penelitian mengenai hubungan panjang berat di tempat yang berbeda

Tempat	a	b b	Kelas panjang
Selat bali, 50m	0,0299	2,6710	
Palawan Honda Bay	0,0262	2,790	7,8-15 cm (SL)
Daya Bay, Guandong	0,0095	3,5999	4-13 cm (SL)
Pantai Selatan, Samudra Hindia	0,0012	3,7520	6-17 cm (SL)
Laut Visayan, Philipina	0,00857	-3	10,5-26.5 cm

2.3.2Tingkat Kematangan Gonad

Pengetahuan mengenai ukuran dimana ikan mencapai tingkat kematangan penting untuk mengestimasi ukuran dari stok ikan yang memijah. Hal tersebut penting untuk menjaganya tepat pada tingkat yang cukup untuk memastikan bahwa akan ada cukup ikan pada generasi selanjutnya.

BRAWIIAYA

Beberapa penelitin focus pada tingkat kematangan dari betina yang mana dianggap lebih penting untuk kepentingan manajemen stok. Tingkat perkembangan ovarium dapat diidentufikasi secara visual dengan ukuran, warna dan penampakan dari telur

Siklus pemijahan dari betina:

Tingkat 1 dan 2 : Ovarium kecil dan transparan

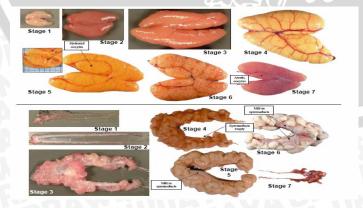
> Tingkat 3 dan 4 : Bagian dalam ovarium berubah dari kuning menjadi jingga.

Pembuluh darah mulai terbentuk

> Tingkat 5 dan 6 : Ovarium mengandung hydrated eggs. Pemijahan berlangsung

dalam kumpulan

➤ Tingkat 7 : Semua telur telah dikeluarkan. Ovarium berubah menjadi abu-


abu dan menjadi berkerut

Tingkat : Ovarium kembali pulih, mengecil dan hampir sama dengan

tingkat 2 (Anonymous, 2004)

Adapun gambar gonad ikan dalam berbagai tingkatannya digambarkan pada gambar 3 berikut.

Gambar 3. Gambar gonad ikan

Tomkiewicz et al (2002)

Kelihatannya sebagian besar dari makanan yang dimakan oleh ikan digunakan untuk perkembangan produk-produk kelamin, oleh karena itu makanan yang digunakan untuk pertumbuhan biasanya menjadi berkurang. Menurut effendie (1979) berat gonad semakin bertambah dan mencapai maksimum ketika ikan memijah, kemudian setelah memijah beratnya cenderung menurun. (Sumiono *dalam* Anonymous, 2001b)

2.3.3 Panjang ikan pertama kali matang gonad (Lm)

Menurut Merta (1992a&b) *dalam* Poiter dan Nurhakim (1994), panjang ikan pertama kali matang gonad berksisar 17,79-18,3 cm dengan rata-rata 18 cm. Sedangkan menurut Anonymous (2006b), panjang ikan lemuru betina pertama kali matang goand di perairan Selat Bali berkisar antara 13,5-15 cm (SL). Sedangkan untuk ikan jantan yaitu 14 cm (SL).

2.3.4. Panjang Ikan Pertama Kali Tertangkap (Lc)

Nilai panjang ikan pertama kali tertangkap bervariasi antara tempat yang berbeda dan waktu yang berbeda. Variasi tersebut bisa dilihat dalam berbagai penelitian yang tercatat dalam Anonymous (2006b) pada tabel 2 berikut.

Tabel 3. Penelitian mengenai panjang ikan pertama kali tetangkap (Lc)

Lc	Kelas	Tempat	Tahun	Referensi
(cm)	panjang			
	(cm)			
15,98	7,5-20,5	Selat Bali	1977	Dwiponggo, A.T Hariati, S.Baron,
				M.L.Palomaros, D.Pauly (1986)
15	10,5-21,5	Selat Bali	1979	Dwiponggo, A.T Hariati, S.Baron,
4771		AWINI	VITE	M.L.Palomaros, D.Pauly (1986)
16,75	12,5-20,5	Selat Bali	1980	Dwiponggo, A.T Hariati, S.Baron,
		ATTIVITY OF		M.L.Palomaros, D.Pauly (1986)
13,47	7,5-19,5	Selat Bali	1981	Dwiponggo, A.T Hariati, S.Baron,
	2 PUT	DAYKIN	Leaf	M.L.Palomaros, D.Pauly (1986)
16,8	11,5-19,5	Palawan Philipina	1965	Ingles,J dan D.Pauly (1984)

BRAWIJAY/

Parameter Pertumbuhan

Perubahan dalam ukuran (panjang, berat, dan jumlah) dalam waktu tertentu dan kemungkinan perubahan dalam jumlah dalam waktu tertentu dalam hal populasi, dikenal dengan istilah pertumbuhan. Secara umum, dapat diuraikan dengan tren kuantitatif dalam jumlah ukuran dari organisme ketika jumlah atau ukuran tersebut cenderung mengarah pada batas teratas sesuai dengan jenis organisme atau oleh kondisi internal atau eksternal dari hidupnya. Individu atau populasi dapat tumbuh membesar atau mengecil keduanya dalam pengertian penggabungan berat atau jumlah keduanya. (Wearterly, 1979)

Pengetahuan mengenai pertumbuhan ikan dan fenomena yang berhubungan dengan pertumbuhan seperti Tingkat Kematangan Gonad, migrasi, makanan dan kebiasaan makan ikan merupakan inti dari biologi perikanan. Pengetahuan tentang bagaimana pertumbuhan stok merupakan hal yang penting untuk penggunaan pengkajian stok kebanyakan., baik di daerah tropis atau di tempat lain, jika hal itu merupakan pertumbuhan dari ikan secara individual yang ada dari tahun ke tahun yang di tangkap dalam kegiatan penangkapan. Karena alasan kepraktisan, informasi yang tersedia mengenai pertumbuhan ikan dalam suatu stock biasanya disederhankan dan disajikan dalam suatu persamaan, sepertin Von Bertalanffy Growth Formula (VBGF), yang merupakn versi yang paling sederhana yang mempunyai bentuk

$$L_{t} = L_{\infty} \left(1 - e^{-k(t-t_0)} \right)$$

Dimana L_{∞} merupakan panjang rata-rata yang ikan dapat capai apabila mereka tumbuh sampai umur yang sangat tua (tak terbatas, kenyataannya)

k merupaka koefisian pertumbuhan

 t_0 merupakan umur dimana pada saat ikan tersebut mempunyai panjang nol apabila mereka tumbuh menurut persamaannya (t_0 biasanya mempunyai nilai negative) dan Lt merupakan panjang ikan saat umur t (Anonymous, 2006c).

Hasil penelitian mengenai parameter pertumbuhan ikan lemuru (Sardinella lemuru) di tempat yang berbeda terdapat pada table 4 berikut

Tabel 4. Parameter pertumbuhan ikan lemuru (*Sardinella lemuru*) di tempat yang berbeda

ocrocua				
Sumber	Tempat	Tipe panjang	L_{∞}	k
			(cm)	
Merta (1992a&b) dalam	Selat Bali		22,71	0,961
Poiter dan Nurhakim (1994),		\sim	4	
Budiharjo et al (1990) dalam	Selat Bali		21,4	1,37
Poiter dan Nurhakim (1994)	L I Jack	M		
Anonymous (2006b)	Selat Bali	TL	23,20	1,280
Anonymous (2006b)	Selat Bali	TL	23,80	0,505
Anonymous (2006b)	Selat Bali	TL	21,10	0,800
Anonymous (2006b)	Selatan L.Sulu	TL	19,4	1,000
	Philipina			
Anonymous (2006b)	Selat Bali	TL	22,30	0,850
Anonymous (2006b)	Palawan Philipina	TL	23,00	1,100
Anonymous (2006b)	Selat Bali	SL	18,10	0,951
Anonymous (2006b)	Ragay Gulf,	FL	15,80	1,000
	Philipina			
Anonymous (2006b)	Visayas	FL	15,80	1,100
Anonymous (2006b)	Tel.Manila	123	21	1,100
A2	Philipina			7//=
Gaughan et al (2000)	Indonesia		20,4	0,956

2.5 Laju mortalitas

Hasil pendugaan mengenai laju mortalitas baik mortalitas total (Z), mortalitas alami (M), dan mortalitas penangkapan (F) oleh beberapa peneliti ditunjukan pada table 5.

Tabel 5. Dugaan nilai laju mortalitas total (Z), mortalitas alami (M), dan mortalitas penangkapan (F)

	penangkapan (F)			
Sumber	Tempat	Z	M	F
Ritterbush (1975) dalam		1,4	0,8-0,9	0.5-0.6
Poiter dan Nurhakim (1994)	ンイト・	Bh.		
Sujastani dan Nurhakim dalam Poiter dan Nurhakim (1994)		2,74(1977)	1,42	1.32
Gumilar (1985) dalam		2,76(1978)	1,42	1,34
Poiter dan Nurhakim (1994)		1,43(1979)	1,42	0,01
	7	2,89(1980)	1,42	1,47
7		3,23	_1,22	2,01
Gaughan et al (2000)	Pantai Barat Australia	1,16	0,93	0,23
Dwiponggo <i>et al</i> (1986) <i>dalam</i> Anonymous (2006b)	Selat Bali (1977)	6,28	1,76	4,53
Dwiponggo <i>et al</i> (1986) <i>dalam</i> Anonymous (2006b)	Selat Bali (1979)	6,57	2,25	4,32
Dwiponggo <i>et al</i> (1986) <i>dalam</i> Anonymous (2006b)	Selat Bali (1980)	4,39	1,95	2,44
Dwiponggo et al (1986) dalam Anonymous (2006b)	Selat Bali (1981)	22,4	1,72	0,52
Ingles,J dan D.Pauly (1984) dalam Anonymous (2006b)	Palawan, Philipina	7,26	2,05	
Lavine Gonzales <i>et al</i> (1997) <i>dalam</i> Anonymous (2006b)	Sulu Selatan, Philipina	2,54	2,01	Â

2. 6 Status Pemanfaatan

Dwiponggo (1987), FAO (1994), dan Bintoro (1995) *dalam* Bintoro (2005) mengemukakan bahwa berdasarkan status pemanafaatan sumber daya perikanan dapat dibagi menjadi enam kelompok yaitu :

1. Unexploited

Stok sumberdaya ikan perikanan belum terekploitasi (masih perawan).

Aktivitas penangkapan sangat dianjurkan untuk mendapatkan keuntungan dari produksi

2. *Lightly exploited*

Stok sumber daya beru terekploitasi sedikit (<25% MSY). Peningkatan jumlah upaya penangkapan sangat dianjurkan karena tidak mengganggu kelestarian sumber daya. CPUE masih bisa meningkat

3. Moderately exploited

Stok sumber daya sudah terekploitasi setengah daro MSY. Peningkatan jumlah upaya penangkapan masih dianjurkan tanpa mengganggu kelestarian sumber daya. CPUE mungkin mulai menurun.

4. Fully exploited

Stok sumber daya sudah terekploitasi mendekati nilai MSY. Peningkatan jumlah upaya penangkapan sangat tidak dianjurkan walaupun hasil tangkapan masih bisa meningkat karena akan mengganggu kelestarian sumber daya. CPUE pasti turun.

5. Over exploited

Stok sumber daya sudah turun karena terekploitasi melebihi nilai MSY. Upaya penangkapan harus diturunkan karena terganggunya kelestarian sumber daya.

6. Depleted

Stok sumber daya dari tahun ke tahun jumlahnya menurun drastic. Upaya penangkapan sangat dianjurkan untuk dihentikan karena kelestarian sumber daya sudah mulai terancam

2. 7 Rekruitmen

Ada dua definisi dari recruitmen. Reckruitmen pertama adalah kelahiran baru juvenile ke dalam populasi dan yang kedua adalah ikan yang bergerak (tumbuh) dari bagian stok yang yang tidak dimanfaatkan (karena terlalu kecil atau tidak terjangkau karena alasan tertentu) menjadi stok yang dapat dimanfaatkan oleh alat tangkap komersial. Untuk definisi yang pertama bisa disebut sebagai *juvenile recruitment* sedangkan yang kedua disebut sebagai *commercial recruitment* (Anonymous)

Larva dari sejumlah spesies ikan komersial penting menyebar ke laut dari tempat pemijahan melewati *continental shelf* dan muara. Beberapa species melakukan migrasi tahunan untuk mencari tempat makan, memijah dan menghindari musim dingin. Perbedaan dalam rekruitmen stok tergantung dari ukuran dari stok induk dan beberapa faktor termasuk variabel lingkungan dan predasi, yang mana berpengaruh pada ketahanan telur dan larva. (Anonymous, 2000)

III. MATERI DAN METODE PENELITIAN

3.1 Materi Penelitian

Materi yang digunakan dalam penelitian ini adalah ikan lemuru (*Sardinella lemuru*) yang tertangkap dengan alat tangkap *purse seine*. Untuk pengambilan data biologi ikan digunakan ikan lemuru yang didaratkan ditempat pendaratan ikan Prigi, Kabupaten Trenggalek

3.1.1 Bahan dan Alat

Bahan dan alat yang digunakan dalam penelitian ini adalah :

- Ikan lemuru (Sardinella lemuru)
- Penggaris dengan ketelitian 1 mm
- Timbangan dengan ketelitian 0,5 gram
- Seperangkat alat bedah (*sectio*)
- Papan alas
- Kalkulator dan computer
- Alat tulis

3.1.2 Tempat dan waktu penelitian

Penelitian dilakukan di Pelabuhan Perikanan Nusantara (PPN) Prigi, Kecamatan Watulimo, Kabupaten Trenggalek. Penelitian dilakukan mulai 25 Januari 2006-16 Agustus 2006 dengan pengambilan sample sebanyak 8 kali

3.2 Metode Penelitian

Metode penelitian yang digunakan adalah metode deskriptif. Metode deskriptif dirancang untuk mengumpulkan informasi tentang keadaan-keadaan nyata sekarang (sementara berlangsung). Tujuan utama kita dalam menggunakan metode ini adalah untuk menggambarkan sifat suatu keadaan yang sementara berjalan pada saat penelitian dilakukan, dan memeriksa sebab-sebab dari suatu gejala tertentu (Travers(1978) *dalam* Sevilla *et al* (1993))

Adapun jenis penelitian deskriptif yang dilakukan pada penelitian ini yaitu studi kasus. Dimana dalam metode ini kita akan dilibatkan dalam penyelidikan yang lebih mendalam dan pemeriksaan secara menyeluruh terhadap tingkah laku seseorang individu. Kita akan memperhatikan juga bagaimana tingkah laku tersebut berubah ketika individu itu menyesuaikan diri dan memberi reaksi terhadap lingkungannya. Lagipula kita akan menemukan dan mengidentifikasi semua variable pennting yang mempunyai sumbangan terhadap riwayat atau pengembangan subjek. Ini berarti kita akan melakukan pengumpulan data yang meliputi pengalaman-pengalaman masa lampau dan keadaan lingungan subjek. Ini berarti pula bahwa data yang kita akan kumpulkan termasuk pengalaman lampau dan keadaan sekarang individu, termasuk lingkungannya. Kita akan berusaha mencari hubungan antar factor-faktor tersebut satu sama lain (Sevilla *et al* , 1993)

Data yang dikumpulkan terdiri dari data primer dan data sekunder. Data primer adalah data yang diperoleh secara langsung dari sumbernya, diamati dan dicatat untuk pertama kalinya. (Suryabrata, 1998). Data primer yang diambil pada penelitian ini adalah panjang ikan, berat ikan, nisbah kelamin, tingkat kematangan gonad, lingkat tubuh ikan, dan daerah penangkapan ikan.

Data sekunder adalah data yang terlebih dahulu dikumpulkan dan dilaporkan oleh orang luar diluar penulis sendiri, walaupun data yang dikumpulkan sesungguhnya asli. (Suryabrata, 1988). Dalam penelitian ini data sekunder yang diambil adalah data hasil tangkapan yang diperoleh dari data yang dimiliki Pelabuhan Nusantara Prigi ataupun data dari statistik perikanan tangkap Kabupaten Trenggalek yang nantinya digunakan sebagai data penunjang.

AS BRAW

3.2.1 Metode Pengambilan Sampel

Pengambilan ikan lemuru contoh dari hasil tangkapan di Prigi dilakukan terhadap ikan lemuru (*Sardinella lemuru*) yang tertangkap dengan alat tangkap *purse seine*, dan didaratkan didesa desa Prigi, Kecamatan Watulimo, Kabupaten Trenggalek. Sampel diambil selama bulan Mei, Juni, Juli, Agustus 2006 selama 8 kali, diambil 2-3 kali sebulan tergantung ada tidaknya ikan lemuru di PPN Prigi. Sampling biologi dilakukan dengan melihat data ukuran individu dan Tingkat Kematangan Gonad (TKG). Pengkajian stok di perairan tropis biasanya menggunakan metode-metode berbasis ukuran individu (panjang ikan). Data panjang ikan dapat dikumpulkan dengan biaya relative murah dan dalam jumlah yang cukup banyak. Menurut (Spare dan Vernema, 1999) terdapat hubungan antara panjang ke frekuensi umur.

