Lampiran

Lampiran 1

Pernyataan Keaslian Tulisan

Saya yang bertanda tangan dibawah ini:

Nama : Nurmalia Nirwana
NIM : 125070407111008
Program Studi : Program Studi Kedokteran Gigi

Fakultas Kedokteran Gigi Universitas Brawijaya,

menyatakan dengan sebenarnya bahwa skripsi yang saya tulis ini benar-benar hasil karya sendiri, bukan merupakan pengambilan tulisan atau pikiran orang lain yang saya akui sebagai tulisan atau pikiran saya sendiri. Apabila dikemudian hari dapat dibuktikan bahwa skripsi ini adalah jiplakan, maka saya bersedia menerima sanksi atas perbuatan tersebut.

Malang, 23 Oktober 2016

Nurmalia Nirwana
NIM. 125070407111008
Lampiran 2

Foto Alat dan Bahan Penelitian

Keterangan:
1 = Inkubator
2 = Pewarna Gram (kristal violet, lugol, alkohol 96%, safranin)
3 = Aquades
4 = Ose
5 = Mikroskop
6 = Bunsen brander
7 = Object glass
8 = H₂O₂ 3%
9 = Tabung Reaksi
Keterangan:
10 = Rak tabung reaksi
11 = Vortex
12 = Tip Mikropipet
13 = Cawan petri
14 = Ekstrak etanol daun pare
15 = BHIA
16 = Spektrofotometer
17 = Mikropipet
Lampiran 3

Hasil Uji Statistik

1. Uji Normalitas dan Homogenitas

<table>
<thead>
<tr>
<th>Tests of Normality</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona Hambat</td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td></td>
<td>.175</td>
<td>28</td>
</tr>
</tbody>
</table>

a. Lilliefors Significance Correction

<table>
<thead>
<tr>
<th>Test of Homogeneity of Variances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona Hambat</td>
</tr>
<tr>
<td>Levene</td>
</tr>
<tr>
<td>Statistic</td>
</tr>
<tr>
<td>1.714</td>
</tr>
</tbody>
</table>

2. Uji One way ANOVA

<table>
<thead>
<tr>
<th>Descriptives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona Hambat</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>0%</td>
</tr>
<tr>
<td>3.125%</td>
</tr>
<tr>
<td>12.5%</td>
</tr>
<tr>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona Hambat</td>
</tr>
<tr>
<td>Sum of Squares</td>
</tr>
<tr>
<td>Between Groups</td>
</tr>
<tr>
<td>Within Groups</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
3. Uji Post Hoc Tukey Test