3. 2. 2 Prosedur penelitian

Prosedur dalam penelitian ini adalah sebagai berikut :

a. Pencucian ikan

Pencucian ikan lemuru (*Sardinella lemuru*) dalam keadaan segar yang diperoleh dari hasil tangkapan nelayan. Pencucian dilakukan agar ikan bersih dari sisa kotoran dan sebelum melakukan pengukuran.

b. Pengukuran panjang total ikan (*Total Length/*LT)

Setelah ikan dibersihkan, kemudian dilakukan pengukuran panjang total ikan (LT) dalam satuan cm. Panjang ikan diukur dari bagian terdepan (*teranterior*) kepala sampai dengan bagian terbelakang (*terposterior*) sirip ikan.

c. Pengukuran panjang lingkar tubuh ikan (L_t)

Pengukuran panjang lingkar tubuh ikan dilakukan dengan cara melingkarkan sekali benang pada bagian tubuh yang terlebar. Kemudian benang tersebut diukur panjangnya dengan penggaris dalah satuan cm.

d. Penimbangan berat tubuh ikan (W)

Penimbangan dilakukan dengan cara ikan diletakkan diatas timbangan yang skalanya dibuat menjadi 0 (*zero*) terlebih dahulu dengan maksud agar tidak terjadi bias. Setelah itu berat ikan dapat diketahiu dengan membaca skala yang terlihat pada timbangan dalam satuan gram (gr).

e. Pembedahan (Sectio) ikan

Pembedahan dilakukan untuk melihat Janis kelamin (sex), TKG dan maturity-nya, dengan cara menggunting bagian anus (anal) kearah punggung(dorsal). Sisi lain menggunting bagian anal kearah perut (ventral) hingga operculum, setelah itu dilanjutkan kearah dorsal.

f. Penentuan jenis kelamin ikan (sex)

Penentuan jenis kelamin dilakukan dengan mengamati warna sel kelamin (gonad). Apabila gonad ikan berwarna putih, maka berarti testis (jantan) dan gonad berwarna orange atau merah kekuningan maka berarti ovarium (betina).

g. Penentuan TKG dan manurity

Penentuan tingkat kematangan gonad dilakukan berdasarkan klasifikasi TKG seperti yang tercantum pada Tabel 1.

h. Pencatatan dan tabulasi data

Data biologi yang diambil adalah meliputi TL (panjang total), W (berat), sex, TKG dan *maturity*. Untuk memudahkan dalam menganalisa maka tabulasi data biologi dipisahkan menurut waktu pengambilan sampel dan daerah penangkapan (*fishing ground*)

3.3 Analisa Data

Data biologi dianalisa dengan menggunakan program excel dan FiSAT, untuk menduga biologi ikan lemuru (*Sardinella lemuru*) yang terdiri dari nisbah kelamin, hubungan panjang berat, analisa TKG, panjang ikan pertama kali matang gonad dan panjang ikan pertama kali tertangkap

3.3.1 Tingkat Kematangan Gonad (TKG)

Klasifikasi Tingkat Kematangan Gonad (TKG) menurut Holden dan Raitt (1974) dalam Anonymous (2001b)

Tabel 6. Tingkat Kematangan Gonad (TKG) ikan jantan dan betina

Tingkat	Keadaan	Keterangan		
Kematangan				
I	Immature	Ovari dan testes kira-kira 1/3 panjang rongga badan.		
+11113134		Ovari berwarna kemrah-merahan, bening. Testes		
		keputih-putihan. Telur tidak terlihat dengan mata		
		telanjang		
II	Maturing	Ovari dan testes kira-kira ½ panjang rongga badan,		
	virgin	bening/jernih. Testes keputih-putihan, kurang lebih		
		assimetris. Telur tidak terlihat dengan mata telanjang.		
III Ripening Ovari dan testes kira-kira 2/3 panjang rongga b				
		Ovari berwarna kuning kemerah-merahan, kelihatan		
		butiran. Testes keputih-putihan sampai krem. Tidak		
	<u></u>	ada telur yang tembus cahaya atau jernih		
IV	Ripe	Ovari dan testes 2/3 sampai memenuhi rongga badan.		
	^ 7	Ovari berwarna merah jampu/oranye dengan		
		pembuluh darah yang terlihat jelas di permukaannya.		
		Terlihat telur yang masak dan tembus cahaya. Testes		
	keputih-putihan/krem dan lembut			
V Spent Ovari dan testes mengerut sampai menjadi ½ pa				
	_	rongga badan. Dinding-dinding kendur. Ovari dapat		
		mengandung sisa-sisa telur, gelap atau jernih		

3.3.2 Nisbah Kelamin

Analisa perbandingan jenis kelamin bertujuan untuk mengetahui tingkat perbandingan jumlah total ikan jantan dengan total ikan betina yang terdapat dalam suatu populasi dari data sample yang telah diambil. Analisa perbandingan jenis kelamin ini dilakukan dengan menggunakan metode χ^2 atau *Chi-square* dengan selang kepercayaan 95%.

$$\chi^2 = \sum \frac{\left(f_0 - f_h\right)}{f_h}$$

Keterangan : f_0 : prosentase hasil pengamatan

 f_h : prosentase yang diharapkan

Tabel 7. Perhitungan nisbah kelamin ikan lemuru (Sardinella lemuru)

Jenis kelamin	Jumlah (ekor)	f_0	f_h	$f_0 - f_h$	$(f_0 - f_h)$	$\frac{\left(f_0 - f_h\right)^2}{f_h}$
Jantan Betina						HILL
Jumlah					16	X^2 hit =

- H_1 diterima : jika nilai $\chi^2 < \chi$ table 95% maka perbandingan antara jumlah total ikan layang jantan dan jumlah total layang betina tidak berbeda nyata.
- H_0 diterima : jika nilai $\chi^2 > \chi$ tabel 95% maka perbandingan antara jumlah total ikan layang jantan dan jumlah total ikan layang betina berbeda nyata.

Penentuan jenis kelamin pada ikan dapat dilakukan dengan mengamati bentuk dan warna gonad. Jika gonad berbentuk memanjang dan berwarnanya putih itu adalah testis dan ikan tersebut berjenis kelamin jantan. Sebaliknya jika gonad berbentuk oval dan bewarna orange atau merah kekuningan maka itu adalah ovarium dan ikan tersebut berjenis kelamin betina (Portier and Nurhakim, 1994).

3.3.3 Hubungan Panjang-Berat

Hubungan panjang dan berat ikan lemuru (*Sardinella lemuru*) diperoleh dari data biologi yang terdiri dari panjang total/ TL (cm) dan berat tubuh/ W (g). Selanjutnya untuk analisa data digunakan formula yang dikemukakan oleh Hile (1936) *dalam* Effendie (1979) sebagai berikut :

$$W = a L^b$$

Dimana:

W

: berat (g)

a dan b

: konstanta

L

: panjang (cm)

Nilai a dan b didapat dari analisis regresi. Selanjutnya formula tersebut ditranformasikan kedalam bentuk linier:

$$Ln W = ln a + b ln L$$

Intersep

: ln a

$$Y = a + bx$$

Slope

: b

Menurut Ricker dalam Effendie (1979), kemungkinan-kemungkinan untuk mendapatkan nilai b:

- b < 3, berarti penambahan panjang ikan lebih cepat dibanding pertambahan berat. Pertumbuhan yang demikian disebut pertumbuhan allometrik negatif.
- b > 3, berarti pertambahan panjang tidak secepat pertambahan berat. Pertumbuhan yang demikian disebut pertumbuhan allometrik positif.
- b = 3, berarti penambahan panjang seimbang dengan pertumbuhan berat. Pertumbuhan yang demikian disebut pertumbuhan isometrik.

Untuk mengetahui apakah ada perbedaan dari nilai b yang didapat maka diuji dengan uji t sebagai berikut:

$$t_{hit} = \frac{3 - b}{SD_b / \sqrt{n}}$$

Dimana : SD_b = standar deviasi dari nilai b

n = jumlah ikan sample

$$t_{tab} = 0.05; (n-1)$$

$$H_0: b = 3$$
 $H_1: b \neq 3$

$$H_1: b \neq 3$$

Jika $t_{hit} < t_{tab}$ berarti H_0 diterima dan H_1 ditolak, jika $t_{hit} > t_{tab}$ maka H_1 diterima dan tolah H_0 .

3.3.4 Panjang Ikan Pertama Kali Matang Gonad

Ukuran pertama kali matang gonad disebut length maturity (L_m) dapat dihitung a: $Q = \frac{1}{1 + e^{-a(L - L_{50})}}$ dengan formula:

$$Q = \frac{1}{1 + e^{-a(L - L_{50})}}$$

Dimana:

= Fraksi dewasa kelamin

L = Panjang ikan

 L_{50} = Titik ambang dewasa kelamin

Selanjutnya untuk menduga besarnya nilai L₅₀ maka dari persamaan tersebut diatas dirubah dalam bentuk linier:

$$\ln\left(\frac{Q}{1-Q}\right) = a(L-L_{50})$$

$$\ln\left(\frac{Q}{1-Q}\right) = -a * L_{50} + a * L$$

Dengan regresi linier akan didapat:

Intersep = -a x L_{50}

Slope

$$L_{50} = \frac{a \times L_{50}}{a}$$

(Wiadnya, 1992)

Tabel 8. Perhitungan panjang ikan lemuru (Sardinella lemuru) pertama kali matang gonad

Interval L	Nilai tengah	Mature	ImmatureTotal	$Q = \frac{Mature}{Total}$	$1-Q$ $\frac{Q}{1-Q}$	$ \ln \left(\frac{Q}{1-Q} \right) $
DA			HI II	TUE	13.45	TASE
	jumlah	ANTE			TVI	DSILL.

3.3.5 Pendugaan pertama kali ikan tertangkap (Lc)

Menduga nilai dari L_c dapat dilihat pada data frekuensi panjang yaitu hasil perhitungan niliai tengah modus tertinggi dari frekuensi nilai tengah kelas. Pada ikan layang dapat dianalisa dengan sebaran frekuensi panjang dengan pendekatan sebaran normal, yaitu dengan persamaan :

$$Fc(L) = \frac{n \times dl}{s\sqrt{2\pi}} \times e^{\left[\frac{(L-\overline{L})^2}{2x^2}\right]}$$

Dimana:

Fc(L) : Frekuensi ikan yang termasuk dalam klas panjang;

dl : Interval setiap klas panjang;

 π : 3,14

e : 2,72

n : jumlah contoh dalam sampling tersebut;

L : Nilai tengah klas panjang (cm);

 \overline{L} : Rata-rata panjang satu cohort ikan;

s : Standar deviasi terhadap rata-rata panjang

Untuk menduga rata-rata standard deviasi dari panjang ikan dalam setiap sample, persamaan diatas ditranfer kedalam bentuk linier, yaitu :

$$\Delta \ln Fc(z) = a - b \times \left(L + \left(\frac{dl}{2}\right)\right)$$

Dimana:

 $\Delta \ln Fc(z)$: Selisih antara dua klas panjang dalam ln;

z : Simbol untuk perbedaan dua klas panjang;

 $\left(L + \left(\frac{dl}{2}\right)\right)$: Batas atas dari masing-masing klas panjang;

a, b : Konstanta.

Nilai rata-rata dan standar deviasi dari panjang setiap cohort diduga dengan :

$$\overline{L} = \frac{a}{b}$$
 dan,

$$s^2 = -\frac{dl}{b}$$

3.3.6 Pertumbuhan Panjang Ikan

Pertumbuhan panjang ikan prinsipnya akan mengikuti model pertumbuhan von

Bertalanffy, yaitu:

$$L_t = L_{\infty} \left(1 - e^{-k(t - t_0)} \right)$$

Dimana:

L_t: Panjang ikan (cm) pada saat umut t (tahun)

 L_{∞} : Panjang ikan maksimum yang mungkin tercapai (cm)

e : bilangan natural (2,72)

k : Konstanta kecepatan pertumbuhan panjang (../tahun)

t : umur ikan dalam tahun

t₀ : umur ikan hipotesis pada saat panjangnya

Dari data sebaran frekuensi panjang yang didapat dari sampling, estimasi pertumbuhan dikerjakan dengan program komputer ELEFAN I *dalam* FISAT. Paket ini berdasarkan pada pemisahan kelas panjang setiap hasil sampling.

Untuk menghitung t₀ digunakan empiris Pauly (1983) sebagai berikut

SITAS BRAW

$$Log_{10}(-t_0) = -0.3922-0.2752 log_{10} L_{\infty} - log_{10} k$$

(Anonymous, 2006c)

3. 3. 7 Pendugaan Kohort

Kohort dianalisa dengan menggunakan metode Bhattacharya yang terdapat dalam program FiSAT dimana menebutkan bahwa jika nilai separation index (SI) kelompok umur berikutnya lebih besar atau sama dengan 2 berarti gerombolan tersebut terdiri dari lebih dari satu kelompok umur. Pendekatan dilakukan dengan menggunakan informasi panjang atau berat dengan ukuran kelas yang konstan. Identifikasi secara visual dari frekuensi yang dipeerkirakan berasal dari kelompok umur yang sama, yaitu dengan menggunakan grafik. Persamaan yang digunakan yaitu

$$Ln(N_{i+1}) - ln(N_i) = a_j + b_j$$
. Li

Dimana

Ni dan N _{i+1} merupakan frekuensi berturut-turut dari komponen yang sama dari satu kelompok ikan yang mewakili kelompok umur (j) dan dimana Li merupakan batas kelas yang paing bawah dari Ni

Dari hal tersebut, rata-rata dari distribusi normal adalah

$$Lj = -aj/bj$$

Dimana standar deviasinya

$$\sigma j = (-\Delta L / bj)$$

Dimana ΔL merupakan ukuran kelas yang konstan

Juga, separation index (SI) juga dihitung

$$SI = \Delta Li / \Delta \sigma i$$

Dimana Δ Lj merupakan perbedaan dari rata-rata secara berturut-turut dan Δ σ j merupakan perbedaan diantara standard deviasi.

Pemisahan dari frekoensi panjang menjadi komponen-komponennya merupakan proses pengulangan pada setiap komponen yang diidentifikasi yang dikurangi dari sisa sample dengan menggunakan fungsi Gaussian (Gayanillo *et al*, 2005)

3.3.8 Pola Rekruitmen

Pola rekruitmen dinalisa dengan menggunakan pola rekruitmen yang terdapat dalam program FiSAT . Pendekatan dilakukan dengan menggunakan informasi parameter pertumbuhan, L_{∞} , k, (C, WP) dan t₀ bila tersedia. Frekuensi dirubah menjadi poros waktu dari sampel yang diambila secara berkala (satu kesatuan, tapi stukrur sample yang baik juga mungkin digunakan). Dua pilihan yang disediakan; pilihan pertama, menggunakan data frekuensi panjang dan pilihan kedua menggunakan restructured data. (Gayanilo $et\ al$, 2005)

3.3.9 Pendugaan Laju Kematian Total (Z), Alami (M) dan Penangkapan (F)

Mortalitas total (Z) dianalisa dengan pendugaan kurva penangkapan yang dikonversikan ke panjang maelalui program FISAT. Pendekatan dilakukan dengan

menggunakan informasi parameter pertumbuhan, L_{∞} , k dengan persamaan Beverton $dan\ Holt$ sebagai berikut :

$$Z = \frac{k(L_{\infty} - \overline{L})}{\overline{L} - Lc}$$

Dimana:

 L_{∞} dan k : Parameter pertumbuhan

 \overline{L} : Rata-rata panjang ikan yang tertangkap

Lc : Panjang pada saat ikan pertama kali tertangkap

Konstanta mortalitas alami (M) diestimasi dengan menggunakan informasi pertumbuhan dari pertumbuhan rata-rata suhu tahunan (Pauly, 1980 *dalam* Sparre, 1999) sebagai berikut :

$$M = 0.8*exp[-0.0152 - 0.279 ln L_{\infty} + 0.6543 ln k + 0.4634 ln T]$$

Dimana:

M : Laju kematian eksponensial kematian alami

 L_{∞} : Panjang asimtot ikan dalam cm

k : Koefisien pertumbuhan

T : Temperatur perairan rata-rata tahunan dimana stok ikan itu berada (°C)

Konstanta mortalitas penangkapan (F) dihitung dengan cara:

$$Z = M + F$$

Dimana:

Z : Mortalitas total;

M: Mortalitas alami,;

$$F = Z - M$$

3.3.10 Laju Ekploitasi (E)

Dugaan laju eksploitasi (E) menggunakan masukan dari nilai F dan Z. Nilai E ini i dapat didapatkan dari pembagian antara F dan Z, sehingga dapat ditulis :

$$E = \frac{F}{Z}$$

Jika: E > 0,5 = over fishing

$$E < 0.5 = under fishing$$

$$E = 0.5 = MSY$$

IV. KONDISI UMUM LOKASI PENELITIAN

4.1 Kondisi Geografis dan Topografis

Lokasi penelitian ini berada di Perairan Prigi Jawa Timur yang merupakan bagian dari Perairan Samudera Hindia, dengan Tempat Pendaratan Ikan (TPI) di Pelabuhan Perikanan Nusantara (PPN) Prigi Desa Tasikmadu Kecamatan Watulimo Kabupaten Trenggalek Propinsi Jawa Timur. Secara geografis Desa Tasikmadu terletak pada koordinat 111°43'27" – 111°46'03" BT dan 08°20'27" – 08°23'23" LS berupa dataran rendah dengan ketinggian 6 m dari permukaan laut (dpl), (dalam laporan lain rata-rata 3 m (dpl)) (Anonymous, 2003).

Desa Tasikmadu terletak kurang lebih 42 km arah selatan Kabupaten Trenggalek dengan batas-batas wilayah sebagai berikut:

• Sebelah Utara : Kecamatan Besuki Kabupaten Tulungagung

• Sebelah Selatan : Samudera Hindia

• Sebelah Barat : Desa Prigi Kecamatan Watulimo

• Sebelah Timur : Kecamatan Besuki dan Samudera Hindia

Secara administrasi Desa Tasikmadu terdiri dari tiga dusun, yaitu: Dusun Ketawang, Dusun Gares, dan Dusun Karanggongso. Luas wilayah desa mencapai 2.845,743 Ha dengan peruntukan paling besar pada tanah hutan dan pekarangan.

Topografi Desa Tasikmadu merupakan perpanjangan lereng pegunungan kapur selatan dengan rata-rata ketinggian tempat 3 meter diatas permukaan laut (dpl). Struktur tanahnya sangat bagus untuk tanaman jati, selain itu juga digunakan sebagai area persawahan yang banyak terdapat di bagian utara Desa Tasikmadu. Tetapi karena

tanaman hutan sudah mulai habis ditebangi penduduk, maka kini tanah hutan tersebut mulai diganti dengan tanaman produktif seperti cengkeh, pisang, nangka dan lain-lain.

4.1.1 Keadaan Iklim dan Musim Ikan

Sebagaimana iklim di wilayah Indonesia pada umumnya, iklim di wilayah Kecamatan Watulimo adalah iklim tropis dengan dua musim, yaitu musim kemarau dan musim penghujan. Biasanya musim kemarau terjadi pada bulan April sampai bulan Oktober, sedangkan musim penghujan terjadi pada bulan Oktober sampai April. Akan tetapi pada saat penelitian ini dilakukan ternyata beberapa kali terjadi hujan yang cukup lebat. Hal ini dikarenakan musim yang tidak lagi menentu. Curah hujan rata-rata pertahun di wilayah Watulimo sebesar 16 mm dengan hari hujan rata-rata 141 hari. Suhu perairan Watulimo rata-rata 30,4°C, kecepatan arus rata-rata sebesar 0,1 m/dt, dan kecerahan perairan rata-rata 20,3 m.

Menurut Anonymous (2006), musim ikan di Pelabuhan Perikanan Nusantara prigi pada tahun 2005 terjadi pada bulan Agustus sampai Oktober dengan puncak musim pada bulan september. Pada bulan-bulan tersebut terjadi kenaikan produksi dibandingkan dengan bulan-bulan lainnya, hal ini dipengaruhi oleh musim, angin dan arus laut.

4.1.2 Pelabuhan Perikanan Nusantara (PPN) Prigi

Pelabuhan Perikanan Nusantara (PPN) Prigi merupakan Unit Pelaksana Teknis (UPT) Departemen Kelautan dan Perikanan yang bertanggungjawab kepada Direktorat Jenderal Perikanan Tangkap. PPN Prigi mempunyai tugas melaksanakan pengelolaan, pemeliharaan, dan pengembangan sarana pelabuhan serta tata operasi pelayanan kepada nelayan, kapal perikanan dan pengusaha perikanan.

Untuk membantu kelancaran tugas tersebut, PPN Prigi memiliki fasilitas-fasilitas pelabuhan yang terdiri dari:

1. Fasilitias Pokok

Fasilitas pokok merupakan fasilitas dasar yang harus ada pada setiap pelabuhan guna menjamin kelancaran kegiatan pelabuhan tersebut. Fasilitas ini berfungsi untuk menjamin keamanan dan kelancaran kapal baik sewaktu keluar masuk pelabuhan maupun saat bongkar muat dan berlabuh. Adapun fasilitas pokok yang dimiliki PPN Prigi adalah : tanah, dermaga, kolam pelabuhan, jalan komplek, *break water* dan *revetment*.

2. Fasilitas Fungsional

Fasilitas fungsional merupakan fasilitas tambahan/penunjang yang harus dimiliki oleh setiap pelabuhan guna memperlancar kegiatan yang ada di pelabuhan. Fasilitas ini secara langsung dimanfaatkan untuk keperluan sendiri maupun diusahakan lebih lanjut oleh BUMN, BUMD, Badan Hukum Indonesia dan perorangan. Adapun fasilitas fungsional yag dimiliki PPN Prigi antara lain adalah : kantor, tempat pelelangan ikan (TPI), *Cool Storage*, pabrik tepung (sedang dibangun), gudang es, instalasi BBM, instalasi air tawar, bengkel, jaringan listrik PLN, pos keamanan, sarana komunikasi dan lampu suar.

3. Fasilitas Penunjang

Fasilitas penunjang merupakan sarana pelengkap yang mendukung keberadaan dan penggunaan fasilitas pokok dan fungsional. Fasilitas ini secara tidak langsung dapat memberikan kemudahan bagi para pengguna pelabuhan terutama masyarakat umum. Adapun fasilitas penunjang yang dimiliki oleh PPN Prigi adalah: rumah dinas dan

mess operator, balai pertemuan nelayan, kamar mandi (MCK) umum, kios bahan dan alat penangkapan (BAP) dan kendaraan dinas.

4.2 Keadaan Umum Perikanan

4.2.1 Kegiatan Usaha Perikanan

Desa Tasikmadu adalah salah satu desa pesisir pantai selatan jawa timur yang memiliki potensi yang sangat besar dibidang perikanan. Usaha dibidang perikanan yang berkembang paling pesat adalah usaha dibidang penangkapan dan perdagangan. Tetapi, seiring dengan kemajuannya, kini telah banyak dibangun pabrik-pabrik pengolah hasil perikanan seperti pabrik tepung ikan, *cool storage*, dan lain lain.

Pemasaran hasil perikanan dari PPN Prigi berupa produk ikan segar dan ikan olahan. Daerah tujuan distribusi meliputi wilayah lokal yaitu Trenggalek dan distribusi antar kota antara lain meliputi Tulungagung, Kediri, Surabaya, Malang, Madiun dan Bali. Produksi perikanan dari PPN Prigi yang didistribusikan dalam bentuk ikan segar sebesar 4.594 ton (32,02%) dan ikan olahan sebesar 9.752 ton (67,98%) yang meliputi ikan pindang 4.575 ton (46,91%), ikan asin 2.806 ton (28,75), tepung ikan 1.984 ton (20,35%) dan ikan asap 387 ton (3,97%). (Anonymous, 2006)

Penyerapan tenaga kerja yang melakukan kegiatan perikanan di PPN prigi paa tahun 2005 adalah sebesar 8.538 orang, yang terdiri dari 6.235 orang nelayan (73,03%). Pedagang/pengolah ikan 975 orang (11,42%) dan tenaga lainnya 1.328 orang (15,55%). Dibanding tahun 2004 yaitu sebesar 7.544 orang, maka pada tahun 2005 di lingkungan PPN Prigi terjadi peningkatan penyerapan tenga kerja sebesar 994 orang atau 13,18%. Jumlah nelayan pada tahun 2005 mengalami peningkatan sebanyak 709 orang (12,83%) dari 5.526 orang di tahun 2004. (Anonymous, 2006)

BRAWIJAY/

4.2.2 Perkembangan Alat Tangkap dan Armada Penangkapan

Letak yang setrategis baik ditinjau dari ketersediaan sumberdaya alam maupun jalur transportasi dan pemasaran menyebabkan wilayah ini mengalami perkembangan yang sangat cepat. Nelayan yang beroperasi di Prigi-pun tidak hanya penduduk setempat, tetapi juga para pendatang yang umumnya adalah nelayan dari daerah lain seperti Banyuwangi, Sendang Biru, Pacitan, dan lain-lain.

Perkembangan alat tangkap dan armada penangkapan yang beroperasi di perairan Prigi terus mengalami peningkatan baik jumlah maupun ukuran. Hal ini dikarenakan semakin jauhnya tempat operasi penangkapan mereka dikarenakan semakin berkurangnya ketersediaan sumberdaya alam disekitar teluk prigi akibat eksploitasi yang dilakukan secara terus menerus.

Untuk menjangkau daerah penangkapan baru ini para nelayan Prigi terus berupaya untuk meningkatkan peralatan mereka baik dari segi ukuran maupun konstruksinya. Bahkan pada beberapa tahun terakhir ini mereka juga menggunakan beberapa alat dalam satu perahu dengan tujuan agar dapat melakukan penangkapan ikan tanpa tergantung pada musim ikan tertentu. Untuk lebih jelasnya dapat dilihat pada Tabel 9 dan Tabel 10.

Tabel 9. Perkembangan Alat Tangkap di PPN Prigi

No.	Jenis Alat Tangkap	VIII	Haros	MA	Jumlah (buah)		
110.	Jems Alat Tangkap	1999	2000	2001	2002	2003	2004	2005
1.	Pukat cincin	96	105	105	112	112	230	240
2.	Jaring insang	13	8	8	8	10	17	34
3.	Payang	44	42	40	30	35	28	20
4.	Pukat pantai	27	27	27	33	33	40	42
5.	Pancing prawe	75	278	278	278	282	251	36
6.	Pancing ulur	450	150	200	242	286	158	1298
7.	Pancing tonda	0	0	0	0	0	28	51
8.	Jaring klitik	0	2	2	0	2	30	36
Tota		705	612	660	703	760	1.556	1.757

Sumber: Laporan Statistik Perikanan PPN Prigi, 2006

Tabel 10. Perkembangan Armada Penangkapan Ikan di PPN Prigi

No.	Ukuran Kapal		Jumlah (buah)								
110.	CKUTAN KAPAN	1999	2000	2001	2002	2003	2004	2005			
1.	Perahu tanpa motor	185	150	90	45	5	0	0			
2.	Motor tempel	287	239	274	274	477	674	649			
3.	Kapal 10 - <20 GT	124	138	175	175	85	73	105			
4.	Kapal 20 - <30 GT	84	96	96	112	112	115	120			
5.	Kapal 30 - <50 GT	0	0.0	0	0	0	0	0			
Tota	Total		623	635	606	679	862	874			

Sumber: Laporan Statistik Perikanan PPN Prigi, 2006

Dari kedua tabel diatas dapat kita lihat bahwa alat tangkap maupun armada penangkapan yang berukuran kecil semakin berkurang, sedangkan untuk alat tangkap dan armada penangkapan ukuran besar semakin meningkat. Hal ini disebabkan karena

daerah operasi penangkapan nelayan prigi semakin jauh sehingga membutuhkan peralatan dengan ukuran besar dan daya jangkau yang lebih jauh.

4.2.3 Produksi Perikanan Tangkap

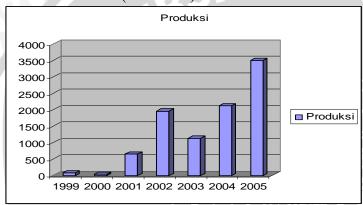
Pada tahun 2005 volume produksi perikanan yang didaratkan di PPN Prigi sebesar 14.346 ton dengan nilai Rp.51.064.500.000,-. Dibanding dengan tahun 2004 sebesar 17.794 ton dan senilai Rp. 58.309.700,- berarti mengalami penurunan volume sebesar 3.448 ton atau 19,37% dan nilai produksi mengalami penurunan sebesar Rp 7.245.200.000,- atau produksi 12,43%. Penurunan peoduksi ikan dikarenakan pada tahun 2005 tidak musim ikan, selain itu produksi ikan unggulan seperti ikan ekor merah, layang deles, tongkol como, dan teri ijo juga mengalami penurunan, sedangkan produksi ubur-ubur hanya terjadi pada bulan Januari.

Berikut ini (Tabel 11) disajikan data perkembangan ikan hasil tangkapan di PPN Prigi dari tahun 1999 sampai dengan tahun 2005.

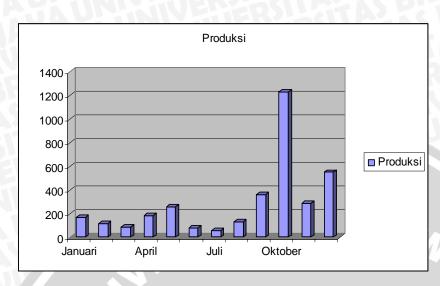
Tabel 11. Data Produksi Perikanan Tangkap di PPN Prigi Tahun 1999 – 2005.

	Tabel 11. Data Produksi P	1061		Produksi				
No	Nama Ikan	1999	2000	2001	2002	2003	2004	2005
1.	Alu-alu (Great barracuda)	7117	4013		TOPE	AG-		32
2.	Bentong (Oxeye Scad)			17-17-E	105	Let-	NSE	141
3.	Biji Nangka (Goal fishes)	271			2.050	15	4	5 22
4.	Cakalang (Skipjack tuna)	24	1.471	1.362	3.183	192	823	1.134
5.	Cendro	1	1.706	4.963	48		1362	160
6.	Cucut (Sahrks)	4	133	198	175	9	125	108
7.	Cumi-cumi(Common squids)	-	-	-	-	2	2	
5.	Ekor merah (<i>Red snapper</i>)	469	17	51	4	580	441	148
6.	Golok-golok(Wolf herrings)	TA	3 E	RA	168	-	411	A/A
7.	Julung-julung (Garfish)	6	494	696	3.990	8.5	11	VAL A
8.	Kakap (Red snapper)	-	-	-	1	-	1	4
9.	Kembung (Short-bodied mackerel)	18	11	N 11	427	44	169	170
10	Kuwe (Jacks)	17	18	18	100	11	65	88
11.	Layang (Scads)	5.488	3.577	//^26	871	1.856	4.025	2.013
12.	Layaran (Marlins)	, YA \ <u>C</u>	2/2	3.079	250	4.1	4	5
13.	Layur (Hairtails)	383	/ /fi	23	12	1.186	473	1.297
14.	Lemadang (Common dolphin fish)	(小)	Y			-	-	39
15.	Lemuru (Indian oil-sardinella)	78	30	655	1.958	1.126	2.121	3.502
16.	Manyung	a /	不公			-	-	13
17.	Pari (Rays)	12	233	473	59	17	78	66
18.	Peperek (Pony fishes)	1.031	303	500	13	283	552	241
19.	Selar (Trevallies)	, 1 11	71	694	11	91	222	27
20.	Slengseng (Spotted chub mackerel)	77 \ 1	233	39	-	167	15	6
21.	Swanggi (Purple-spotted bigeye)	A C	£00	। ठढ		-	16	26
22.	Tembang/tanjan (Deepbody sardinella)					-	Si.	93
23.	Tembang / teri ijo (Fringescale sardinella)						JIJA	78
24.	Tembang (Rainbow sardine)	-	11	17	60	105		
25.	Tengiri (King mackerel)	105	4	46	1.681	6	2	27
26.	Teri (Anchovies)	180	14	46	2	934	147	Kar
27.	Tetengkek (Hardtails scad)	19		35	1	17	9	5
28.	Tongkol (Eastern little	5.188	19	64	5	2.682	7.50	2.602

	tunas)	144	TAS	KT:			Hit	X
29.	Tuna (Tunas)	40	508	457	2	138	560	1.179
30.	Udang lobster (Spiny lobster)	3	1	184	14	185-		
31.	Udang lainnya (Other shrimps)		8	8	0,2	3	1	
32.	Ubur-ubur (Jelly fishes)	-	(42.082	36.573	13:6	1.245
33.	Lain-lain (Others)	265	72	411	122	706	94	57



V. HASIL DAN PEMBAHASAN


5. 1 Deskripsi ikan lemuru (Sardinella spp) hasil penelitian

Produksi ikan lemuru (*Sardinella spp*) selama tahun 2005 mengalami peningkatan disbandingkan tahun-tahun sebelumnya. Berdasarkan Anonymous (2006), produksi ikan lemuru dapat dilihat gambar 4.

Gambar 4. Grafik produksi ikan lemuru selama kurun waktu 1999-2005 (dalam ton)

Untuk perikanan lemuru tahun 2005. produksi ikan terbanyak yaitu pada bulan Oktober. Sehingga dapat dikatakan bahwa musim puncak lemuru tahun 2005 terjadi pada bulan Oktober. Pada tahun tersebut produksi lemuru terjadi sepanjang bulan. Gambar 5 menunjukkan produksi ikan lemuru selama tahun 2005

Gambar 5. Produksi ikan lemuru selama tahun 2005

5. 2 Parameter Biologi

Pada pengukuran biologi selama penelitian, jumlah sampling ikan yang digunakan bervariasi, antara daerah-daerah penangkapan menunjukkan tingkat perbedaan. Hal ini sesuai dengan produksi tangkap dari alat tangkap *purse seine* pada saat dilakukan sampling. Data-data yang didapat dari pengukuran biologi ikan lemuru (*Sardinella spp*) terdiri dari panjang total (TL), berat tubuh, Tingkat Kematangan Gonad (TKG) dan jenis kelamin ikan lemuru.

5. 2. 1 Nisbah Kelamin

Nisbah kelamin ditujukan untuk mengetahui perbandingan jenis kelamin ikan jantan dan ikan betina dari suatu populasi yang berasal dari data sample. Nisbah kelami ikan lemuru yang didapat selama penelitian dapat dilihat pada table 12 dan lampiran 6.

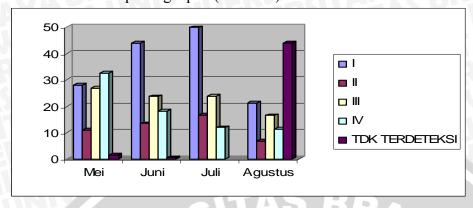
Tabel 12. Nisbah kelamin ikan lemuru (Sardinella spp) untuk setiap fishinground

		LINT	Tdk	X ²	\mathbf{X}^2	Analisa*
MATTER	Betina	Jantan	terdeteksi	hit	tabel	C BREDAW
Pajer	20	35	67	4,79	3,84	X^2 hit $>$ X^2 tabel = H_0
			TPHAL	TA A		diterima
Damas	45	32	0	2,87	3,84	X^2 hit $< X^2$ tabel = H_1
	106		40	2.40	2.04	diterima
G.Boyolangu	106	71	48	3,48	3,84	X^2 hit $< X^2$ tabel = H_1
G. Sari	52	65	37	1,31	3,84	diterima X^2 hit $<$ X^2 tabel = H_1
G. Sali	32	0.5	37	1,51	3,04	diterima
G.Solimo	76	107	0	2,87	3,84	X^2 hit $< X^2$ tabel = H_1
		15	AS		- ,-	diterima
Karanggongso	35	25	3	2,78	3,84	X^2 hit $< X^2$ tabel = H_1
						diterima
Munjungan	136	101	0	2,20	3,84	X^2 hit $<$ X^2 tabel = H_1
D 1	100	100		0.07	2.04	diterima $\mathbf{x}^2 + 1 + 1$
Papak	102	123	2	0,87	3,84	X^2 hit $< X^2$ tabel = H_1 diterima
Popoh	114	100	3	0,43	3,84	X^2 hit $< X^2$ tabel = H_1
Тороп	114	7100		0,43	3,04	diterima
Sine	31	43	25	2,72	3,84	X^2 hit $< X^2$ tabel = H_1
						diterima
Total	717	702	182	0,11	3,84	X^2 hit $< X^2$ tabel = H_1
			}/X 4%	X 7		diterima

Keterangan : * H₁ diterima: perbandingan antara jumlah total ikan lemuru jantan dan jumlah total lemuru betina tidak berbeda nyata.

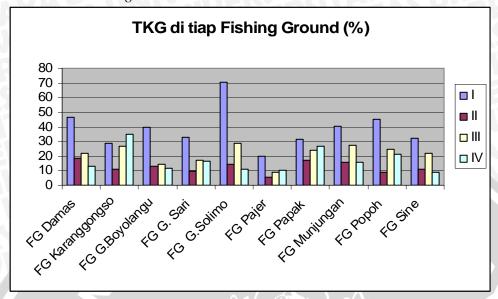
 H_0 diterima : perbandingan antara jumlah total ikan lemuru jantan dan jumlah total ikan lemuru betina berbeda nyata.

Dari table 10 dapat dilihat bahwa nisbah kelamin jantan dan betina ikan lemuru (*Sardinella spp*) ada yang berbeda nyata dan adapula yang tidak berbeda nyata. Daerah-daerah yang nisbah kelamin ikan lemuru jantan dan betina berbeda adalah Pajer. Sedangkan untuk daerah-daerah lain nisbah kelaminnya tidak berbeda nyata. Ketidak seimbangan jenis kelamin kurang baik dalam hal pemijahan, karena kesempatan terjadinya pembuahan akan lebih kecil apabila jumlah jantan dan betina tidak seimbang.


Jika proses pembuahan tidak terjadi dengan baik maka akan sangat berpengaruh terhadap kelestarian ikan itu sendiri. Agar pengelolan sumber daya ikan berkelanjutan, perlu diatur aktivitas penangkapan yang berlangsung dimana jumlah betinanya lebih sedikit karena dengan sedikitnya jumlah betina berarti kemampuan untuk menghadirkan individu baru ke dalam penangkapan tersebut tidak sebaik dan seoptimum di daerah yang jumlah betinanya lebih banyak.

AS BRAW

5.2. 2 Tingkat Kematangan Gonad


Pada gambar 6 dan lamiran 13 ditunjukkan data TKG untuk setiap bulan penangkapan. Secara keseluruhan data menunjukkan bahwa ikan yang belum matang lebih banyak daripada yang matang. Untuk ikan yang matang dengan presentase tertinggi ada pada bulan Mei. Diperkirakan pada bulan Mei merupakan puncak pemijahan. Presentase ikan yang matang tersebut terus menurun pada bulan Juni, Juli dan Agustus. Diperkirakan pada bulan tersebut ikan-ikan yang tadinya sudah matang gonad sudah memijah. Pada pertengahan Agustus ikan yang tertangkap banyak yang tidak terdeteksi jenis kelaminnya sehingga tidak bisa dideteksi kematangan gonadnya. Dimungkinkan pada saat itu ikan dalam keadaan rusak, ukurannya terlalu kecil sehingga pada saat itu ikan dalam fase *immature* atau *virgin*. Dimana menurut Anonymous (1999) pada saat *immature* atau *virgin* sulit menentukan jenis kelaminnya karena ukuran gonadnya sangat kecil atau strukturnya belum lengkap.

Gambar 6. Grafik status kematangan gonad ikan ikan lemuru berdasarkan bulan penangkapan (dalam %)

Untuk hasil analisa untuk setiap fishing ground dapat dilihat pada lampiran 13 dan Gambar 7. Pada grafik tersebut dapat dilihat bahwa di setiap daerah penagkapan memiliki setiap komposisi jumlah ikan yang matang dan belum matang yang berbedabeda. Tidak adanya daerah dimana pada daerah tersebut dominan terdapat ikan yang matang, menunjukkan bahwa daerah *fishing ground* pada penelitian ini tidak berpengaruh terhadap proses pemijahan Adanya daerah dimana ikan yang matang dominan terdapat pada suatu daerah menunjukkan bahwa daerah tersebut mempunyai kondisi optimum untuk dilakukannya pemijahan. Jumlah ikan yang belum matang banyak ditemukan pada daerah Munjungan. Sedangkan untuk daerah dengan jumlah ikan yang paling banyak terdapat pada daerah Papak. Selain itu ada beberapa daerah yang tingkat kematangan gonadnya tidak terdeteksi. Seperti yang dijelaskan diatas, ikan yang tidak terdeteksi jenis kelaminnya dimungkinkan karena ikan dalam keadaan rusak, ukurannya terlalu kecil sehingga pada saat itu ikan dalam fase *immature* atau *virgin*

Gambar 7. Grafik status kematangan gonad ikan ikan lemuru berdasarkan *fishing* ground

Menurut Effendie (1997), prosentase komposisi TKG pada setiap saat dapat dipakai untuk menduga terjadinya pemijahan. Ikan yang mempunyai satu musim pemijahan yang pendek dalam satu tahun atau saat pemijahannya panjang, akan ditandai dengan peningkatan prosentase TKG yang tinggi pada setiap saat akan mendekati musim pemijahan. Hasil presentase TKG menunjukkan bahwa secara keseluruhan ikan lemuru yang terdapat dalam penelitian 50% ikan belum matang gonad, 39% matang gonad dan 11 % tidak terdeteksi tingkat kematangan gonadnya.Pada akhir Mei sampai Juni ikan lemuru banyak yang matang, sehinga diasumsikan pada masa tersebut ikan lemuru mengalami musim pamijahan. Hal ini sesuai dengan penelitian Dwiponggo (1972) dalam Potier dan Nurhakim (1995) menduga ikan lemuru selat Bali memijah pada bulan Juni-Juli. Pernyataan dikuatkan oleh Ritterbush (1975) dan Burharuddin et al., (1984). Dari studi maturity yang dilakukan oleh Merta (1992) dapat disimpulkan bahwa ikan lemuru di selat Bali bertelur di bulan Juli. Sedangkan Whitehead (1985) dalam Potier dan Nurhakim (1995) menyatakan bahwa ikan lemuru bertelur pada akhir musim hujan sepanjang tahun

Gambar 8. Grafik jumlah ikan lemuru yang mature dan immature yang didapat selama penelitian

5. 2. 3 Hubungan panjang berat

Pendugaan persamaan hubungan panjang berat ikan lemuru pada penelitian ini dikelompokkan berdasrkan pada daerah penangkapan dan bulan pengambilan sample. Hal ini dimaksudkan untuk mengetahui apakah ada perbedaan persamaan hubungan panjang barat karena adanya perbedaan fishing ground dan bulan pengambilan sample. Hasil pengukuran panjang berat ikan lemuru (*Sardinella spp*) selama penelitian diperoleh ukuran panjang total (TL) berkisar antara 11,6 sampai 19,6, yang antara antar daerah penangkapan memiliki panjang total yang berbeda. Perbedaan panjang ini kemungkinan karena ikan lemuru mengalami pertumbuhan sesuai dengan karateristik fishing ground serta banyak sedikitnya ketersediaan makanan.

Hubungan panjang berat ikan lemuru diduga mengikuti persamaan $W = a L^b$ dimana berat ikan merupakan fungsi dari panjang ikan. Pendugaan model hubungan panjang-berat ikan antar fishing ground yang diperoleh selama penelitian dilakukan

terpisah karena pertumbuhan bisa dipengaruhi oleh kondisi lingkungan dimana ikan tersebut berada (Effendi,1997).

Hasil analisa hubungan panjang berat ikan lemuru yang tertangkap oleh purse seine dan didaratkan di Pelabuhan Perinakan Nusantara Prigi Kabupaten trenggalek diperoleh persamaan regresi pada table 13 dan gambar 10 berikut ini

Tabel 13. Persamaan hubungan panjang berat ikan lemuru (*Sardinella spp*) opada masing-masing *fishing ground*

	FISHING	KISARAN TL	A3 BRA	KORELASI	1 1111111111111111111111111111111111111
NO	GROUND	(cm)	PERSAMAAN	(r)	Ne still
1	DAMAS	15,4 – 19,3	W=0,01965841L ^{2,709066}	0,883388	t hit > t table =
					beda nyata
2	G.BOYOLANGU	12,0 - 17,3	W=0,015143L ^{3,052058}	0,80249	t hit > t table =
		\mathcal{L}			beda nyata
3	G.SARI	12,2- 18	W=0,00714325L ^{3,052058}	0,905548	t hit > t table =
		7 4 60			beda nyata
4	G.SOLIMO	14,2 – 19,5	W=0,01601065L ^{2,752459}	0,930237	t hit > t table =
				\sim	beda nyata
5	KARANGGONGSO	14,2 – 17,7	W=0,00891705L ^{2,8699462}	0,88374	t hit > t table =
				4)	beda nyata
6	MUNJUNGAN	15,0 – 19,6	W=0,00947407L ^{2,974188}	0,930065	t hit > t table =
					beda nyata
7	PAJER	11,6 – 19,6	W=0,00596844L ^{3,13002}	0,990051	t hit > t table =
					beda nyata
8	PAPAK	13,5 – 19,5	W=0,001793L ^{3,518629}	0,953955	t hit > t table =
					beda nyata
9	РОРОН	14,0 – 18,3	W=0,017638L ^{2,701233}	0,724671	t hit > t table =
DL					beda nyata
10	SINE	12,0- 16,7	W=0,069037L ^{2,183346}	0,887847	t hit > t table =
					beda nyata

Hubungan antara panjang dan berat ikan lemuru keseluruhan digambarkan oleh titik-titik (*scater*) yang cenderung dekat dengan garis regeresi dan berpencar secara merta baik di sisi kiri atau kanan dari garis regresi tersebut. Grafik hubungan panjangberat ikan lemuru setiap fishing ground dan bulan penangkapan disajikan pada lampiran

Nilai b untuk ikan lemuru di setiap *fishing ground* ada yang bersifat *allometrik positif* (b>3) yang menunjukkan bahwa pertumbuhan berat lebih cepat dari pertambahan panjangnya (gemuk) dan ada yang bersifat *allometrik negative* (b<3). *Fishing ground* yang pertumbuhan beratnya bersifat *allometrik positif* adalah G. Boyolangu, G. sari, Pajer, dan Papak. Sedangkan Damas, G. Solimo, Karanggongso, Munjungan, Popoh, dan Sine bersifat *allometrik negative* (b<3) yang menunjukkan bahwa pertumbuhan panjang ikan lebih cepat daripada pertambahan berat (kurus). Pada masing-masing fishing ground nilai t hitung lebih besar daripada t tabel pada taraf nyata 0,05. Hal ini menunjukkan bahwa tidak satupun dari pertumbuhan ikan yang bersifat *isometrik* (b=3).

Secara keseluruhan didapat nilai b 3,202948 yang berarti bersifat *allometrik positif* (b>3) dengan t hitung lebih besar daripada t table pada taraf nyata 0,05. Dua hal yang mungkin menyebabkan variasi nilai b antar fishing ground, yaitu ketersediaan kandungan plankton sebagai sumber makanan ikan dan bentuk tubuh ikan dari asalnya. Semakin gemuk ikan yang didapat maka menunjukkan semakain subur pula perairan tersebut.

5. 2. 4. Panjang ikan pertama kali matang gonad

Panjang ikan pertama kali matang gonad yang diamksud adalah suatu panjang dimana 50% dari contoh ikan pada saat itu sudah mayang gonad (TKG III dan IV). Ukuran panjang demikian sering disebut dengan L_{50} atau Lm.

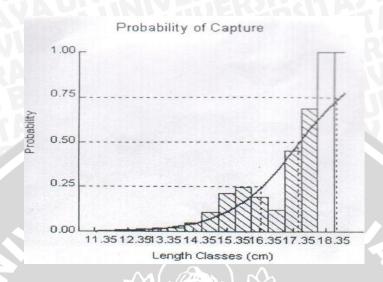

Hasil analisa tentang pendugaan ukuran pertama kali matang gonad ikan lemuru yang tertangkap pada masing-masing *fishing ground* dan keseluruhan serta bulan pengambilan sample disajikan pada lampiran. Hasil analisa tersebut disajikan pada table 14 dan 15

Table 14. Hasil analisa pendugaan panjang ikan lemuru (*Sardinella spp*) yang pertama kali matang gonad di setiap fishing ground, bulan penagkapan dan total

Fishing Ground	Lm	Bulan	Lm	Lm Total
	(cm)	Penangkapan	(cm)	(cm)
Damas	18,067	Mei	14,12	17,28
G.Boyolangu	17,045	Juni	15,61	
G. Sari	16,14	Juli	18,03	NILATIV
G. Solimo	17,51	Agustus	17,65	
Karanggongso	14,93			
Munjungan	17,90			
Pajer	18,06	AS BE		11125
Papak	18,26			
Popoh	16,10			
Sine			- 7	

Tabel diatas menunjukkan bahwa pada masing-masing daerah penangkapan, selama bulan pengambilan sample, dan secara keseluruhan; ternyata ikan lemuru memiliki ukuran pertama kali matang gonad yang berbeda. Hal ini sesuai dengan keterangan Effendi (1997) yang menyatakan bahwa tiap-tiap species ikan pada waktu pertama kali gonadnya menjadi masak tidak sama ukurannya. Demikian pula ikan yang sama speciesnya, apalagi jika species itu tersebar pada tempat yang berbeda. Ukuran panjang tetinggi ikan lemuru pertama kali matang gonad yaitu 18,26 cm yaitu pada fishing ground Papak dan ukuran yang terendah berada pada fishing groung Karanggongso 14,26 cm. Secara keseluruhan nilai Lm yaitu 17,28 cm.

Sedangkan dengan menggunakan mengguanakn program Length converted curve dalam FiSAT didapatkan nilai L_{50} (Lm) yaitu 17,50 cm, seperti yang tercantum pada grafik probability of capture berikut ini.

Nilai tersebut tidak berbeda jauh dengan nilai yang dihitung dengan formula $Q = \frac{1}{1 + e^{-a(L - L_{50})}}, \text{ yaitu 17,28 cm. Perbedaan hal tersebut dikarenakan } Length \ converted$ curve tidak memperhitungkan Tingkat Kematangan Gonad. Perhitungan hanya didasarkan pada frekuensi kelas panjang ikan. Sedangkan pehitungan dengan formula $Q = \frac{1}{1 + e^{-a(L - L_{50})}} \text{ memperhitungkan Tingkat Kematangan Gonad ikan.}$

5. 2. 5 Panjang ikan pertama kali tertangkap (Lc)

Perhitungan panjang ikan yang pertama kali tertangkap (Lc) dihitung berdasarkan data sebaran normal frekuensi panjang ikan lemuru per fishing ground dan per bulan pengambilan sample serta secara keseluruhan

BRAWIJAYA

Table 15. Hasil analisa pendugaan panjang ikan lemuru (*Sardinella spp*) yang pertama kali tertangkap di setiap fishing ground, bulan penangkapan dan total

Fishing Ground	Lc	Bulan	Lc	Total Lc
	(cm)	Penangkapan	(cm)	(cm)
Damas	17,59	Mei	15,95	15,69
G.Boyolangu	15,10	Juni	15,66	NIVETTERRY
G. Sari	15,10	Juli	17,42	"TINIL ATTUE
G. Solimo	16,34	Agustus	15,95	
Karanggongso	16,5			
Munjungan	17,23			The state of the s
Pajer	15,18	SATI	RD.	
Papak	16,60		-nan	
Popoh	15,32			
Sine	14,68			

Tabel 15 menunjukkan bahwa terdapat nilai Lc yang nyata antar fishing ground. Kecuali pada fishing ground G. Boyolangu dan G. Sari yang mempunyai Lc sama. Nilai Lc terkecil berada pada fishing ground Sine yaitu 14,68 cm dan yang paling tinggi ada pada fishing ground damas yaitu 17,59 cm.Hal ini terjadi dimungkinkan karena adanya perbedaan ketersediaan makanan pada masing-masing fishing ground yang berpengaruh pada laju pertumbuhan ikan. Secara keseluruhan nilai Lc total yaitu 15,69 cm.

5. 2. 6 Tingkat ekploitasi berdasarkan aspek biologi

Perbandingan nilai Lc dan Lm per fishing ground dan perbulan selama pengambilan sample serta keseluruhan dapat dilihat pada table 16 berikut ini

Table 16. Perbandingan nilai Lc dab Lm antar fishing ground, bulan penangkapan dan total

Fishing	Lm	Lc	Bulan	Lm	Lc	Lm	Lc Total
Ground	(cm)	(cm)	Penangkapan	(cm)	(cm)	Total	(cm)
				1 -1		(cm)	ANSP
Damas	18,067	17,59	Mei	14,12	15,95	17,28	15,69
G.Boyolangu	17,045	15,10	Juni	15,61	15,66	41-	ROLLS
G. Sari	16,14	15,10	Juli	18,03	17,42	NAA-	HTILL
G. Solimo	17,51	16,34	Agustus	17,65	15,95		A-A-TTU I
Karanggongso	14,93	16,5					
Munjungan	17,90	17,23					JAUL
Pajer	18,06	15,18					24-40
Papak	18,26	16,60	TASE	20			11234
Popoh	16,10	15,32					
Sine	6.	14,68			-4/		

Table 17. Jumlah ikan yang tertangkap dengan ukuran diatas dan dibawah ukuran ikan yang pertama kali matang gonad

Fishing	<lm< th=""><th></th><th>>Lm</th><th>Bulan</th><th>/<lm< th=""><th>Lm</th><th>>Lm</th></lm<></th></lm<>		>Lm	Bulan	/ <lm< th=""><th>Lm</th><th>>Lm</th></lm<>	Lm	>Lm
Ground		(cm)	(8)	Penangkapan	10	(cm)	
Damas	67	18,067	16	Mei	0	14,12	200
G.Boyolangu	234	17,045	1	Juni	392	15,61	208
G. Sari	125	16,14	29	Juli_	312	18,03	88
G. Solimo	44	17,51	48	Agustus	259	17,65	141
Karanggongso	19	14,93	44		6		
Munjungan	135	17,90	89				
Pajer	149	18,06	18				
Papak	103	18,26	84				
Popoh	193	16,10	41				
Sine			J.				
34			J7) \\				
ASI			Y \				/A
4			ا ت	THE POINT	D		143

Berdasarkan hasil analisa pada table 16, diketahui ada perbedaan perbandingan nilai Lc dan Lm. Perbedaan ini kemungkinan dikarenakan perbedaan laju pertumbuhan ikan, sehingga berpengaruh pada perbedaan ukuran ikan yang tertangkap. Untuk semua fishing ground, kecuali Karanggongso, nilai Lc<Lm. Dan untuk tiap bulan penagkapan, kecuali bulan Mei, nilai Lc<Lm. Hal itu diperkuat dengan hasil yang ditunjukkan pada

table 17 dimana pada daerah dan waktu tersebut jumlah ikan yang tertangkap lebih banyak ikan yang belum matang gonad. Perbedaan yang dialami fishing ground Karanggongso dan bulan Mei dimungkinkan karena ikan matang gonad lebih cepat diabandingkan dengan yang lain.. Sehingga pada saat tertangkap ikan sudah melakukan pemijahan. Hal itu diperkuat dengan hasil yang ditunjukkan pada table 17 dimana pada daerah dan waktu tersebut jumlah ikan yang tertangkap lebih banyak ikan yang matang gonad. Bahkan pada bulan Mei ikan yang tertangkap sudah maengalami matang gonad semua.

Secara keseluruhan selama penelitian nilai Lc lebih kecil daripada nilai Lm (Lc<Lm). Hal itu berarti bahwa ikan yang tertangkap pada penelitian ini lebih banyak ikan-ikan muda (belum matang gonad) sehingga terjadi *growth overfishing*. Hal ini menunjukkan bahwa usaha penangkapan ikan lemuru belum sesuai dengan aturan dalam manajemen penangkapan ikan. Idealnya nilai Lc>Lm artinya ikan yang tertangkap oleh nelayan sudah pernah mengalami matang gonad sehingga stok lestarinya dipertahankan.

5.3 Pendugaan kohort

Pendugaan kohort dilakukan dengan menggunakan *Bhattacarya's method* yang terdapat pada FiSAT (FAO ICLARM STOCK ASSESSMENT TOOLS). Berikut adalah tabel hasil dari perhitungan dengan menggunakan *Bhattacarya's method*.

Tabel 20. Perhitungan pemisahan kelompok umur dengan menggunakan *Bhattacarya's method* untuk ikan lemuru untuk tiap bulan penangkapan

Bulan penangkapan	Computed mean length (cm)	s.d	r ²	Populasi	SI
Mei	15,16	0,570	0,817	197,16	n.a
Juni	15,26	0,630	0,953	581,53	n.a
Juli	17,08	1,150	0,817	422,00	n.a
Agustus	17,91	0,600	0,895	195,37	n.a
		推究	7	2	

Dari data diatas dapat dilihat bahwa pada tiap-tiap bulan penangkapan hanya terdiri dari satu kelompok umur. Hal ini bisa dilihat dari kurva yang ada pada lampiran bahwa hanya terdapat satu pulsa. Selain itu pada masing-masing tanggal penangkapan, S.I (separation index) tidak bisa terhitung. Hal ini dikarenakan tidak ada pemisahan umur pada masing-masing bulan penangkapan. Pada data diatas ada peningkatan panjang rata-rata dari bulan ke bulan. Dimungkinkan adanya peningkatan tersebebut karena adanya migrasi ikan-ikan tersebut, dan di tempat barunya tersebut ikan-ikan tersebut mengalami proses pertumbuhan sehingga membentuk kelompok umur baru.

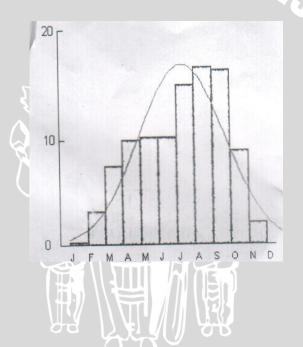
5.4 Parameter Pertumbuhan

5. 4. 1 Pendugaan k, $L\infty$, t_{max} , t_0

Penggabungan data frekwensi panjang ikan lemuru (*Sardinella spp*) selama penelitian (Mei – Agustus 2006) digunakan sebagai data masukan dalam program FISAT. Hasil dugaan untuk nilai panjang maksimum (L ∞) dan k (konstanta pertambahan) diperoleh dengan menggunakan program ELEFAN I (*dalam* FISAT (FAO ICLARM STOCK ASSESSMENT TOOLS)) didapat nilai L ∞ = 20,32cm dan k sebesar 0,810 pertahun.

Nilai k diduga dipengaruhi karena faktor makanan yang melimpah atau kondisi lingkungan yang mendukung pertumbuhan. Konsekuensi dari nilai k tinggi adalah cepat kembalinya kondisi perikanan dari tekanan penangkapan yang berlebih atau kematian alami.

Dengan menggunakan rumus empris Pauly yaitu Log_{10} (-t₀) = -0,3922-0,2752 $log_{10} L_{\infty}$ - log_{10} k, didapat nilai to -0,220218. Dengan demikian persamaan pertumbuhan panjang Von Bertalanffy untuk ikan lemuru adalah :


Lt = 20,32
$$(1 - e^{-0.810 (t + 0.220218)})$$

Diduga umur ikan lemuru pada saat panjang 0 cm (t_o) sebesar -0,220218 tahun. Sedangkan panjang ikan pada saat panjang maksimum (L_t) dicapai pada umur 2,807641 tahun. Dalam Poiter dan Nurhakim (1994) disebutkan beberapa penulis menyebutkan bahwa umur *Sardinella longiceps* dan *Sardinella lemuru* adalah 4 tahun

5. 5 Rekruitmen

Pola rekruitmen ikan lemuru (*Sardinella lemuru*) diperairan selat Bali berdasarkan data frekuensi panjang diperoleh melalui program *recruitment pattern* dalam FiSAT (FAO ICLARM STOCK ASSESSMENT TOOLS). Gambar 11 merupakan hasil analisa dari program dan presentase rekruitmen secara lengkap pada lampiran 14.

Gambar 11. Grafik pola rekruitmen ikan lemuru selama penelitian

Pada grafik yang diperoleh dari program FISAT, menunjukkan bahwa presentase rekruitmen tertinggi terjadi pada bulan Agustus. Dilihat dari segi *commercial recruitment*, hal itu menunjukkan bahwa pada bulan tersebut merupakan puncak masuknya ikan ke area penangkapan. Kemudian pada bulan September presentase rekruitmen mulai menurun. Hal ini diduga ikan lemuru mengalami fase pematangan gonad dan mulai fase pemijahan, dan keluar dari daerah penangkapan atau mencari

tempat untuk melakukan pemijahan, sehingga tidak terjangkau oleh alat penangkapan. Pada bulan Desember prentase rekruitmen 0%, diduga pada bulan ini ikan lemuru diluar daerah penangkapan atau ikan lemuru melakukan ruaya, kemungkinan lain ikan-ikan lemuru yang masuk daerah penangkapan masih berukuran sangat kecil sehingga ikan-ikan tersebut dapat lolos dari alat penangkapan. Hingga pada bulan Januari akhir mulai ada ikan yang tertangkap.

Pengetahuan mengenai pola rekruitmen dan musim pemijahan digunakan dalam alternatif pengelolaan yaitu penerapan manajemen musim. Penerapan yang dilakukan adalah penutupan atau pembatasan alat tangkap yang beroperasi pada bulan Mei dan Juni, karena diduga pada bulan ini banyak ikan yang sudah matang gonad dan mulai memijah. Penutupan daerah penangkapan dilakukan untuk mencegah tertangkapnya ikan yang belum memijah atau ikan-ikan yang siap memijah. Hal ini dilakukan untuk mencegah terjadinya lebih tangkap pertumbuhan (*growth over fishing*).

5.6 Laju Mortalitas

Pendugaan konstanta mortalitas total (Z) ikan lemuru ($Sardinella\ spp$) dilakukan dengan pendugaan kurva penangkapan yang dikonversikan kedalam ukuran panjang L ∞ mendapatkan nilai Z sebesar 2,50, sedangakan nilai Z sebesar 1,50.Perhitungan nilai Z, Z0 M dan Z1 dengan menggunakan Z1 dengan menggunakan Z2 dengan menggunakan Z3 dengan menggunakan Z4 dengan menggunakan Z5 dengan menggunakan Z6 dengan menggunakan Z6 dengan menggunakan Z7 dengan menggunakan Z8 dengan menggunakan Z9 dengan menggunakan dengan Z9 dengan menggunakan Z9 dengan menggunakan Z9 dengan menggunakan dengan Z9 dengan menggunakan dengan Z9 dengan menggunakan dengan Z9 dengan dengan dengan dengan Z9 dengan d

Gambar 10. Length coverted catch curve untuk perhitungan nilai Z, M, dan F ikan lemuru

Nilai M yang didapat dari rumus Pauly dengan nilai T 28^oC yaitu 1,72. Nilai M yang didapat dari rumus Pauly dan *length converted catch curve* berbeda. Perbedaan ini dikarenakan rumus Pauly memasukkan rata-rata suhu tahunan ke dalam perhitungannya sedangkan perhitungan dengan *length converted catch curve* hanya berdasarkan pada data frekuensi panjang dari ikan.

Mortalitas akibat tekanan penangkapan (F) dapat diperoleh dari pemisahan Z dan M. Dengan demikian F = Z - M, dengan menggunakan laju kematian total (Z) kurva Lenght-Converted Catch Curve, maka F = 2,50 - 1,72 = 0,78.

Dari table 15 bisa dilihat bahwa terdapat perbedaan nilai Z, M dan F dari berbagai penelitian. Mortalitas alami dipengaruhi oleh ukuran ikan, kecepatan pertumbuhan dan suhu lingkungan perairan. Menurut Sparee (1999) ikan yang kecil mempunyai mortalitas yang tinggi, ikan yang tumbuh dengan cepat mortalitas alaminya tinggi, dan makin hangat suhu lingkungan perairan makin tinggi mortalitas alaminya. Sedangkan nilai mortalitas penangkapan dipengaruhi oleh tingkat ekploitasi. Semakin

tinggi tingkat ekplitasi di suatu daerah maka mortalitas penagkapannya semakin besar. Nilai mortalirtas total dipengaruhi oleh mortalitas alami dan mortalitas penagkapan.

5.7 Tingkat Pemanfaatan

Tingkat pemanfaatan (laju ekploitasi) ikan lemuru (Sardinella spp) secara analitik menggunakan nilai Z dan F sebagai masukan. Dugaan laju ekploitasi (E) yang diperoleh dari penelitian ini adalah 0,312. Nilai E didapatkan dari pembagian antara F dan Z (F = 0.78 dan Z = 2.50). Dengan nilai E <0.5 menunjukan kondisi yang under fishing. Dengan demikian maka potensi ikan lemuru yang didaratkan di PPN Prigi dalam potensi yang lestari karena tingkat ekploitasinya masih rendah. Hal ini kemungkinan karena nelayan lebih suka menangkap ikan dengan nilai ekonomis yang lebih tinggi daripada ikan lemuru.

BRAWIJAY

VI. KESIMPULAN DAN SARAN

Kesimpulan

Penelitian mengenai dinamika populasi ikan lemuru (*Sardinella spp*) yang didaratkan di Pelabuhan Perikanan Nusantara Prigi, yang dilaksanakan pada bulan Mei, Juni, Juli, dan Agustus 2006 menyimpulkan bahwa:

- 1. Parameter biologi ikan lemuru (Sardinella lemuru)
 - ➤ Hanya ikan yang tertangkap di daerah Pajer jumlah jantan dan betinanya berbeda nyata
 - > Secara keseluruhan ikan matang gonad terbanyak yaitu pada bulan Mei (59,5%)
 - ➤ Proporsi matang gonad sample ikan lemuru 38,5%
 - Nilai b untuk data ikan sample secara keseluruhan yaitu 3,202948. Hal itu menunjukkan bahwa ikan-ikan lemuru tersebut secara keseluruhan bersifat allometrik positif (b>3).
 - Secara keseluruhan, terdapat perbedaan perbandingan nilai Lc dan Lm. Pada penelitian ini nilai Lc<Lm. Nilai Lc adalah 15,69 cm, sedangkan nilai Lm 17,28 cm. Kondisi ini menunjukkan bahwa ikan lemuru yang tertangkap pada kondisi belum matang gonad
- Puncak rekruitmen terjadi 3 bulan setelah terjadi pemijahan yaitu pada bulan Agustus
- 3. Dengan menggunakan metode bhattacarya untuk pendugaan kohort didapat pada masing-masing bulan penangkapan hanya terdapat satu kohort saja

4. Parameter pertumbuhan

- Persamaan pertumbuhan panjang Von Bertalanffy ikan lemuru hasil penelitian adalah Lt = $20,32 (1 e^{-0.810 (t + 0.220128)})$.
- ➤ Umur maksimum ikan lemuru hasil penelitian yaitu 2,807641 tahun.
- ➤ Nilai Z yang didapat 2,50. Sedangkan nilai M pada suhu 28°C adalah 1,72 dan nilai F adalah 0,78. Laju ekploitasi (E) didapat 0,312. hal itu menunjukkan bahwa kondisi penangkapan dalam keadaan *under fishing*.

6.2 SARAN

Berdasarkan hasil keseluruhan penelitian, maka saran yang dapat diberikan adalah:

- 1. Perlu dilakukan penelitian lebih lanjut mengenai identifikasi species ikan lemuru (*Sardinella spp*) yang tertangkap di perairan selatan Jawa Timur.
- 2. Perlu dilakukannya penelitian lebih lanjut mengenai tempat pemijahan yang baik ikan lemuru (*Sardinella spp*) yang didaratkan di PPN Prigi.
- 3. Perlu penelitian lebih lanjut mengenai pengaruh musim terhadap pemijahan ikan lemuru (*Sardinella spp*) yang didaratkan di PPN Prigi.
- 4. Perlu diberikan peraturan mengenai besarnya *mesh size*, sehingga ikan yang tertangkap memiliki panjang melebihi panjang pertama kali ikan tersebut matang gonad.
- 5. Untuk memberi kesempatan lemuru untuk beregenerasi maka diperlukan pembatasan penangkapan pada musim pemijahan lemuru.

DAFTAR PUSTAKA

Abdurahiman, K.P, T.Harishnayak, P.U. Zacharia, K.S. Mohammed, 2004. Length-Weight Relationship of Commercially Important Marine Fishes and Shellfishes of The Southern coast of Karnakata, India. NAGA, Worldfish Center Quarterly Vol. 27No 1 dan 2 Jan-Jun 2004

Anonymous, Overfishing and Risk in Fishery. www.olrac.com

- , 1997. Laporan Akhir Tolok Ukur Kegiatan Pengelolaan Keanekaragaman Hayati tahun Anggaran 1996/1997 Proyek Pengembangan dan Pemanfatan Sumber Daya Perikanan Laut. Direktorat Jendral Perikanan Departemen Pertanian. Jakarta , 2000. Fisheries Report, FRDC 95/037: The Biology and Stock Assessment of The Tropical Sardine, Sardinella lemuru, Off The Mid-Wet Coast of Western Australia, Fisheries Research and Development Coorporation, Western Australia , 2001. Strategi Pengendalian Perikanan Tangkap Dalam Kebijakan Perikanan Laut. Semiloka Nasional "Fish Stock Assesment". Fakultas perikanan Universitas Brawijaya. Malang , 2001(b). Penuntun Pengkajian Stok Sumberdaya Ikan Perairan Indonesia. Proyek Riset dan Ekplorasi Sumber Daya Laut. Pusat Riset perikanan Tangkap Badan Riset Perikanan dan Kelautan (DKP dan Pusat Penelitian Oceanography (LIPI). Jakarta , 2003. Laporan Tahunan Departemen Kelautan dan Perikanan Tahun 2002. Departemen Kelautan dan Perikanan. Jakarta , 2004. Maturity and Spwaning of Fish. Marine Institute. Ireland , 2006. Laporan Statistik Perikanan Pelabuhan Perikanan Nusantara Prigi Tahun 2006. Surabaya 2006 (b). Sardinella Lemuru (Bali Sardinela). www.fishbase.com 2006 (c). Some Simple Methods for The Assessment of Tropical Fish Stocks. www.fao.com 2007. Sardinella lemuru. www.zipcodezoo.com
- Bintoro, Gatut, 2005. Pemanfaatan Berkelanjutan Sumber Daya Ikan Tembang (Sardinella *Fimbriata* Valenciennes, 1847) di Selat Madura Jawa Timur. Sekolah Pasca sarjana Institut pertanian Bogor. Bogor

- Damanhuri, 1980, Diktat Fishing Ground. Bagian teknik Penangkapan Ikan Fak, Peternakan dan Perikanan Univ. Brawijaya. Malang
- Effendi, M. I, 1979. Metode Biologi Perikanan. Yayasan Dewi Sri. Bogor
- _____, 1997. Biologi Perikanan. Yayasan Pustaka Nusantara. Yogyakarta
- Gayanilo, F.C, P.Sparre, D.Pauly, 2005. FISAT User's Guide. Food and Agriculture Organization of United Nation. Rome
- Martinus, Daduk Setyohadi, Darmawan Ockti Sutjipto, 2004. Pendugaan Stok dan Daerah Penyebaran Ikan Lemuru (Sardinella lemuru) di Perairan Selat Bali Serta Alternatif Pengelolaannya. Fakultas Perikanan Universitas Brawijaya. Malang
- Poiter, M. Dan S. Nurhakim, 1994. "BIODYNEX" Biologi, Dynamics, Exploitation of the Small Pelagig Fishes in the Java Sea. PELFISH. Jakarta
- Sevilla, C.G, Ochave J.A, Punsalan T.G, Regala B.P, Uriarte G.G, 1993. Pengatar Metode Penelitian. Penerbit Universitas Indonesia. Jakarta
- Sparre, Per dan Siabren C. Vernema, 1999. Introduksi pengkajian Stok Ikan Tropis. Pusat Penelitian dan Pengembangan Pertanian. Jakarta
- Subani, W. Dan H. R. Barus, 1989. Alat Penangkapan Ikan dan Udang Di Indonesia. Balai Penelitian Perikanan Laut. Badan Penenlitian dan Pengembangan Pertanian. Departemen Peratanian, Jakarta
- Suryabrata, 1988. Metode Penelitian.Rajawali Press. Jakarta
- Tarumingkeng, R.C. 1994, Dinamika Populasi Kajian Ekologi Kuantitatif. Pustaka Sinar Harapan dan Universitas Kristen Krida Wacana. Jakarta
- Tomkiewics, Thyberg L, Holm N, Hansen A, Broberg C, Hansen E, 2002. Manual to Determine Gonadal Maturity of Baltic Cod. Danish Institute for Fisheries Research, DFU Rapport nr. 116-02
- Weatherly, 1972. Growth and Ecology of Fish Population. Academic Press Inc. London
- Wiadnya, D.G.R, 1992. Fish Population Dynamics and Fisheries. Verslag number 1380. Vakgroep Visteeij Visserij. Landbouw. Universeteit. Wegeningen. The Nedherland

VII. KESIMPULAN DAN SARAN

Kesimpulan

Penelitian mengenai dinamika populasi ikan lemuru (*Sardinella spp*) yang didaratkan di Pelabuhan Perikanan Nusantara Prigi, yang dilaksanakan pada bulan Mei, Juni, Juli, dan Agustus 2006 menyimpulkan bahwa:

- 5. Parameter biologi ikan lemuru (Sardinella lemuru)
 - ➤ Hanya ikan yang tertangkap di daerah Pajer jumlah jantan dan betinanya berbeda nyata
 - > Secara keseluruhan ikan matang gonad terbanyak yaitu pada bulan Mei (59,5%)
 - Proporsi matang gonad sample ikan lemuru 38,5%
 - Nilai b untuk data ikan sample secara keseluruhan yaitu 3,202948. Hal itu menunjukkan bahwa ikan-ikan lemuru tersebut secara keseluruhan bersifat allometrik positif (b>3).
 - Secara keseluruhan, terdapat perbedaan perbandingan nilai Lc dan Lm. Pada penelitian ini nilai Lc<Lm. Nilai Lc adalah 15,69 cm, sedangkan nilai Lm 17,28 cm. Kondisi ini menunjukkan bahwa ikan lemuru yang tertangkap pada kondisi belum matang gonad
- 6. Puncak rekruitmen terjadi 3 bulan setelah terjadi pemijahan yaitu pada bulan Agustus
- 7. Dengan menggunakan metode bhattacarya untuk pendugaan kohort didapat pada masing-masing bulan penangkapan hanya terdapat satu kohort saja

BRAWIJAY

8. Parameter pertumbuhan

- Persamaan pertumbuhan panjang Von Bertalanffy ikan lemuru hasil penelitian adalah Lt = $20,32 (1 e^{-0.810 (t + 0.220128)})$.
- ➤ Umur maksimum ikan lemuru hasil penelitian yaitu 2,807641 tahun.
- ➤ Nilai Z yang didapat 2,50. Sedangkan nilai M pada suhu 28°C adalah 1,72 dan nilai F adalah 0,78. Laju ekploitasi (E) didapat 0,312. hal itu menunjukkan bahwa kondisi penangkapan dalam keadaan *under fishing*.

6.2 SARAN

Berdasarkan hasil keseluruhan penelitian, maka saran yang dapat diberikan adalah:

- 1. Perlu dilakukan penelitian lebih lanjut mengenai identifikasi species ikan lemuru (Sardinella spp) yang tertangkap di perairan selatan Jawa Timur.
- 2. Perlu dilakukannya penelitian lebih lanjut mengenai tempat pemijahan yang baik ikan lemuru (*Sardinella spp*) yang didaratkan di PPN Prigi.
- 3. Perlu penelitian lebih lanjut mengenai pengaruh musim terhadap pemijahan ikan lemuru (*Sardinella spp*) yang didaratkan di PPN Prigi.
- 4. Perlu diberikan peraturan mengenai besarnya *mesh size*, sehingga ikan yang tertangkap memiliki panjang melebihi panjang pertama kali ikan tersebut matang gonad.
- 5. Untuk memberi kesempatan lemuru untuk beregenerasi maka diperlukan pembatasan penangkapan pada musim pemijahan lemuru.

BRAWIJAYA

DAFTAR PUSTAKA

Abdurahiman, K.P, T.Harishnayak, P.U. Zacharia, K.S. Mohammed, 2004. Length-Weight Relationship of Commercially Important Marine Fishes and Shellfishes of The Southern coast of Karnakata, India. NAGA, Worldfish Center Quarterly Vol. 27No 1 dan 2 Jan-Jun 2004

Anonymous, Overfishing and Risk in Fishery. www.olrac.com

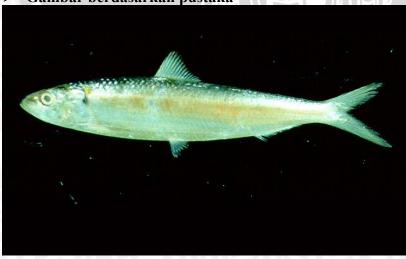
- , 1997. Laporan Akhir Tolok Ukur Kegiatan Pengelolaan Keanekaragaman Hayati tahun Anggaran 1996/1997 Proyek Pengembangan dan Pemanfatan Sumber Daya Perikanan Laut. Direktorat Jendral Perikanan Departemen Pertanian. Jakarta , 2000. Fisheries Report, FRDC 95/037: The Biology and Stock Assessment of The Tropical Sardine, Sardinella lemuru, Off The Mid-Wet Coast of Western Australia, Fisheries Research and Development Coorporation, Western Australia , 2001. Strategi Pengendalian Perikanan Tangkap Dalam Kebijakan Perikanan Laut. Semiloka Nasional "Fish Stock Assesment". Fakultas perikanan Universitas Brawijaya. Malang , 2001(b). Penuntun Pengkajian Stok Sumberdaya Ikan Perairan Indonesia. Proyek Riset dan Ekplorasi Sumber Daya Laut. Pusat Riset perikanan Tangkap Badan Riset Perikanan dan Kelautan (DKP dan Pusat Penelitian Oceanography (LIPI). Jakarta , 2003. Laporan Tahunan Departemen Kelautan dan Perikanan Tahun 2002. Departemen Kelautan dan Perikanan. Jakarta , 2004. Maturity and Spwaning of Fish. Marine Institute. Ireland , 2006. Laporan Statistik Perikanan Pelabuhan Perikanan Nusantara Prigi Tahun 2006. Surabaya 2006 (b). Sardinella Lemuru (Bali Sardinela). www.fishbase.com 2006 (c). Some Simple Methods for The Assessment of Tropical Fish Stocks. www.fao.com 2007. Sardinella lemuru. www.zipcodezoo.com
- Bintoro, Gatut, 2005. Pemanfaatan Berkelanjutan Sumber Daya Ikan Tembang (Sardinella *Fimbriata* Valenciennes, 1847) di Selat Madura Jawa Timur. Sekolah Pasca sarjana Institut pertanian Bogor. Bogor

BRAWIJAYA

- Damanhuri, 1980, Diktat Fishing Ground. Bagian teknik Penangkapan Ikan Fak, Peternakan dan Perikanan Univ. Brawijaya. Malang
- Effendi, M. I, 1979. Metode Biologi Perikanan. Yayasan Dewi Sri. Bogor
- _____, 1997. Biologi Perikanan. Yayasan Pustaka Nusantara. Yogyakarta
- Gayanilo, F.C, P.Sparre, D.Pauly, 2005. FISAT User's Guide. Food and Agriculture Organization of United Nation. Rome
- Martinus, Daduk Setyohadi, Darmawan Ockti Sutjipto, 2004. Pendugaan Stok dan Daerah Penyebaran Ikan Lemuru (Sardinella lemuru) di Perairan Selat Bali Serta Alternatif Pengelolaannya. Fakultas Perikanan Universitas Brawijaya. Malang
- Poiter, M. Dan S. Nurhakim, 1994. "BIODYNEX" Biologi, Dynamics, Exploitation of the Small Pelagig Fishes in the Java Sea. PELFISH. Jakarta
- Sevilla, C.G, Ochave J.A, Punsalan T.G, Regala B.P, Uriarte G.G, 1993. Pengatar Metode Penelitian. Penerbit Universitas Indonesia. Jakarta
- Sparre, Per dan Siabren C. Vernema, 1999. Introduksi pengkajian Stok Ikan Tropis. Pusat Penelitian dan Pengembangan Pertanian. Jakarta
- Subani, W. Dan H. R. Barus, 1989. Alat Penangkapan Ikan dan Udang Di Indonesia. Balai Penelitian Perikanan Laut. Badan Penenlitian dan Pengembangan Pertanian. Departemen Peratanian, Jakarta
- Suryabrata, 1988. Metode Penelitian.Rajawali Press. Jakarta
- Tarumingkeng, R.C. 1994, Dinamika Populasi Kajian Ekologi Kuantitatif. Pustaka Sinar Harapan dan Universitas Kristen Krida Wacana. Jakarta
- Tomkiewics, Thyberg L, Holm N, Hansen A, Broberg C, Hansen E, 2002. Manual to Determine Gonadal Maturity of Baltic Cod. Danish Institute for Fisheries Research, DFU Rapport nr. 116-02
- Weatherly, 1972. Growth and Ecology of Fish Population. Academic Press Inc. London
- Wiadnya, D.G.R, 1992. Fish Population Dynamics and Fisheries. Verslag number 1380. Vakgroep Visteeij Visserij. Landbouw. Universeteit. Wegeningen. The Nedherland

Lampiran 1. Gambar ikan lemuru (sardinella lemuru) dibandingkan dengan gambar dari pustaka

Gambar hasil penelitian



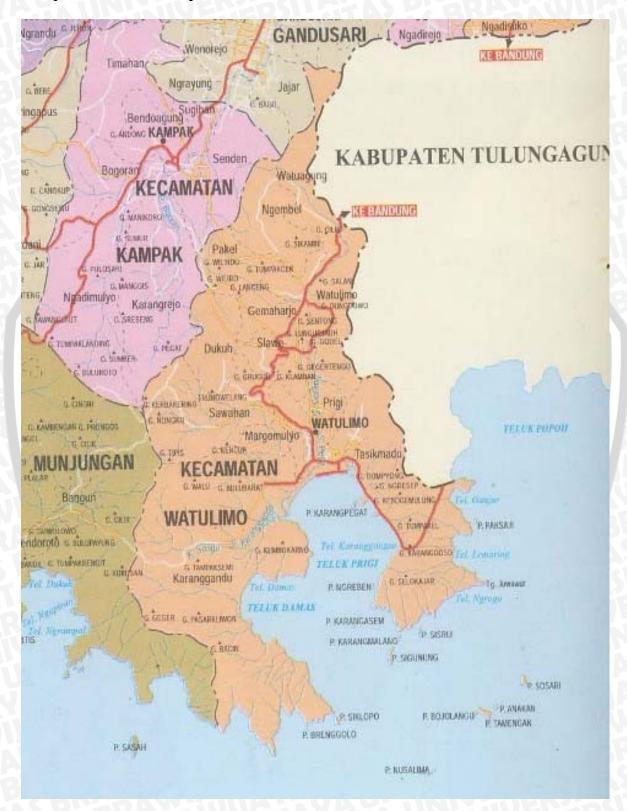
(sumber :dokumen pribadi)

(sumber :dokumen pribadi)

(sumber:www.zipcodezoo.com)

BRAWIIAYA

Lampiran 2. Gambar lokasi penelitian



(sumber :dokumen pribadi)

(sumber :dokumen pribadi)

Lampiran 3. Peta lokasi penelian

BRAWIJAYA

Lampiran 4. Peta perkiraan fishing ground

(sumber: www.googleearth.com)

BRAWIIAYA

Lampiran 5. Gambar kapal purse seine di Pelabuhan Perikanan Nusantara Prigi

(sumber :dokumen pribadi)

(sumber :dokumen pribadi)

BRAWIJAY

Lampiran 6. Perhitungan nisbah kelamin ikan lemuru (Sardinella lemuru) berdasarkan fishing ground

> Pajer

Chi Square					20511	ATION
jenis kelamin	Jumlah	fo	fh	fo-fh	(fo-fh)2	(fo- fh)2/fh
	BRA					Aarti
		36.36363		13.636363		3.71900
Betina	20	64	50	64	185.9504	8
LA CION		63.63636		13.636363	LOT	3.71900
Jantan	35	36	50	64	185.9504	8
						7.43801
	55		3 6	RA.		7
	A EAC				Nk	111
		NK Sblm	Uji X2	X2 Tabel	Sesudah	
Species	Jumlah % B:J	Uji	Hitung	0,05	uji	
Sardinella	36.36364:63.636		7.43801			
Lemuru	36	1;1.75	7	3.84	1;1	

X2 hitung=7.438017<X2 tabel (0.05)=3.84

Ho= diterima (tidak ada perbedaan nyata antara nisbah kelamin jantan dan betina

> Damas

Chi Square			SULF					
jenis kelamin	Jumlah	fo	fh	fo-fh	(fo-fh)2	(fo- fh)2/fh		
		58.441558		8.44155844		1.42519		
Betina	45	4	50	2	71.25991	8		
-		41.558441	γ	8.44155844		1.42519		
Jantan	32	6	50	2	71.25991	8		
				112/5		2.85039		
	77		7 ft [] []			6		
		7	してく		Nk	I AT		
	Jumlah %	NK Sblm	Uji X2	X2 Tabel	Sesudah			
Species	B:J	Uji	Hitung	0,05	uji			
Sardinella								
lemuru	45;32	1.4;1	2.85	3.84	1;1			

X2 hitung=2.869<X2 tabel (0.05)=3.84

Ho= diterima (tidak ada perbedaan nyata antara nisbah kelamin jantan dan betina

BRAWIJAY

➢ G.Boyolangu

Chi Square						TERR
jenis kelamin	Jumlah	fo	fh	fo-fh	(fo-fh)2	(fo- fh)2/fh
Charles I		59.887005		9.8870056		1.95505
Betina	106	6	50	5	97.75288	8
Jantan	71	40.112994 4	50	9.8870056 5	97.75288	1.95505 8
Y /	177			V	1/	3.91011 5
Species	Jumlah % B:J	NK Sblm Uji	Uji X2 Hitung	X2 Tabel 0,05	Nk Sesudah uji	
Sardinella Lemuru	106;71	1.49;1	3.91	3.84	1;1	

X2 hitung=3.91>X2 tabel (0.05)=3.84

Ho= ditolak(ada perbedaan nyata antara nisbah kelamin jantan dan betina)

G. Sari

Chi Square			الريبية الريبية			
jenis kelamin	Jumlah	fo	fh	fo-fh	(fo-fh)2	(fo- fh)2/fh
Betina	53	46.086956 5	50	3.91304347 8	15.31191	0.30623
Jantan	62	53.913043 5	50	3.91304347 8	15.31191	0.30623 8
3141	115					0.61247 6
Species	Jumlah % B:J	NK Sblm Uji	Uji X2 Hitung	X2 Tabel 0,05	Nk Sesudah uji	
Sardinella lemuru	53;62	1;1.17	0.612476	3.84	1;1	With

X2 hitung=0.612476<X2 tabel (0.05)=3.84

Ho= diterima (tidak ada perbedaan nyata antara nisbah kelamin jantan dan betina

Chi Square			·AG			
jenis kelamin	Jumlah	fo	fh	fo-fh	(fo-fh)2	(fo- fh)2/fh
Betina	76	41.5300546	50	- 8.469945355	71.73997	1.434799
Jantan	107	58.4699454	50	8.469945355	71.73997	1.434799
	183	^		~ / ~		2.869599
Species	Jumlah % B:J	NK Sblm Uji	Uji X2 Hitung	X2 Tabel 0,05	Nk Sesudah uji	P
Sardinella lemuru	76;107	1;1.4	2.869	3.84	1;1	

X2 hitung=2.869<X2 tabel (0.05)=3.84

Ho= diterima (tidak ada perbedaan nyata antara nisbah kelamin jantan dan betina

Karanggongso

Chi Square						
jenis kelamin	Jumlah	fo	fh	fo-fh	(fo-fh)2	(fo-fh)2/fh
Betina	35	58.3333333	50	8.333333333	69.44444	1.388889
Jantan	25	41.6666667	50	8.333333333	69.44444	1.388889
THE N	60					2.777778
Species	Jumlah % B:J	NK Sblm Uji	Uji X2 Hitung	X2 Tabel 0,05	Nk Sesudah uji	
Sardinella lemuru	35;25	1.4;1	2.777	3.84	1;1	

X2 hitung=2.777<X2 tabel (0.05)=3.84 Ho= diterima (tidak ada perbedaan nyata antara nisbah kelamin jantan dan betina

> Munjungan

<u>Chi Square</u> jenis kelamin	Jumlah	fo	fh	fo-fh	(fo-fh)2	(fo- fh)2/fh
Betina	136	57.6271186	50	7.627118644	58.17294	1.163459
Jantan	100	42.3728814	50	7.627118644	58.17294	1.163459
	236	1 1 1			413:6	2.326918
Species	Jumlah % B:J	NK Sblm Uji	Uji X2 Hitung	X2 Tabel 0,05	Nk Sesudah uji	
sardinella lemuru	136;100	1.36;1	2.327	3.84	1;1	

Ho= diterima (tidak ada perbedaan nyata antara nisbah kelamin jantan dan betina

> Papak

Chi Square						
jenis kelamin	Jumlah	fo	fh	fo-fh	(fo-fh)2	(fo- fh)2/fh
Betina	102	45.3333333	50	4.666666667	21.77778	0.435556
Jantan	123	54.6666667	50	4.666666667	21.77778	0.435556
	225					0.871111
Species	Jumlah % B:J	NK Sblm Uji	Uji X2 Hitung	X2 Tabel 0,05	Nk Sesudah uji	
Sardinella Lemuru	102:123	1;1.2	0.87111	3.84	1;1	

X2 hitung=0.87111<X2 tabel (0.05)=3.84
Ho= diterima (tidak ada perbedaan nyata antara nisbah kelamin jantan dan betina

Popoh

Chi Square		(413) //-				
jenis kelamin	Jumlah	fo	F fh	fo-fh	(fo-fh)2	(fo- fh)2/fh
Betina	114	53.271028	50	3.271028037	10.69962	0.213992
Jantan	100	46.728972	50	3.271028037	10.69962	0.213992 0.427985
Species	Jumlah % B:J	NK Sblm Uji	Uji X2 Hitung	X2 Tabel 0,05	Nk Sesudah uji	0.427903
Sardinella Lemuru	114:100	1.14;1	0.427985	3.84	1;1	SBR
		WAL				

X2 hitung=0.427985<X2 tabel (0.05)=3.84

Ho= diterima (tidak ada perbedaan nyata antara nisbah kelamin jantan dan betina

> Sine

Chi Square			FAG			
jenis kelamin	Jumlah	fo	fh	fo-fh	(fo-fh)2	(fo- fh)2/fh
Betina	29	39.72603	50	-10.274	105.5545	2.11109
Jantan	44	60.27397	50	10.27397	105.5545	2.11109
	73					4.222181
		1.517241	M. A	M.) ()		
Species	Jumlah % B:J	NK Sblm Uji	Uji X2 Hitung	X2 Tabel 0,05	Nk Sesud uji	ah
Sardinella Lemuru	29:44:00	1;1.5	4.222	3.84	1;1	

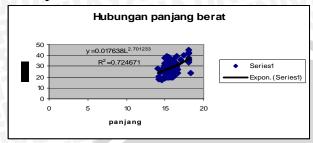
X2 hitung=4.222>X2 tabel (0.05)=3.84 Ho= ditolak (Ada perbedaan nyata antara nisbah kelamin jantan dan betina)

Total

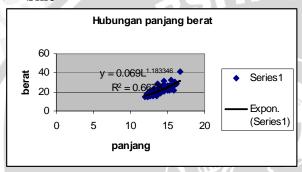
1 otai						
Chi Square		る)」「「多				
Jenis kelamin	Jumlah	刻 fo H	fh	fo-fh	(fo-fh)2	(fo- fh)2/fh
Betina	717	50.63559322	50	0.63559322	0.403978742	0.00808
Jantan	699	49.36440678	50	0.63559322	0.403978742	0.00808
	1416	- Gr	4000			0.016159
136	Jumlah %		Uji X2	X2 Tabel	Nk Sesudah	
Species	B:J	NK Sblm Uji	Hitung	0,05	uji	
Sardinella					A ATTI	Year
lemuru	50.64;49.36	1.026;1	0.0162	3.84	1;1	

X2 hitung=0.16<X2 tabel (0.05)=3.84

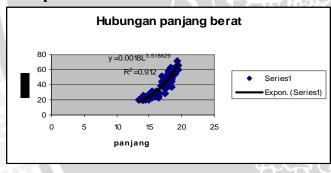
Ho= diterima (tidak ada perbedaan nyata antara nisbah kelamin jantan dan betina

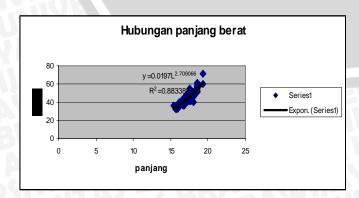

Lampiran 7. Perhitungan hubungan panjang berat tiap fishing ground

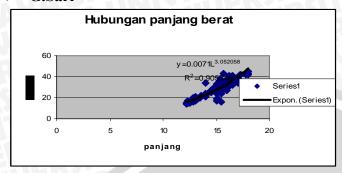
	Damas	G.boyolangu	G.Solimo	G. Sari	Karanggongso
Multiple R	0.883388	0.80249	0.930237	0.905548	0.88374
R Squ <mark>ar</mark> e	0.780374	0.644004	0.865341	0.820018	0.776389
Adj R Square Standart	0.777445	0.642408	0.864597	0.818833	0.075831
Error	0.78485	0.166339	0.083227	0.121422	0.075831
Observations	77	225	183	154	63
df	76	224	182	153	62
Interce <mark>pt (</mark> a)	-3.92925	-4.178968	-4.927685	-4.134501	-4.71979
b	2.709066	2.744023	3.052058	2.752459	2.869462
a	0.019658411	0.015314304	0.007243252	0.016010652	0.008917051
Persam <mark>a</mark> an	W=0.01965841L ^{2.709066}	W=0.015143L ^{3.052058}	W=0.00714325L ^{3.052058}	W=0.01601065L ^{2.752459}	W=0.00891705L ^{2.8699462}
t hit	35.12607136	27.32372428	27.05725526	39.43775964	17.87905437
t tab <mark>el</mark>	1.99	1.97	1.96	1.97	2
Keterangan	t hit>t tab=allometrik (-)	t hit>t tab=allometrik (-)	t hit>t tab=allometrik (-)	t hit>t tab=allometrik (-)	t hit>t tab=allometrik (-)

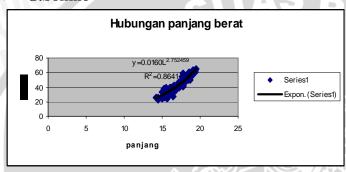

	Munjungan	Pajer	Papak	Popoh	Sine
Multiple R	0.930065	0.990051	0.953955	0.724671	0.887847
R Square	0.865021	0.980201	0.91003	0.525148	0.788272
Adj R Square Standart	0.864447	0.980034	0.90963	0.522908	0.78609
Error	0.072269	0.070593	0.107472	0.11377	0.082781
O bservations	237	1217	227	214	99
df	236	120	226	213	98
Intercept (a)	-4.66555	-5.12127	-6.32411	-4.03773	-2.67311
b	2.974188	3.13002	3.518629	2.701233	2.183346
а	0.009414069	0.005968438	0.001793	0.017638	0.069037
Persamaan	W=0.00947407L ^{2.974188}	W=0.00596844L ^{3.13002}	W=0.001793L ^{3.518629}	W=0.017638L ^{2.701233}	W=0.069037L ²¹⁸³³⁴⁶
t hit	56.92424146	12.89106313	25.00141	50.99681	26.776
t tabel	1.97	1.98	1.97	1.97	1.98
Keterangan	t hit>t tab=allometrik (-)	t hit>t tab=allometrik (-)	t hit>t tab=allometrik (-)	t hit>t tab=allometrik (-)	t hit>t tab=allometrik (-)

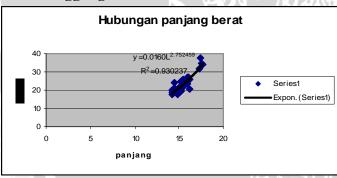
BRAWIUNL

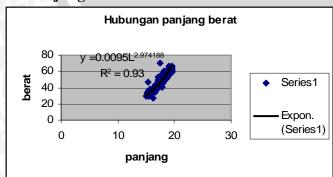

> Popoh


> Sine

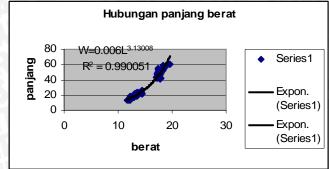

> Papak

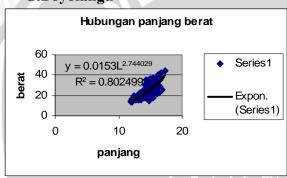

> Damas


➤ G.Sari


> G.Solimo

Karanggongso


> Munjungan

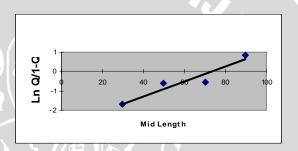

BRAWIJAY

RAWINAL

> Pajer

► G.Boyolangu

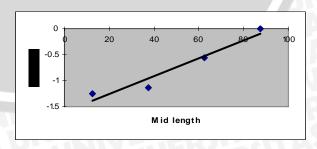
> Total



Lampiran 9. Perhitungan Lm untuk tiap *fishing ground*, bulan penangkapan dan secara total

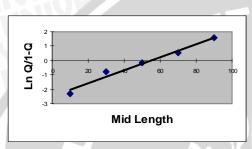
> Damas

CLASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	Q	1-Q	Q/1-Q	Ln Q/1-Q
15.4 - 16.129	15.76428935	10	1	9	0.1	0.9	0.111111	- 2.1972246
16.130 - 16.859	16.49428935	13	2	11	0.154	0.846	0.181818	1.7047481
16.860 - 17.589	17.22428935	20	7	13	0.35	0.65	0.538462	0.6190392
17.560 - 18.319	17.92428935	22	8	14	0.364	0.636	0.571429	0.5596158
18.320 - 19.049	18.68428935	10	7	3	0.7	0.3	2.333333	0.8472979
19.050 - 19.779	19.41428935	2	2	0	1	0	#DIV/0!	#DIV/0!


Regression	n statistic
Multiple R	0.972
R Square	0.945
Adj R Square	0.927
Standard Error	0.319
Observation	5
Intercept	-18
X Variable 1	0.997
Lm	18.067

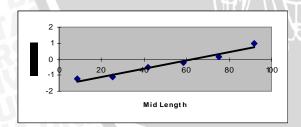
G. Boyolangu

	2 G. Boyolangu								
	CLASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	Q	1-Q	Q/1-Q	Ln Q/1-Q
	12 - 12.884	12.4418736	20	0	20	0	1	0	#NUM!
1	12.885 - 13.769	13.3268736	24	0	24	0	1	0	#NUM!
	13.770 - 14.654	14.2118736	27	6	21	0.222	0.778	0.285714	-1.252763
	14.655 - 15.539	15.0968736	86	21	65	0.244	0.756	0.323077	- 1.1298648
	15.540 - 16.424	15.9818736	58	21	37	0.362	0.638	0.567568	- 0.5663955
	16.425 - 17.309	16.8668736	10	5	5	0.5	0.5	1	0


Regressio	on statistic
Multiple R	0.97
R Square	0.941
Adj R Square	0.911
Standard Error	0.171
Observation	4
Intercept	-8.33
X Variable 1	0.488
Lm	17.049

BRAWIJAY

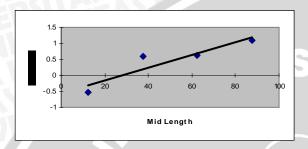
G. Sari


CLASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	Q	1-Q	Q/1-Q	Ln Q/1-Q
12.2 - 13.029	12.61444095	22	0	22	0	1	0	#NUM!
13.030 - 13.859	13.44444095	9	0	9	0	1	0	#NUM!
13.860 - 14.689	14.27444095	11	1	10	0.091	0.909	0.1	2.3025851
14.690 - 15.519	15.10444095	55	17	38	0.309	0.691	0.447368	0.8043728
15.520 - 16.349	15.93444095	35	16	19	0.457	0.543	0.842105	0.1718503
16.350 - 17.179	16.76444095	16	10	6	0.625	0.375	1.666667	0.5108256
17.180 - 18.008	17.59444095	6	5	1	0.833	0.167	5	1.6094379

Regressio	on statistic
Multiple R	0.988
R Square	0.976
Adj R Square	0.968
Standard Error	0.264
Observation	5
Intercept	-17.8
X Variable 1	1.01
Lm	16.145

G. Solimo

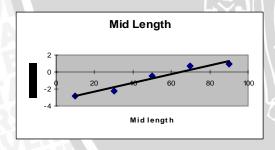
7 G. Sullino								
CLASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	(d	1-Q	Q/1-Q	Ln Q/1-Q
14.2 - 15.054	14.626925	9	2	7	0.222	0.778	0.285714	-1.252763
15.055 - 15.909	15.481925	34	15	19	0.441	0.559	0.789474	- 0.2363888
15.910 - 16.764	16.336925	64	16	48	0.25	0.75	0.333333	- 1.0986123
16.765 - 17.619	17.191925	32	12	20	0.375	0.625	0.6	- 0.5108256
17.620 - 18.474	18.046925	28	15	13	0.536	0.464	1.153846	0.1431008
18.475 - 19.328	18.901925	15	11	4 4	0.733	0.267	2.75	1.0116009
19.329 - 20.183	19.755925	1	3/1 E	0	1	0	#DIV/0!	#DIV/0!



Regression	statistic
Multiple R	0.833
R Square	0.693
Adj R Square	0.617
Standard Error	0.518
Observation	6
Intercept	-7.63
X Variable 1	0.436
Lm	17.507

BRAWIJAY

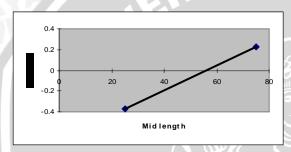
> Karanggongso


CLASS	MID	EDEO	MATURE	IMMATURE.			04.0	1 0/1 0
INTERVAL	LENGTH	FREQ	MATURE	IMMATURE	Q	1-Q	Q/1-Q	Ln Q/1-Q
14.2 - 14.939	14.56972	19	7	12	0.368	0.632	0.583333	0.5389965
14.940 - 15.679	15.30972	26	17	9	0.654	0.346	1.888889	0.6359888
15.680 - 16.419	16.04972	14	9	5	0.643	0.357	1.8	0.5877867
16.420 - 17.159	16.78972	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
17.160 - 17.899	17.52972	4	3	1	0.75	0.25	3	1.0986123

Regressio	on statistic
Multiple R	0.865
R Square	0.749
Adj R Square	0.623
Standard Error	0.427
Observation	4
Intercept	-7.11
X Variable 1	0.47
Lm	14.929

Muniungan

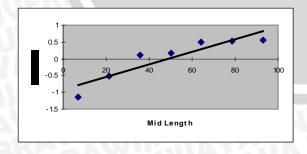
Munjungan		Y						
CLASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	Q	1-Q	Q/1-Q	Ln Q/1-Q
15 - 15.891	15.445635	18		17	0.056	0.944	0.058824	- 2.8332133
15.892 - 16.783	16.337635	53	5	48	0.094	0.906	0.104167	- 2.2617631
16.784 - 17.675	17.229635	61	24	37	0.393	0.607	0.648649	- 0.4328641
17.676 - 18.567	18.121635	73	48	25	0.658	0.342	1.92	0.6523252
18.568 - 19.459	19.013635	25	18	7	0.72	0.28	2.571429	0.9444616
19.460 - 20.351	19.905635	7	7	- CO (S)	21	0	#DIV/0!	#DIV/0!



Regression statistic							
Multiple R	0.974						
R Square	0.948						
Adj R Square	0.931						
Standard Error	0.446						
Observation	5						
Intercept	-21						
X Variable 1	1.174						
Lm	17.899						

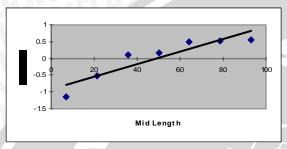
SRAWIJAYA

1	T .	
	Pajer	
_	1 alu	


CĽASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	Q	1-Q	Q/1-Q	Ln Q/1-Q
11.6 - 12.394	11.99699	10	0	10	0	1	0	#NUM!
12.395 - 13.189	12.79199	27	0	27	0	1	0	#NUM!
13.190 - 13.983	13.58699	29	0	29	0	1	0	#NUM!
13.984 - 14.778	14.38099	10	0	10	0	+11 -	0	#NUM!
14.779 - 15.573	15.17599	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
15.574 - 16.368	15.97099	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
16.369 - 17.163	16.76599	1	0	1	0	1	0	#NUM!
17.164 - 17.958	17.56099	22	9	13	0.409	0.591	0.69231	-0.367725
17.959 - 18.753	18.35599	18	10	8	0.556	0.444	1.25	0.2231436
18.754 - 19.548	19.15099	3	3	0	1	0	#DIV/0!	#DIV/0!
19.549 - 20.343	19.94599	1	1	0	1	0	#DIV/0!	#DIV/0!

Regressio	on statistic
Multiple R	1
R Square	1
Adj R Square	65535
Standard Error	0
Observation	2
Intercept	-13.4
X Variable 1	0.743
Lm	18.055

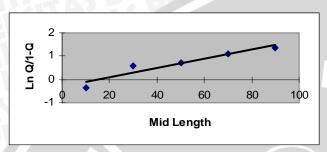
Papak


- I apak			- VIII					
CLASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	ø	1-Q	Q/1-Q	Ln Q/1-Q
13.5 - 14.385	13.942515	21	13	8 ()	0.619	0.381	1.625	0.4855078
14.386 - 15.271	14.828515	59	31	28	0.525	0.475	1.107143	0.1017827
15.272 - 16.157	15.714515	37	20	17	0.541	0.459	1.176471	0.1625189
16.158 - 17.043	16.600515	16	6	10	0.375	0.625	0.6	- 0.5108256
17.044 - 17.929	17.486515	37	9	28	0.243	0.757	0.321429	- 1.1349799
17.930 - 18.815	18.372515	49	31	18	0.633	0.367	1.722222	0.5436154
18.816 - 19.701	19.258515	8	5	3	0.625	0.375	1.666667	0.5108256

Regression statistic						
Multiple R	0.041					
R Square	0.002					
Adj R Square	-0.2					
Standard Error	0.689					
Observation	7					
Intercept	2.249					
X Variable 1	-0.01					
Lm	18.262					

SRAWIJAY

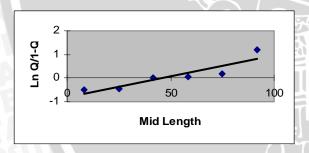
CLASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	Q	1-Q	Q/1-Q	Ln Q/1-Q
14 - 14.876	14.438245	13	3	10	0.231	0.769	0.3	1.2039728
14.877 - 15.753	15.315245	118	44	74	0.373	0.627	0.594595	- 0.5198755
15.754 - 16.630	16.192245	72	41	31	0.569	0.431	1.322581	0.2795849
16.631 - 17.507	17.069245	3	3	0	1	0	#DIV/0!	#DIV/0!
17.508 - 18.384	17.946245	8	6	2	0.75	0.25	3	1.0986123



Regressio	on statistic
Multiple R	0.988
R Square	0.975
Adj R Square	0.963
Standard Error	0.192
Observation	4
Intercept	-10.6
X Variable 1	0.657
Lm	16.105

> Sine								
CLASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	$\wedge \mathbf{q}$	1-Q	Q/1-Q	Ln Q/1-Q
12 - 12.765	12.382475	8	0	8 69	0	_1	0	#NUM!
12.766 - 13.531	13.148475	16	0	16	0	1	0	#NUM!
13.532 - 14.297	13.914475	18	5	13	0.278	0.722	0.384615	- 0.9555114
14.298 - 15.063	14.680475	38	20	18	0.526	0.474	1.111111	0.1053605
15.064 - 15.829	15.446475	12	45	8	0.333	0.667	0.5	- 0.6931472
15.830 - 16.595	16.212475	6	2	4	0.333	0.667	0.5	- 0.6931472
16.596 - 17.361	16.978475	1	11		W I	0	#DIV/0!	#DIV/0!

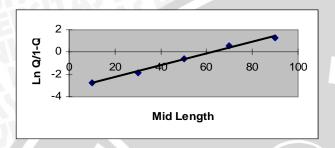
> Mei


CLASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	Q	1-Q	Q/1-Q	Ln Q/1- Q
14.2 - 15.066	14.63312	73	30	43	0.41096	0.5890	0.69767	-0.36
15.067 - 15.933	15.50012	73	47	26	0.64384	0.3567	1.80769	0.59205
15.934 - 16.8	16.36712	44	35	9	0.79546	0.2046	3.8889	1.35812
16.801 - 17.667	17.23412	4	3	1	0.75	0.25	3	1.09861
17.668 - 15.534	18.10112	6	4	2	0.666667	0.33333	2	0.693147

Regression statistic						
Multiple R	0.6292					
R Square	0.3959					
Adj R Square	0.1945					
Standard Error	0.5893					
Observation	5					
Intercept	-4.2561					
X Variable 1	0.3014					
Lm	14.123					
	《 //					

> Juni

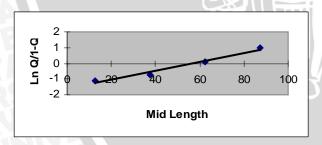
CLASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	Q	1-Q	Q/1-Q	Ln Q/1- Q
13.1 - 14.125	13.61255	27	14	13	0.519	0.48148	1.076923	0.074108
14.126 - 15.151	14.63855	181	69	112	0.381	0.61878	0.616071	-0.48439
15.152 - 16.177	15.66455	314	123	191	0.392	0.60828	0.643979	-0.44009
16.178 - 17.203	16.69055	59	32	27	0.542	0.45763	1.185185	0.169899
17.204 - 18.228	17.71655	17	13	4	0.765	0.23529	3.25	1.178655
18.229 - 19.254	18.74155	2	121	ALIAY .	0.5	0.5	1	0



Regression	on statistic
Multiple R	0.4645
R Square	0.2158
Adj R Square	0.0197
Standard Error	0.5958
Observation	6
Intercept	-2.273
X Variable 1	0.1456
Lm	15.6073

SRAWIJAYA

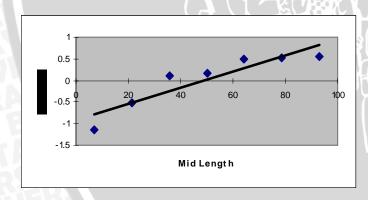
▶ Juli


CLASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	Q	1-Q	Q/1-Q	Ln Q/1- Q
15 - 15.966	15.483245	48	3	45	0.063	0.938	0.066667	-2.70805
15.967 -16.933	16.450245	127	17	110	0.134	0.866	0.154545	-1.86727
16.934 - 17.9	17.417245	115	40	75	0.348	0.652	0.533333	-0.62861
17.901 - 18.867	18.384245	91	58	33	0.637	0.363	1.757576	0.563935
18.868 - 19.834	19.351245	19	15	4	0.789	0.211	3.75	1.321756

Regression statistic								
Multiple R	0.9967							
R Square	0.99344							
Adj R Square	0.90126							
Standard Error	0.1555							
Observation	5							
Intercept	-19.559							
X Variable 1	1.08489							
Lm	18.0289							

Agustus

> Agustus					S			
CLASS INTERVAL	MID LENGTH	FREQ	MATURE	IMMATURE	1/Q1	1-Q	Q/1-Q	Ln Q/1- Q
11.6 - 12.566	12.083245	43	0	43	0	1	0	#NUM!
12.567 - 13.533	13.050245	110	0	110	0	51	0	#NUM!
13.534 - 14.5	16.017245	35	0	35	0	1	0	#NUM!
14.501 - 15.466	14.984245	8	0	8	0	12	0	#NUM!
15.467 - 16.433	15.950245	4	1-1	3	0.25	0.75	0.333333	-1.09861
16.434 - 17.4	16.917245	40	13	27	0.325	0.675	0.481481	-0.73089
17.401 - 18.367	17.884245	104	55	49	0.529	0.471	1.122449	0.115513
18.368 - 19.334	18.851245	48	35	13	0.729	0.271	2.692308	0.990399
19.335 - 20.301	19.818245	8	8	0	1	0	#DIV/0!	#DIV/0!


Regressio	Regression statistic								
Multiple R	0.9856								
R Square	0.97142								
Adj R Square	0.95713								
Standard Error	0.1929								
Observation	4								
Intercept	-12.9812								
X Variable 1	0.73562								
Lm	17.6467								

SRAWIJAY

> Total

CLASS INTERVAL	MID LENGTH	FRE Q	MATURE	IMMATUR E	Q	1-Q	Q/1-Q	Ln Q/1-Q
11.6 - 12.767	12.18348598	53		53	0	1	0	#NUM!
12.768 - 13.935	13.35148598	122	1	121	0.008	0.991 8	0.008264 5	4.795790 5
13.936 - 15.103	14.51948598	306	111	195	0.362 7	0.637	0.569230 8	0.563469 4
15.104 - 16.271	15.68748598	544	212	332	0.389	0.610 3	0.638554 2	- 0.448548 7
16.272 - 17.438	16.85548598	229	92	137	0.401 7	0.598	0.671532 8	0.398192 3
17.439 - 18.605	18.02248598	288	163	125	0.566	0.434	1.304	0.265436 5
18.606 - 19.772	19.18948598	58	44	14	0.758 6	0.241 4	3.142857 1	1.145132 3

Regression statistic								
Multiple R	0.836487							
R Square	0.69971							
Adj R Square	0.624638							
Standard Error	1.26233							
Observation	6							
Intercept	-13.6268							
X Variable 1	0.788985							
Lm	17.2797							

BRAWIJAYA

Lampiran 10. Perhitungan Lc untuk tiap *fishing ground*, bulan penangkapan dan secara total

> Damas

CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
15.4 - 16.129	16.1286	10	161.28579	1.5936364	2.5396769	25.3967686	5.76780368
16.130 - 16.859	16.8586	13	219.16152	0.8636364	0.7458678	9.696280992	15.5891155
16.860 - 17.589	17.5886	20	351.77157	- 0.1336364	0.0178587	0.357173554	23.3383401
17.560 - 18.319	18.2886	22	402.34873	0.5663636	0.3207678	7.056890909	19.7311681
18.320 - 19.049	19.0486	10	190.48579	1.3263636	1.7592405	17.59240496	8.88954245
19.050 - 19.779	19.7786	2	39.557157	2.0563636	4.2286314	8.45726281	2.26172792

G. Boyolangu

J. Doyolan	5u						
CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
12 - 12.884	12.4419	20	248.83747	-2.4308	5.9087886	118.1757728	7.67037262
12.885 - 13.769	13.3269	24	319.84497	-1.5458	2.3894976	57.34794336	28.1977328
13.770 - 14.654	14.2119	27	383.72059	-0.6608	0.4366566	11.78972928	58.0699174
14.655 - 15.539	15.0969	86	1298.3311	0.2242	0.0502656	4.32284504	66.9927054
15.540 - 16.424	15.9819	58	926.94867	1.1092	1.2303246	71.35882912	43.2955355
16.425 - 17.309	16.8669	10	168.66874	1.9942	3.9768336	39.7683364	15.6746555

G. Sari

CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
12.2 - 13.029	12.6144	22	277.5177	2.4361039	5.9346022	130.5612482	4.84968788
13.030 - 13.859	13.4444	9	120.99997	- 1.6061039	2.5795697	23.21612753	12.3856298
13.860 - 14.689	14.2744	11	157.01885	0.7761039	0.6023373	6.625709833	21.5227205
14.690 - 15.519	15.1044	55	830.74425	0.0538961	0.0029048	0.159763451	25.4478445
15.520 - 16.349	15.9344	35	557.70543	0.8838961	0.7812723	27.34453129	20.4729112
16.350 - 17.179	16.7644	16	268.23106	1.7138961	2.9374399	46.99903768	11.2068348
17.180 - 18.008	17.5944	6	105.56665	2.5438961	6.4714074	38.82844432	4.17408318

➢ G. Solimo

CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
14.2 - 15.054	14.627	9	131.6423	-2.10713	4.439979	39.9598078	9.9822844
15.055 - 15.909	15.482	34	526.3855	-1.25213	1.567819	53.30583669	29.939874
15.910 - 16.764	16.337	64	1045.563	-0.39713	0.157709	10.09336372	51.338925
16.765 - 17.619	17.192	32	550.1416	0.457874	0.209649	6.708764484	50.329237
17.620 - 18.474	18.047	28	505.3139	1.312874	1.723639	48.26189122	28.207897
18.475 - 19.328	18.902	15	283.5289	2.167874	4.699679	70.49518581	9.0385307
19.329 - 20.183	19.756	1	19.75593	3.021874	9.131724	9.131724387	1.6596086

> Karanggongso

CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
14.2 - 14.939	14.5697	19	276.82468	- 0.8222222	0.6760494	12.84493827	13.6514031
14.940 - 15.679	15.3097	26	398.05272	0.0822222	0.0067605	0.17577284	24.0028976
15.680 - 16.419	16.0497	14	224.69608	0.6577778	0.4326716	6.057402469	16.7609878
16.420 - 17.159	16.7897	0	0	1.3977778	1.9537827	0	4.64820324
17.160 - 17.899	17.5297	4	70.11888	2.1377778	4.5700938	18.28037531	0.5119413

L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
15.4456	18	278.02143	1.9910042	3.9640978	71.35376043	7.59112409
16.3376	53	865.89466	1.0990042	1.2078103	64.01394454	46.5096631
17.2296	61	1051.0077	0.2070042	0.0428507	2.613895558	76.3847307
18.1216	73	1322.8794	0.6849958	0.4692192	34.25300302	63.7012867
19.0136	25	475.34088	1.5769958	2.4869157	62.1728923	26.9754161
19.9056	7	139.33945	2.4689958	6.0959402	42.67158115	5.80051288
	L(j) 15.4456 16.3376 17.2296 18.1216 19.0136	L(j) F(j) 15.4456 18 16.3376 53 17.2296 61 18.1216 73 19.0136 25	L(j) F(j) F(j) L(j) 15.4456 18 278.02143 16.3376 53 865.89466 17.2296 61 1051.0077 18.1216 73 1322.8794 19.0136 25 475.34088	L(j) F(j) F(j) L(j) L(j) - x 15.4456 18 278.02143 1.9910042 16.3376 53 865.89466 1.0990042 17.2296 61 1051.0077 0.2070042 18.1216 73 1322.8794 0.6849958 19.0136 25 475.34088 1.5769958	L(j) F(j) F(j) L(j) L(j) - x (L(j) - x)2 15.4456 18 278.02143 1.9910042 3.9640978 16.3376 53 865.89466 1.0990042 1.2078103 17.2296 61 1051.0077 0.2070042 0.0428507 18.1216 73 1322.8794 0.6849958 0.4692192 19.0136 25 475.34088 1.5769958 2.4869157	L(j) F(j) L(j) L(j) - x (L(j) - x)2 F(j) (L(j) - x)2 15.4456 18 278.02143 1.9910042 3.9640978 71.35376043 16.3376 53 865.89466 1.0990042 1.2078103 64.01394454 17.2296 61 1051.0077 0.2070042 0.0428507 2.613895558 18.1216 73 1322.8794 0.6849958 0.4692192 34.25300302 19.0136 25 475.34088 1.5769958 2.4869157 62.1728923

Pajer	ajer						
CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
11.6 - 12.394	11.997	10	119.9699	- 2.9955785	8.9734906	89.73490624	7.38268903
12.395 - 13.189	12.792	27	345.38373	2.2005785	4.8425458	130.7487363	10.4679067
13.190 - 13.983	13.587	29	394.02271	- 1.4055785	1.975651	57.29387768	13.3383578
13.984 - 14.778	14.381	10	143.8099	- 0.6115785	0.3740283	3.740282768	15.2720475
14.779 - 15.573	15.176	0	JUO 1	0.1834215	0.0336434	0	15.7178323
15.574 - 16.368	15.971	0	0	0.9784215	0.9573086	0	14.5373513
16.369 - 17.163	16.766	1	16.76599	1.7734215	3.1450238	3.145023773	12.083011
17.164 - 17.958	17.561	22	386.34178	2.5684215	6.5967889	145.1293566	9.02531372
17.959 - 18.753	18.356	18	330.40782	3.3634215	11.312604	203.6268739	6.05824304
18.754 - 19.548	19.151	3	57.45297	4.1584215	17.292469	51.87740781	3.65450304
19.549 - 20.343	19.946	1	19.94599	4.9534215	24.536384	24.53638443	3.4803E-10

Panak

Гарак							
CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
13.5 - 14.385	13.9425	21	292.79282	- 2.4277181	5.893815	123.7701147	16.0479295
14.386 - 15.271	14.8285	59	874.88239	- 1.5417181	2.3768946	140.2367803	31.4719813
15.272 - 16.157	15.7145	37	581.43706	- 0.6557181	0.4299662	15.90874853	45.6932105
16.158 - 17.043	16.6005	16	265.60824	0.2302819	0.0530298	0.848476338	49.1136007
17.044 - 17.929	17.4865	37	647.00106	1.1162819	1.2460854	46.10515854	39.0817849
17.930 - 18.815	18.3725	49	900.25324	2.0022819	4.009133	196.4475151	23.0234031
18.816 - 19.701	19.2585	8	154.06812	2.8882819	8.3421726	66.73738044	10.0412356

Popoh

CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
14 - 14.876	14.4382	13	187.69719	- 1.2417336	1.5419024	20.04473178	21.5069548
14.877 - 15.753	15.3152	118	1807.1989	- 0.3647336	0.1330306	15.69761454	94.2964249
15.754 - 16.630	16.1922	72	1165.8416	0.5122664	0.2624168	18.89401094	82.327273
16.631 - 17.507	17.0692	3	51.207735	1.3892664	1.930061	5.790183017	14.3127943
17.508 - 18.384	17.9462	8	143.56996	2.2662664	5.1359632	41.08770554	0.49549278

> Sine

/ Sine									
CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)		
12 - 12.76	5 12.382475	8	99.0598	- 1.9343434	3.7416845	29.93347618	5.01218603		
12.766 - 13.53	13.148475	16	210.3756	- 1.1683434	1.3650264	21.84042209	15.4126048		
13.532 - 14.29	7 13.914475	18	250.46055	- 0.4023434	0.1618802	2.913844305	27.2171047		
14.298 - 15.06	3 14.680475	38	557.85805	0.3636566	0.1322461	5.025351714	27.6010007		
15.064 - 15.82	15.446475	12	185.3577	1.1296566	1.276124	15.31348748	16.0740292		
15.830 - 16.59	16.212475	6	97.27485	1.8956566	3.5935138	21.56108289	5.37578262		
16.596 - 17.36	16.978475	_1_1_1	16.978475	2.6616566	7.0844157	7.084415674	1.03246578		

> Mei

CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
14.2 - 15.066	14.63312	73	1068.2178	-0.853995	0.7293075	53.23944458	49.08762036
15.067 - 15.933	15.50012	73	1131.5088	0.013005	0.0001691	0.012346492	82.25746103
15.934 - 16.8	16.36712	44	720.15328	0.880005	0.7744088	34.0739872	47.54487747
16.801 - 17.667	17.23412	4	68.93648	1.747005	3.0520265	12.20810588	9.478885461
17.668 - 15.534	18.10112	6	108.60672	2.614005	6.8330221	40.99813284	0.651832378

> Juni

CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
13.1 - 14.125	13.61255	27	367.53885	1.8194367	3.3103498	89.37944417	90.2534467
			7 117	(
14.126 - 15.151	14.63855	181	2649.5776	0.7934367	0.6295417	113.9470557	186.990678
15.152 - 16.177	15.66455	314	4918.6687	0.2325633	0.0540857	16.98291106	280.664944
16.178 - 17.203	16.69055	59	984.74245	1.2585633	1.5839817	93.45491818	95.3452693
17.204 - 18.228	17.71655	17	301.18135	2.2845633	5.2192296	88.72690361	7.33082569
18.229 - 19.254	18.74155	2	37.4831	3.3095633	10.953209	21.90641891	0.12816763

> Juli

CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
15 - 15.966	15.48325	48	743.19576	1.7067564	2.9130173	139.8248315	38.7532977
15.967 -16.933	16.45025	127	2089.1811	- 0.7397564	0.5472395	69.49941578	115.03257
16.934 - 17.9	17.41725	115	2002.9832	0.2272436	0.0516397	5.938561487	144.479424
17.901 - 18.867	18.38425	91	1672.9668	1.1942486	1.4262298	129.7869098	76.7824243
18.868 - 19.834	19.35125	19	367.67375	2.1612486	4.6709956	88.74891676	17.2659752

CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
11.6 - 12.566	12.08325	43	519.57975	-3.49036	12.182613	523.852356	23.7293936
12.567 - 13.533	13.05025	110	1435.5275	-2.52336	6.3673457	700.4080259	37.0764904
13.534 - 14.5	14.01725	35	490.60375	-1.55636	2.4222564	84.77897574	50.1858244
14.501 - 15.466	14.98425	8	119.874	-0.58936	0.3473452	2.778761677	58.8483069
15.467 - 16.433	15.95025	4	63.801	0.37664	0.1418577	0.567430758	59.7836583
16.434 - 17.4	16.91725	40	676.69	1.34364	1.8053684	72.21473798	52.6187813
17.401 - 18.367	17.88425	104	1859.962	2.31064	5.3390572	555.2619498	40.1207968
18.368 - 19.334	18.85125	48	904.86	3.27764	10.742924	515.6603505	26.5013977
19.335 - 20.301	19.81825	8	158.546	4.24464	18.016969	144.1357498	15.1648625

> Total

7 1000							
CLASS INTERVAL	L(j)	F(j)	F(j) L(j)	L(j) - x	(L(j) - x)2	F(j) (L(j) - x)2	Fc (x)
11.6 - 12.767	12.183486	53	645.724757	-3.710568	13.768311	729.7204921	35.681642
12.768 - 13.935	13.351486	122	1628.88129	-2.542568	6.4646495	788.687238	137.30975
13.936 - 15.103	14.519486	306	4442.96271	-1.374568	1.8894358	578.1673585	319.39057
15.104 - 16.271	15.687486	544	8533.99237	-0.206568	0.0426701	23.21255184	449.06271
16.272 - 17.438	16.855486	229	3859.90629	0.9614325	0.9243525	211.6767115	381.64193
17.439 - 18.605	18.076486	288	5206.02796	2.1824325	4.7630116	1371.747346	187.95631
18.606 - 19.772	19.189486	58	1112.99019	3.2954325	10.859875	629.872771	61.024386

Lampiran 11. Grafik pemisahan kelompok umur menggunakan metode Bhattacarya untuk tiap tanggal penangkapan

Mei 2006

BRAWIJAYA

Lampiran 12. Produksi ikan lemuru di Pelabuhan Perikanan Nusantara Prigi

Produksi ikan lemuru selama kurun waktu 1999-2005 (dalam ton)

1999	2000	2001	2002	2003	2004	2005
78	30	655	1.958	1.126	2.121	3.502

Produksi lemuru selama tahun 2005

	Bulan	Produksi (dalam ton)
	Januari	168
	Februari	116
	Maret	84
	April	_185
1	Mei	255
	Juni	79
	Juli	56
	Agustus	130
	September	362
	Oktober	1230
	November	286
1	Desember	551

> Tiap fishing ground

Fishing	Tingkat Kematangan Gonad (TKG)							Total
gound	I	II	∑I+II	III	IV	∑III+IV	terdek si	445
FG Damas	46.75	18.18	64.94	22.08	12.987	35.064	0	77
FG	23.81	11.11	33.33	26.98	34.920	61.904	4.7619	63
Karanggongso FG G.Boyolangu	39.56	13.33	52.89	14.22	11.555	25.778	21.333	225
FG G. Sari	33.11	9.74	42.86	16.88	16.233	33.117	24.025	154
FG G.Solimo	70.24	14.21	60.66	28.42	10.928	39.344	0	183
FG Pajer	19.83	5.79	25.62	9.09	9.9173	19.008	55.371	121
FG Papak FG	31.27 40.50	17.18 16.03	48.46 56.54	23.79 27.43	26.872 16.033	50.660 43.460	0.8810	227 237
Munjungan FG Popoh	45.32	8.88	54.21	24.77	21.028	45.794	0	214
FG Sine	32.32	11.11	43.43	22.22	9.0909	31.313	25.252	99
		K E	50.06	V.St	Fe P	38.56	11.375	1600

Bulan Penangkapan

			t Kematangan Go		
	I	II	图	I IV	TDK TERDETEKSI
Mei	28	11	27	32.5	1.5
Juni	43.83333	13.5	23.66666667	18.33333333	0.666666667
Juli	49.75	16.75	24	12	18
Agustus	21.25	7	16.5	11.5	43.75

Lampiran 14. Presentase rekruitmen untuk masing-masing bulan

Bulan	Presentase		
Januari	0.23		
Februari	3.31		
Maret	7.36		
April	9.99		
Mei	10.11		
Juni	10.14		
Juli	14.91		
Agustus	16.50		
September	16.32		
Oktober	8.91		
November	2.22		
Desember	0.00		