Multiple Comparisons

Dependent Variable: Zona Hambat

Tukey HSD

<table>
<thead>
<tr>
<th>(I) Kelompok</th>
<th>(J) Kelompok</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>3.125%</td>
<td>-10.5050*</td>
<td>.32064</td>
<td>.000</td>
<td>-11.5473</td>
</tr>
<tr>
<td></td>
<td>6.25%</td>
<td>-11.3125*</td>
<td>.32064</td>
<td>.000</td>
<td>-12.3548</td>
</tr>
<tr>
<td></td>
<td>12.5%</td>
<td>-12.1250*</td>
<td>.32064</td>
<td>.000</td>
<td>-13.1673</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>-13.2900*</td>
<td>.32064</td>
<td>.000</td>
<td>-14.3323</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>-14.1725*</td>
<td>.32064</td>
<td>.000</td>
<td>-15.2148</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>-14.5800*</td>
<td>.32064</td>
<td>.000</td>
<td>-15.6223</td>
</tr>
<tr>
<td>3.125%</td>
<td>0%</td>
<td>10.5050*</td>
<td>.32064</td>
<td>.000</td>
<td>9.4627</td>
</tr>
<tr>
<td></td>
<td>6.25%</td>
<td>.8075</td>
<td>.32064</td>
<td>.001</td>
<td>-1.8498</td>
</tr>
<tr>
<td></td>
<td>12.5%</td>
<td>-1.6200*</td>
<td>.32064</td>
<td>.000</td>
<td>-3.8273</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>-2.7850*</td>
<td>.32064</td>
<td>.000</td>
<td>-4.7098</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>-3.8675*</td>
<td>.32064</td>
<td>.000</td>
<td>-5.1173</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>-4.0750*</td>
<td>.32064</td>
<td>.000</td>
<td>-5.1173</td>
</tr>
<tr>
<td>6.25%</td>
<td>0%</td>
<td>11.3125*</td>
<td>.32064</td>
<td>.000</td>
<td>10.2702</td>
</tr>
<tr>
<td></td>
<td>3.125%</td>
<td>.8075</td>
<td>.32064</td>
<td>.001</td>
<td>.5777</td>
</tr>
<tr>
<td></td>
<td>12.5%</td>
<td>-1.8125</td>
<td>.32064</td>
<td>.000</td>
<td>-3.0918</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>-1.9775*</td>
<td>.32064</td>
<td>.000</td>
<td>-3.0918</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>-2.8600*</td>
<td>.32064</td>
<td>.000</td>
<td>-4.0750</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>-3.2675*</td>
<td>.32064</td>
<td>.000</td>
<td>-4.3098</td>
</tr>
<tr>
<td>12.5%</td>
<td>0%</td>
<td>12.1250*</td>
<td>.32064</td>
<td>.000</td>
<td>11.0827</td>
</tr>
<tr>
<td></td>
<td>3.125%</td>
<td>1.6200*</td>
<td>.32064</td>
<td>.001</td>
<td>.5777</td>
</tr>
<tr>
<td></td>
<td>6.25%</td>
<td>.8125</td>
<td>.32064</td>
<td>.000</td>
<td>.5777</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>-1.1650*</td>
<td>.32064</td>
<td>.000</td>
<td>-2.2073</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>-2.0475*</td>
<td>.32064</td>
<td>.000</td>
<td>-3.0918</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>-2.4550*</td>
<td>.32064</td>
<td>.000</td>
<td>-3.4973</td>
</tr>
<tr>
<td>25%</td>
<td>0%</td>
<td>13.2900*</td>
<td>.32064</td>
<td>.000</td>
<td>12.2477</td>
</tr>
<tr>
<td></td>
<td>3.125%</td>
<td>2.7850*</td>
<td>.32064</td>
<td>.000</td>
<td>1.7427</td>
</tr>
<tr>
<td></td>
<td>6.25%</td>
<td>1.9775*</td>
<td>.32064</td>
<td>.000</td>
<td>.9352</td>
</tr>
<tr>
<td></td>
<td>12.5%</td>
<td>1.1650*</td>
<td>.32064</td>
<td>.000</td>
<td>.9352</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>-.8825</td>
<td>.32064</td>
<td>.014</td>
<td>-1.9248</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>-1.2900*</td>
<td>.32064</td>
<td>.009</td>
<td>-2.3323</td>
</tr>
<tr>
<td>50%</td>
<td>0%</td>
<td>14.1725*</td>
<td>.32064</td>
<td>.000</td>
<td>13.1302</td>
</tr>
<tr>
<td></td>
<td>3.125%</td>
<td>3.6675*</td>
<td>.32064</td>
<td>.000</td>
<td>2.6252</td>
</tr>
<tr>
<td></td>
<td>6.25%</td>
<td>2.8600*</td>
<td>.32064</td>
<td>.000</td>
<td>1.8177</td>
</tr>
<tr>
<td></td>
<td>12.5%</td>
<td>2.0475*</td>
<td>.32064</td>
<td>.000</td>
<td>1.0052</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>.8825</td>
<td>.32064</td>
<td>.000</td>
<td>-.1598</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>-.4075</td>
<td>.32064</td>
<td>.000</td>
<td>-1.4498</td>
</tr>
<tr>
<td>100%</td>
<td>0%</td>
<td>14.5800*</td>
<td>.32064</td>
<td>.000</td>
<td>13.5377</td>
</tr>
<tr>
<td></td>
<td>3.125%</td>
<td>4.0750*</td>
<td>.32064</td>
<td>.000</td>
<td>3.0327</td>
</tr>
<tr>
<td></td>
<td>6.25%</td>
<td>3.2675*</td>
<td>.32064</td>
<td>.000</td>
<td>2.2252</td>
</tr>
<tr>
<td></td>
<td>12.5%</td>
<td>2.4550*</td>
<td>.32064</td>
<td>.000</td>
<td>1.4127</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>1.2900*</td>
<td>.32064</td>
<td>.009</td>
<td>.2477</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>.4075</td>
<td>.32064</td>
<td>.857</td>
<td>-6.348</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the .05 level.
4. Uji Korelasi Pearson

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>4</td>
<td>.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.125%</td>
<td>4</td>
<td>10.5050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.25%</td>
<td>4</td>
<td>11.3125</td>
<td>11.3125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5%</td>
<td>4</td>
<td>12.1250</td>
<td></td>
<td>13.2900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>4</td>
<td>14.5800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>4</td>
<td>1.000</td>
<td>.203</td>
<td>.197</td>
<td>.134</td>
<td>.857</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 4.000.

**. Correlation is significant at the 0.01 level (2-tailed).

5. Uji Regresi

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.567a</td>
<td>.322</td>
<td>.296</td>
<td>3.97749</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Konsentrasi
ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>1</td>
<td>195.332</td>
<td>12.347</td>
<td>.002a</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>26</td>
<td>15.820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>27</td>
<td>606.664</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a. Predictors: (Constant), Konsentrasi
b. Dependent Variable: Zona Hambat*

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Beta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>8.629</td>
<td>.983</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Konsentrasi</td>
<td>.079</td>
<td>.023</td>
<td>.567</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Zona Hambat

6. Means Plot

![Means Plot](image-url)
Lampiran 4

Determinasi Tanaman Pare (Momordica charantia L.)

DINAS KESEHATAN PROPINSI JAWA TIMUR
UPT MATERIA MEDICA
Jalan Lahor No.87 Telp. (0341) 593396 Batu (65313)
KOTA BATU

Nomor : 074 / 207 / 101.8 / 2016
Perihal : Determinasi Tanaman Pare

Menemui permohonan saudara:
Nama : NURMALIA NIRWANA
NIM : 125070407111008
Fakultas : JURUSAN PENDIDIKAN DOKTER GIGI, FAKULTAS KEDOKTERAN GIGI
UNIVERSITAS BRAWIJAYA MALANG

1. Perihal determinasi tanaman pare
 Kingdom : Plantae (Tumbuhan)
 Subkingdom : Tracheobionta (Tumbuhan berpenuluh)
 Super Divisi : Spermatophyta (Menghasilkan biji)
 Divisi : Magnoliophyta (Tumbuhan berbunga)
 Kelas : Magnoliopsida
 Ordo : Violales
 Keluarga : Cucurbitaceae
 Genus : Momordica
 Spesies : M. charantia L.
 Nama Daerah : Paya, pare, pare pahit, pepareh (Jawa). Priau, peria, foia, pepare, kambek, paria (Sumatera). Paya, paria, truwuk, pada, palak, pariak, pania, pepula (Nusa tenggara).
 Kunci Determinasi : 1b-2b-3b-4b-6b-7b-9b-10b-11b-12b-13b-14b-15a-15b-15a-10b-11b-12b-11b-1b-2a-3b-3.

2. Morfologi
 Tanaman setahun, merambat atau memanjat dengan alat pembelit atau sulur berbentuk spiral, bercabang banyak, berbua tidak enak. Batau berusuk lima, panjang 2-5 cm, yang muda berambut rapat. Daun tunggal, bertangkai yang panjangnya 1.5-5.3 cm, letak berseling, bentuknya bulat panjang dengan panjang 3.5-8.5 cm, lebar 4 cm, berbasi menyeru 5-7, pangkal berbentuk jantung, warnanya hijau tua. Taja bergigi kasar sampai berleksik menyirip. Bunga tunggal, berkelamin dua dalam satu polon, bertangkai panjang, berwarna kuning. Buah bulat memanjang, dengan 8-10 susu memanjang, berbintil-bintil tidak beraturan, panjangnya 8-30 cm, rasanya pahit. Warna buah hijau, bila masak menjadi oranye yang pecah dengan 3 kutup. Biji banyak, coklat kekuningan, bentuknya pipih menjanjang, keras

3. Nama Simplicita
 : Momordicas Folium / Daun pare

4. Kandungan

5. Penggunaan
 : Penelitian.

6. Daftar Pendahuluan
 e. Van Steenis, CGGJ. 2008. FLORA. Pradnya Paramita, Jakarta.

Demikian surat keterangan determinasi ini kami buat untuk dipergunakan sebagaimana mestinya.

Dated: 30 Juli 2016

Dr. Husan M. Dps, Apt. M.Kes.
Bupati Materia Medica Batu
Lampiran 5

Sertifikat Isolat Bakteri *Streptococcus mutans*

BioMérieux Customer:
System #: 3187
Patient Name: S. mutans
Isolate Group: S. mutans-1
Card Type: GP
Testing Instrument: 00000EEA51C1 (3187)

Laboratory Report
BILK Surabaya
Printed Jul 28, 2016 11:51 ICT
Printed by: labsuper
Patient ID: S. mutans

Blonumber: 140011364753531
Organism Quantity:

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
</table>

Identification Information

<table>
<thead>
<tr>
<th>Card:</th>
<th>GP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot Number:</td>
<td>242340110</td>
</tr>
<tr>
<td>Completed:</td>
<td>Mar 15, 2016 22:03 ICT</td>
</tr>
<tr>
<td>Status:</td>
<td>Final</td>
</tr>
<tr>
<td>Analysis Time:</td>
<td>6.00 hours</td>
</tr>
<tr>
<td>Selected Organism:</td>
<td>96% Probability Streptococcus mutans</td>
</tr>
<tr>
<td>Blonumber:</td>
<td>140011364753531</td>
</tr>
<tr>
<td>Confidence:</td>
<td>Excellent identification</td>
</tr>
</tbody>
</table>

Biochemical Details

2AMY	+3.5HPLC	+5.5CTYL	+9.5ADH1	+9.5BGL	+11.5AGLU
13APPA	+15CDEX	+15AG4A	+16B3AR	-17A4AM	+18PG5O
20LeuA	+23PraA	-24S4G	+25B3GAL	-26PyA	-37B6NUR
28AlbA	+29T4Ya	+30S4OR	-31URE	-32POLYB	+37S4GAL
35ATBIB	+39LA7	+42LAC	+44N4AO	+45B4ML	+46B4AC
47NOVOO	+50N4O6.5	+52S4MAN	+53M4INE	+54M4L4G	+59P6UL
57BRAF	+58O1ZS	+59SAL	+60SAC	+62S4TRE	+63ADH2
64CDTO	+64S42	+65S42	+66S42	+67S42	+68S42

Installed VITEK 2 Systems Version: 07.01
MIC Interpretation Guideline:
AES Parameter Set Name: Therapeutic Interpretation Guideline:
AES Parameter Last Modified: