APLIKASI METODE ERT (ELEKTRICAL RESISTIVITY TOMOGRAPHY) DALAM MEMPREDIKSI BIDANG LONGSOR PADA MODEL LERENG DENGAN VARIASI PERKUATAN GEOGRID

SKRIPSI

TEKNIK SIPIL

Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik

UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK MALANG 2018

APLIKASI METODE ERT (ELEKTRICAL RESISTIVITY TOMOGRAPHY) DALAM MEMPREDIKSI BIDANG LONGSOR PADA MODEL LERENG DENGAN VARIASI PERKUATAN GEOGRID

SKRIPSI

Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik

GUNAWAN WIBISONO NIM. 115060100111058

Skripsi ini telah direvisi dan disetujui oleh dosen pembimbing pada tanggal juni 2018

Pembinbing I

Pembimbing II

Eko Andi Suryo, ST., MT., Ph.D

NIP. 19761023 200604 1 002

Dr. Ir. Harimurti, MT NIP. 19600926 198802 1 001

Mengetahui Ketua Program Studi S1

Dr. Eng Indradi W, ST, M..Eng (Prac) NIP. 19810220 200604 1 002

HALAMAN IDENTIFIKASI TIM PENGUJI SKRIPSI

Judul Skripsi:

Aplikasi Metode ERT (Elektrical Resistivity Topography) dalam Memrediksi bidang Longsor pada Model Lereng dengan Variasi Perkuatan Geogrid

Nama Mahasiswa	: Gunawan Wibisono
NIM	: 115060100111058
Program Studi	: Teknik Sipil
Konsentrasi	: Geoteknik

TIM DOSEN PENGUJI

Konsentrasi	. Ocolexilix
TIM DOSEN PENGU	TAS BR
Dosen Penguji I	: Eko Andi Suryo, ST., MT., Ph. D
Dosen Penguji II	: Ir. Harimurti, MT
Dosen Penguji III	: Ir. As'ad Munawir, MT
Dosen Penguji IV	: Dr.Ir. Arief Rachmansyah
//	
Tanggal Ujian	: 18 Mei 2018
SK Penguji	: 989/UN10.FO7/KP/2018

PERNYATAAN

ORISINALITAS SKRIPSI

Saya yang bertanda tangan di bawah ini :

Nama : Gunawan Wibisono

NIM : 115060100111058

Judul Skripsi: APLIKASI METODE ERT (ELEKTRICAL RESISTIVITY TOMOGRAPHY) DALAM MEMPREDIKSI BIDANG LONGSOR PADA MODEL LERENG DENGAN VARIASI PERKUATAN GEOGRID

Menyatakan dengan sebenarnya bahwa penulisan laporan skripsi ini berdasarkan hasil penelitian, pemikiran, dan pemaparan asli dari penulis sendiri, baik untuk naskah laporan maupun hasil dari penelitian yang tercantum dalam penulisan laporan skripsi ini. Jika terdapat karya orang lain, penulis akan mencantumkan sumber secara jelas.

Dengan demikian surat pernyataan ini saya buat, semua informasi yang dimuat di dalam skripsi ini yang berasal dari hasil karya penulis lain, baik yang dipublikasikan maupun tidak, telah diberikan penghargaan dengan mengutip nama sumber penulis secara benar dan semua isi dari karya tulis ilmiah/skripsi ini sepenuhnya menjadi tanggung jawab bagi penulis.

Malang, Juni 2018 Mahasiswa,

<u>Gunawan Wibisono</u> 115060100111058

UNIVERSITAS BRAWIJAYA PROGRAM SARJANA FAKULTAS TEKNIK

SERTIFIKAT BEBAS PLAGIASI

Nomor: 029 /UNI0.F07.11.11/PP/2018

Sertifikat ini diberikan kepada :

GUNAWAN WIBISONO

Dengan Judul Skripsi :

APLIKASI METODE ERT (ELEKTRICAL RESISTIVITY TOMOGRAPHY) DALAM MEMPREDIKSI

BIDANG LONGSOR PADA MODEL LERENG DENGAN VARIASI PERKUATAN GEOGRID

Telah dideteksi tingkat plagiasinya dengan kriteria toleransi ≤ 20 %, dan dinyatakan Bebas dari Plagiasi pada tanggal 06 Juni 2018

Dr. Eng. Alwafi Pujiraharjo, ST, MI NIP. 19700829 200012 1 001 ketua Jurusan Teknik Sipil

Dr. Eng. Indradi Wijatmiko, ST., M.Eng (Prac)

Ketua Program Studi S1 Teknik Sipil

DAFTAR RIWAYAT HIDUP

Gunawan Wibisono lahir di Surabaya 31 Oktober 1992. Anak kedua dari dua bersaudara dari bapak Koko Priyono dan Ibu Samini. Menjalani pendidikan dasar di SDN Kedungrejo 2 kota Sidoarjo Provinsi Jawa Timur. Lalu melanjutkan di SMPN 2 Sidoarjo Provinsi Jawa Timur dan pada SMAN 1 Sidoarjo Provinsi Jawa Timur. Kemudian melanjutkan di Jurusan Teknik Sipil Universita Brawijaya pada 2011.

Selama perkuliahan pernah tercatat sebagai beberapa kegiatan dan organisasi kemahasiswaan seperti Himpunan Mahasiswa Sipil dan AMERA.

UCAPAN TERIMA KASIH

Puji syukur kami panjatkan kepada Allah SWT karena berkat dan karunia-Nya kami dapat menyelesaikan skripsi ini. Shalawat serta salam tak lupa kami panjatkan pada nabi besar Muhammad SAW. Dalam penulisan skripsi tak lepas dari bantuan berbagai pihak sehingga pada kesempatan ini kami ingin mengucapkan terima kasih kepada semua pihak yang telah membantu.

KATA PENGANTAR

Puji syukur kami panjatkan kepada Allah SWT karena berkat dan karunia-Nya kami dapat menyelesaikan skripsi ini. Shalawat serta salam tak lupa kami panjatkan pada nabi besar Muhammad SAW.

Penulisan skripsi ini kami tujukan untuk memenuhi salah satu syarat memperoleh gelar sarjana pada Jurusan Teknik Sipil Universitas Brawijaya. Judul yang kami ajukan adalah "APLIKASI METODE ERT (ELEKTRICAL RESISTIVITY TOMOGRAPHY) DALAM MEMPREDIKSI BIDANG LONGSOR PADA MODEL LERENG DENGAN VARIASI PERKUATAN GEOGRID".

Dalam penulisan skripsi tak lepas dari bantuan berbagai pihak sehingga pada kesempatan ini kami ingin mengucapkan terima kasih kepada yang terhormat :

- 1. Bapak Dr. Eng. Alwafi Pujiraharjo, ST., MT. Dan Dr. Eng. Eva Arifi, ST, MT selaku ketua dan sekretaris jurusan yang telah membantu kelancaran skripsi ini.
- Bapak Dr. Eng. Indradi Wijatmiko, ST, M.Eng (Prac.) selaku Ketua Prodi S1 Teknik Sipil Universitas Brawijaya yang telah membantu kelancaran skripsi ini.
- 3. Bapak Eko Andi Suryo, ST., MT., Ph.D dan Bapak Dr. Ir. Wisnumurti, MT. Selaku dosen pembimbing yang telah memberikan arahan dan bimbingan.
- 4. Ibu Dr. Eng. Yulvi Zaika ST. MT., Bapak Ir. Suroso, Dipl. HE, M.Eng., Bapak Dr. Ir. As'ad Munawir, MT dan Bapak Dr. rer nat Ir. Arief Rachmansyah selaku dosen Geoteknik yang telah memberikan banyak saran dan masukan dalam penyusunan skripsi ini.
- Pak Ketut Sugiarto, Mbak Indah, dan Mbak Asmi sebagai pihak Laboratorium Mekanika Tanah dan Geologi yang telah membatu meminjamkan alat dan membantu dalam pelaksanaan penelitian.
- Bapak Koko, Ibu Samini, Mbak Aan, Alm Bupo Mar, Mas Agung, Mas Kholis, dan segenap keluarga besar yang telah memberi dorongan moral sehingga skripsi ini dapat terselesaikan.
- 7. Sintya Dewi Anggraini yang tak pernah lelah bersabar dan terus memberikan semangat untuk menyelesaikan skripsi.
- 8. Ghulam Rizal dan Retno Wulandari sebagai rekan sekelompok yang telah sama-sama berjuang dan saling memberikan semangat.

- 9. Rekan-rekan Recording yang telah membantu proses administrasi.
- 10. Rekan-rekan Gojek dan mas boy yang telah memberikan semangat selama ini.
- 11. Pihak-pihak lain yang tak dapat kami sebutkan satu persatu.

Dengan segala keterbatasan kemampuan kami, tentunya skripsi ini sangat jauh dari kesempurnaan. Saran dan kritik yang membangun sangat kami harapkan . Semoga skripsi ini dapat bermanfaat bagi kita semua.

DAFTAR ISI

KATA PENGANTARi
DAFTAR ISI
DAFTAR TABELvi
DAFTAR GAMBAR vii
DAFTAR LAMPIRAN
RINGKASANxvii
BAB I PENDAHULUAN 1
1.1.Latar Belakang1
1.2.Rumusan Masalah2
1.3.Batasan Masalah
1.4.Tujuan Penelitian
1.5.Manfaat Penelitian
BAB II TINJAUAN PUSTAKA
2.1.Tanah
2.1.1 Tanah Residual
2.1.2 Klasifikasi Tanah Berdasarkan Sistem Unified
2.2.Lereng
2.2.1 Kelongsoran Lereng
2.2.2 Pengaruh Air Terhadap Kelongsoran Lereng 12
2.2.3 Pengaruh Perkuatan Geogrid Terhadap Kelongsoran Lereng
2.2.4 Jenis Geogrid
2.3 Geofisika
2.4.Metode Geolistrik (Resistivitas)
2.5. Permodelan Fisik19
2.6 Resistivitas Batuan dan Mineral
BAB III METODOLOGI PENELITIAN
3.1 Bagan Alir Tahapan Penelitian
3.2 Waktu dan Tempat Penelitian
3.3 Alat Dan Bahan Penelitian
3.4 Metode Penelitian25
3.4.1 Pengujian Dasar Pada Tanah Pasir25
3.4.2 Pembuatan Model25
3.4.3 Metode Simulasi Hujan

3.4.4.	Metode Pembebanan	27
3.4.5.	Metode Penyelidikan Geolistrik	
3.5 Ranc	angan Penelitian	29
3.6 Metod	le Analisis Data	
3.7 Varial	bel Penelitian	31
BAB IV PEMB	AHASAN	
4.1. Klasif	ïkasi Tanah	33
4.1.1.	Analisa Gradasi Butiran Tanah	33
4.1.2.	Analisa Spesific Gravity	33
4.1.3.	Analisa Indeks Plastisitas (PI)	34
4.1.4.	Klasifikasi Tanah Berdasarkan Sistem Unified	34
4.1.5.	Analisa Uji Pemadatan (Compaction Test)	34
4.1.6.	Analisa Kepadatan Tanah Model	35
4.1.7.	Analisa Kuat Geser Langsung (Direct Shear)	
4.2. Pengu	ijian Model Test	37
4.2.2. Pen	yelidikan Geolistrik.	37
4.2.3. Pem	iberian Simulasi Hujan	
4.3. Hasil	Pengujian	40
4.3.1.	Interpretasi dan Hasil Inverse 2 Dimensi Model	40
4.3.2.	Model Tanpa Perkuatan Geogrid Dan Tanpa Pemberian	
	Simulasi Hujan	40
4.3.2	2.1. Hasil Pemeriksaan Kepadatan dan Kadar Air	41
4.3.2	2.2.Hasil Inversi 2 Dimensi Model Tanpa Perkuatan	
	Geogrid pada lintasan 1	41
4.3.2	2.3.Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid	
	Pada Lintasan 3	43
4.3.2	2.4.Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid	
	Pada Lintasan 4	46
4.3.2	2.5. Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid	
	Pada Lintasan 5	48
4.3.2	2.6.Interpretasi 2 Dimensi Model Tanpa Perkuatan Geogrid	50
4.3.3.	Model Dengan Perkuatan Geogrid Dan Tanpa Pemberian	
	Simulasi Hujan	53

4.3.3.1.Hasil Pemeriksaan Kepadatan dan Kadar Air
4.3.3.2.Hasil Inversi 2 Dimensi Model Dengan Geogrid
pada Lintasan 155
4.3.3.3. Hasil Inversi 2 Dimensi Model Dengan Geogrid
pada Lintasan 357
4.3.3.4. Hasil Inversi 2 Dimensi Model Dengan Geogrid
Pada Lintasan 4
4.3.3.5. Hasil Inversi 2 Dimensi Model Dengan Geogrid
Pada Lintasan 561
4.3.3.6.Interpretasi 2 Dimensi Model Dengan Perkuatan Geogrid
4.3.4. Model Tanpa Perkuatan Geogrid Dan Pemberian Simulasi Hujan 66
4.3.4.1.Hasil Pemeriksaan Kepadatan dan Kadar Air
4.3.4.2.Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid Dan
Pemberian Simulasi Hujan Pada Lintasan 167
4.3.4.3.Hasil Inversi 2 Dimensi Model Tanpa Geogrid Dan Pemberian
Simulasi Hujan pada Lintasan 369
4.3.4.4.Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid dan
Pemberian Simulasi Hujan pada Lintasan 471
4.3.4.4.Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid dan
Pemberian Simulasi Hujan pada Lintasan 573
4.3.2.6. Interpretasi 2 Dimensi Model Tanpa Perkuatan Geogrid dan
Pemberian simulasi hujan75
4.3.5. Model Dengan Perkuatan Geogrid dan Pemberian Simulasi Hujan78
4.3.5.1.Hasil Pemeriksaan Kepadatan dan Kadar Air
4.3.5.2. Hasil Inversi 2 Dimensi Model Dengan Perkuatan Geogrid
Dan Pemberian Simulasi Hujan pada Lintasan 1
4.3.5.3. Hasil Inversi 2 Dimensi Model Dengan Perkuatan Geogrid
Dan Pemberian Simulasi Hujan pada Lintasan 3
4.3.5.4.Hasil Inversi 2 Dimensi Model Dengan Perkuatan Geogrid
Dan Pemberian Simulasi Hujan pada Lintasan 4
4.3.5.2. Hasil Inversi 2 Dimensi Model Dengan Perkuatan Geogrid
Dan Pemberian Simulasi Hujan pada Lintasan 5
4.3.2.6. Interpretasi 2 Dimensi Model Dengan Perkuatan Geogrid Dan
Simulasi Hujan

BAB V	91
5.1.Kesimpulan	91
5.2.Saran	91
DAFTAR PUSTAKA	92

DAFTAR TABEL

No	Judul Halaman
Tabel 2.1	Batasan-batasan Ukuran Golongan Tanah 5
Tabel 2.2.	Prosedur Identifikasi Lapangan6
Tabel 2.3.	Klasifikasi tanah Menurut unifed (U.S.C.S)7
Tabel 2.4.	Variasi Harga Thanan Jenis dari Beberapa Jenis Batuan
	Sedimen (Rolia Eva, 2011)20
Tabel 2.5.	Tabel Resistivitas Material-Material Bumi (Telford, 1990)21
Tabel 4.1.	Nilai Hasil Uji Specific Gravity
Tabel 4.2.	Hasil Pemeriksaan Batas Cair dan Batas Plastis Tanah
Tabel 4.3.	Nilai berat isi kering dan kadar air sampel tanpa perkuatan geogrid50
Tabel 4.4.	Nilai berat isi kering dan kadar air sampel dengan perkuatan geogrid63
Tabel 4.5.	Nilai berat isi kering dan kadar air model tanpa perkuatan geogrid
	dan pemberian simulasi hujan75
Tabel 4.5.	Nilai Berat Isi Kering Dan Kadar Air Model Dengan Perkuatan
	Geogrid Dan Pemberian Simulasi Hujan87

DAFTAR GAMBAR

No	Judul Halaman
Gambar 2.1	Batasan-batasan ukuran golongan tanah menurut beberapa sistem 6
Gambar 2.2.	Grafik Plastisitas10
Gambar 2.3.	Kelongsoran Lereng 11
Gambar 2.4.	Lengkung kelongsoran Toe Circle11
Gambar 2.5	Lengkung kelongsoran Slope Circle
Gambar 2.6.	Lengkung kelongsoran Midpoint Circle 12
Gambar 2.7.	Geogrid Uni-Axial
Gambar 2.8	Geogrid Bi-Axial
Gambar 2.9	Geogrid Triax15
Gambar 2.10.	Siklus Elektrik Determinasi Resistivitas dan
	Lapangan Elektrik Untuk Stratum Homogenous
	Permukaan bawah tanah16
Gambar 2.11.	Dua Pasang Elektrode Arus dan Potensial17
Gambar 2.12.	Susunan Elektroda Konfigurasi Wenne17
Gambar 2.13.	Pengaturan Elektroda Konfigurasi Wenner – Schlumberger18
Gambar 2.14.	Konfigurasi Dipole-dipole
Gambar 3.1.	Diagram Alir Tahapan Penelitian23
Gambar 3.2	Peralatan untuk analisa saringan: (a) timbangan digital (b) ayakan24
Gambar 3.3	Peralatan untuk analisis berat jenis tanah : labu ukur24
Gambar 3.4	Peralatan untuk pemeriksaan kepadatan dan kadar air: (a)
	dan (b) <i>mould</i> silinder dan pelat <i>mould</i> (c) <i>proctor</i> standar dan <i>mould</i> 25
Gambar 3.5.	Peralatan untuk pemeriksaan kadar air: <i>density ring</i> (b) cawan
	(c) timbangan digital25
Gambar 3.6	Peralatan untuk pemeriksaan Geolistrik26
Gambar 3.7	Skema pembuatan model27
Gambar 3.8	Tampak depan saat pemberian simulasi hujan28
Gambar 3.9	Skema pembebanan Lereng29
Gambar 3.10	Tampak Atas Pemetaan Lokasi

Gambar 3.11 Susunan elektrode dan urutan pengukuran
data ERT konfigurasi schlumberger30
Gambar 3.12 ukuran box penelitian
Gambar 3.13 Model Lereng Tanpa Geogrid31
Gambar 3.14 Model Lereng Dengan Geogrid31
Gambar 3.15 Contoh Hasil inversi model resistivitas pada penyelidikan geolistrik32
Gambar 4.1. Grafik analisa gradasi butiran tanah33
Gambar 4.2. Grafik pemadatan standar tanah35
Gambar 4.3. Grafik hasil uji geser langsung pada model (a) grafik hubungan
tegangan geser dan tegangan geser (b) grafik hubungan tegangan
normal dan tegangan geser
Gambar 4.4. Stacking chart konfigurasi Wenner
Gambar 4.5. Lintasan elektroda pengujian geolistrik tampak samping model
Gambar 4.6. Pengujian geolistrik tampak atas model
Gambar 4.7. Bidang longsor yang terbentuk pada model tanpa perkuatan geogrid40
Gambar 4.8. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
Perkuatan geogrid pada lintasan 1 dengan beban 0 Qu41
Gambar 4.9. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 1 dengan beban 0.25 Qu42
Gambar 4.10. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 1 dengan beban 0.5 Qu42
Gambar 4.11. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 1 dengan beban 0.75 Qu42
Gambar 4.12. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 1 dengan beban 1 Qu42
Gambar 4.13. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 3 dengan beban 0 Qu44
Gambar 4.14. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 3 dengan beban 0.25 Qu44
Gambar 4.15. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 3 dengan beban 0.5 Qu44
Gambar 4.16. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 3 dengan beban 0.75 Qu44
Gambar 4.17. Penampang resistivitas 2D lapisan bawah permukaan model
tanpa perkuatan geogrid pada lintasan 3 dengan beban 1 Qu45

Gambar 4.18. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 4 dengan beban 0 Qu
Gambar 4.19. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 4 dengan beban 0.25 Qu46
Gambar 4.20. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 4 dengan beban 0.5 Qu47
Gambar 4.21. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 4 dengan beban 0.75 Qu47
Gambar 4.22. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 4 dengan beban 1 Qu47
Gambar 4.23. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 5 dengan beban 0 Qu
Gambar 4.24. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 5 dengan beban 0.25 Qu
Gambar 4.25. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 5 dengan beban 0.5 Qu49
Gambar 4.26. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 5 dengan beban 0.75 Qu
Gambar 4.27. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid pada lintasan 5 dengan beban 1 Qu
Gambar 4.28. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0 Q _u 50
Gambar 4.29. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.25 Q_{U} 51
Gambar 4.30. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.5 Qu51
Gambar 4.31. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.75 Q _U 52
Gambar 4.32. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 1 Q _u 53
Gambar 4.33. Bidang longsor yang terbentuk pada model perkuatan Geogrid54
Gambar 4.34. Penampang resistivitas 2D lapisan bawah permukaan model
perkuatan geogrid pada lintasan 1 dengan beban 0 Qu
Gambar 4.35. Penampang resistivitas 2D lapisan bawah permukaan model perkuatan
geogrid pada lintasan 1 dengan beban 0.25 Qu
Gambar 4.36. Penampang resistivitas 2D lapisan bawah permukaan model perkuatan
geogrid pada lintasan 1 dengan beban 0.5 Qu
Gambar 4.37. Penampang resistivitas 2D lapisan bawah permukaan model perkuatan

geogrid pada lintasan 1 dengan beban 0.75 Qu56 Gambar 4.38. Penampang resistivitas 2D lapisan bawah permukaan model perkuatan geogrid pada lintasan 1 dengan beban 1 Qu56 Gambar 4.39. Penampang resistivitas 2D lapisan bawah permukaan model Gambar 4.40. Penampang resistivitas 2D lapisan bawah permukaan model Gambar 4.41. Penampang resistivitas 2D lapisan bawah permukaan model Gambar 4.42. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 3 dengan beban 0.75 Qu......58 Gambar 4.43. Penampang resistivitas 2D lapisan bawah permukaan model Gambar 4.44. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 4 dengan beban 0 Qu Gambar 4.45. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 4 dengan beban 0.25 Qu....59 Gambar 4.46. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 4 dengan beban 0.5 Qu....59 Gambar 4.47. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 4 dengan beban 0.75 Qu...60 Gambar 4.48. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 4 dengan beban 1 Qu Gambar 4.49. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 5 dengan beban 0 Qu61 Gambar 4.50. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 5 dengan beban 0.25 Qu Gambar 4.51. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 5 dengan beban 0.5 Qu..62 Gambar 4.52. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 5 dengan beban 0.75 Qu..62 Gambar 4.53. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 5 dengan beban 1 Qu......62

Gambar 4.69. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3
dengan beban 1Q _u
Gambar 4.70. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4
dengan beban 0 Q _U 71
Gambar 4.71. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4
dengan beban 0.25 Q _u 72
Gambar 4.72. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4
dengan beban 0.5 Q _u
Gambar 4.73. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4
dengan beban 0.75 Q _U
Gambar 4.74. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4
dengan beban 1 Q _u
Gambar 4.75. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5
dengan beban 0 Q _U
Gambar 4.76. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5
dengan beban 0.25 Q _U 74
Gambar 4.77. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5
dengan beban 0.5 Q _u 74
Gambar 4.78. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5
dengan beban 0.75 Q _u 74
Gambar 4.79. Penampang resistivitas 2D lapisan bawah permukaan model tanpa
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5
dengan beban 1Q _u 74
Gambar 4.80. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0 Q

Gambar 4.81.	
	Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.25 Qu76
Gambar 4.82.	Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.5 Q _u 77
Gambar 4.83.	Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.75 Q _u 77
Gambar 4.84.	Interpretasi 2 Dimensi model tanpa geogrid dengan beban 1 Qu78
Gambar 4.85.	Retakan yang terbentuk pada sampel dengan perkuatan geogrid
	dan simulasi hujan79
Gambar 4.86.	Penampang resistivitas 2D lapisan bawah permukaan model dengan
	perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1
	dengan beban 0 Q _U 80
Gambar 4.87.	Penampang resistivitas 2D lapisan bawah permukaan model dengan
	perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1
	dengan beban 0.25 Qu
Gambar 4.88.	Penampang resistivitas 2D lapisan bawah permukaan model dengan
	perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1
	dengan beban 0.5 Qu
Gambar 4.89.	Penampang resistivitas 2D lapisan bawah permukaan model dengan
	perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1
	dengan beban 0.75 Q _u
Gambar 4.90.	dengan beban 0.75 Q _u
Gambar 4.90.	dengan beban 0.75 Q _u
Gambar 4.90.	dengan beban 0.75 Q _u
Gambar 4.90. Gambar 4.91.	dengan beban 0.75 Q _u
Gambar 4.90. Gambar 4.91.	dengan beban 0.75 Q _u
Gambar 4.90. Gambar 4.91.	dengan beban 0.75 Q _u
Gambar 4.90. Gambar 4.91. Gambar 4.92.	dengan beban 0.75 Q _u
Gambar 4.90. Gambar 4.91. Gambar 4.92.	dengan beban 0.75 Q _u
Gambar 4.90. Gambar 4.91. Gambar 4.92.	dengan beban 0.75 Qu81Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban Qu81Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 dengan beban 0 Qu82Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 dengan beban 0 Qu82Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 dengan beban 0.25 Qu82
Gambar 4.90. Gambar 4.91. Gambar 4.92. Gambar 4.93.	dengan beban 0.75 Qu 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban Qu 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82
Gambar 4.90. Gambar 4.91. Gambar 4.92. Gambar 4.93.	dengan beban 0.75 Qu 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 82
Gambar 4.90. Gambar 4.91. Gambar 4.92. Gambar 4.93.	dengan beban 0.75 Qu 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban Qu 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82
Gambar 4.90. Gambar 4.91. Gambar 4.92. Gambar 4.93.	dengan beban 0.75 Qu 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban Qu 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82
Gambar 4.90. Gambar 4.91. Gambar 4.92. Gambar 4.93.	dengan beban 0.75 Qu 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban Qu 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82
Gambar 4.90. Gambar 4.91. Gambar 4.92. Gambar 4.93.	dengan beban 0.75 Qu 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban Qu 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 81 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82 Penampang resistivitas 2D lapisan bawah permukaan model dengan 82

dengan beban Q _u 8	3
Gambar 4.96. Penampang resistivitas 2D lapisan bawah permukaan model dengan	
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4	
dengan beban 0 Q _U 8	3
Gambar 4.97. Penampang resistivitas 2D lapisan bawah permukaan model dengan	
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4	
dengan beban 0.25 Q _u 84	4
Gambar 4.98. Penampang resistivitas 2D lapisan bawah permukaan model dengan	
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4	
dengan beban 0.5 Q _u 84	4
Gambar 4.99. Penampang resistivitas 2D lapisan bawah permukaan model dengan	
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4	
dengan beban 0.75 Qu84	4
Gambar 4.100. Penampang resistivitas 2D lapisan bawah permukaan model dengan	
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4	
dengan beban Q _u	4
Gambar 4.101. Penampang resistivitas 2D lapisan bawah permukaan model dengan	
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4	
dengan beban 0 Q _u 8	5
Gambar 4.102. Penampang resistivitas 2D lapisan bawah permukaan model dengan	
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5	
dengan beban 0.25 Q _u 8	5
Gambar 4.103. Penampang resistivitas 2D lapisan bawah permukaan model dengan	
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5	
dengan beban 0.5 Q _u 80	5
Gambar 4.104. Penampang resistivitas 2D lapisan bawah permukaan model dengan	
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5	
dengan beban 0.75 Q _u 80	5
Gambar 4.105. Penampang resistivitas 2D lapisan bawah permukaan model dengan	
perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5	
dengan beban Qu8	6

perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3

Gambar 4.106. Interpretasi 2 Dimensi model dengan geogrid dengan beban 0 Qu87

MUN

RINGKASAN

Gunawan Wibisono, Jurusan Teknik Sipil, Fakultas Teknik Universitas Brawijaya, Mei 2018, *Aplikasi Metode ERT (Electrical Resistivity Tomography) dalam Memprediksi Bidang Longsor pada Model Lereng dengan Perkuatan Geogrid*, Dosen Pembimbing : Eko Andi Suryo dan Harimurti.

Indonesia merupakan negara dengan topografi beragam, Salah satunya adalah daerah perbukitan yang memiliki lereng-lereng yang rawan terhadap longsor. Kenyataanya sudah amat sering terjadi bencana longsor yang dapat merenggut korban jiwa dan juga kerugian secara materiil karena saat ini sudah umum dijumpai penduduk yang bertempat tinggal di daerah yang rawan longsor akibat semakin bertambahnya kepadatan penduduk. Tentunya hal ini seharusnya dapat diantisipasi dengan cara dilakukan terlebih dahulu penyelidikian kondisi dari lereng tersebut agar perkuatan dapat dilakukan maksimal.

Salah satu alternatif metode yang bisa dipakai adalah penggunan metode penyelidikan geofisika seperti Geolistrik atau Electrical Resistivity Tomography (ERT). Penerapan metode Geofisika untuk penyelidikan tanah ini memiliki keunggulan dibandingkan metode Geoteknik yang umum dipakai, yaitu durasi waktu pelaksanaan yang lebih singkat serta biaya yang lebih murah (Craig, 2004). Hasil dari aplikasi ERT selanjutnya perlu diverifikasi dengan parameter tanah yang diperoleh dari tes tanah di laboratorium sesuai dengan standard yang berlaku.

Penelitian dilakukan dengan tanah residual yang berasal dari gunung banyak sehingga dapat disesuaikan dengan kondisi di kondisi lapangan. Sampel tanah dilakukan pada box berukuran 50 x 50 x 50 cm kemudian dibentuk lereng dengan tinggi sampel 30 cm dan tinggi terendah 12 cm kemudian dilakukan pembebanan dengan dongkrak hidrolik. Dongkrak tersebut memberikan tekanan pada piston yang dipasang pada sebuah frame sebagai seperangkat alat uji beban. Tekanan pada piston kemudian disalurkan ke load cell sebagai alat pembacaan beban dan disalurkan melalui piston bantuan yang pada akhirnya tekanan beban sampai pada lokasi pembebanan sampel lereng. Dilakukan uji pembebanan hingga lereng terjadi longsor kemudian nilai beban ditetapkan sebagai Qu. Setelah menemukan Qu dilakukan uji Geolistrik atau Electrical Resistivity Tomography (ERT) setelah ditentukan. Selanjutnya dilakukan proses yang sama pada sampel dengan geogrid dan dengan simulasi hujan.

Setelah dilaksanakan penelitian dihasilkan bahwa pada sampel yang mulai terjadi kelongsoran akan terjadi penurunan nilai resistivitas di bagian permukaan pembacaan akibat tekanan air pori ekses dan kenaikan nilai resistivitas di bagian dasar pembacaan akibat kadar air yang bergerak ke permukaan. Pada sampel lain juga ditemukan pada kedalaman tertentu akan terjadi penurunan nilai resistivitas akibat pada sampel tersebut karena keretakan yang terjadi telah diisi oleh nilai kadar air yang tinggi.

Kata kunci : Geolistrik, Electrical Resistivity Tomography (ERT), longsor, tanah residual

SUMMARY

Gunawan Wibisono, Department of Civil Engineering, Faculty of Engineering University of Brawijaya, Mei 2018, Application of ERT Method (Electrical Resistivity Tomography) In Predicting Landslide On Slopes Model By Geogrid Reinforcement, Supervisor : Eko Andi Suryo dan Harimurti.

Indonesia is a country with a diverse topography, One of them is a hilly area that has slopes that are prone to landslides. In fact, it is very often the occurrence of landslides that can claim casualties and also material losses because it is now commonly found among residents who live in areas prone to landslides due to increasing population density. Obviously, this should be anticipated by conducting the condition of the slope so that the reinforcement can be done maximally.

One alternative method that can be used is the use of geophysical investigation methods such as Geolistrik or Electrical Resistivity Tomography (ERT). The application of Geophysical methods for soil investigation has advantages over commonly used geotechnical methods, namely shorter duration of implementation time and lower cost (Craig, 2004). Results from subsequent ERT applications need to be verified with soil parameters obtained from soil tests in the laboratory in accordance with applicable standards.

The study was conducted with residual soil derived from numerous mountains so that it can be adapted to conditions in field conditions.

A soil sample was done on box size 50 x 50 x 50 cm then formed slope with a height of sample 30 cm and lowest height 12 cm then done by loading with a hydraulic jack. The jackets put pressure on the piston mounted on a frame as a set of load test equipment. The pressure on the piston is then transmitted to the load cell as a load reading device and is supplied through the aid piston which ultimately loads pressure to the slope sample loading location. The load test is carried out until the slope of the landslide occurs and the load value is set as Qu. After finding Qu conducted Geoelectric or Electrical Resistivity Tomography (ERT) test after given the loading of 0Qu, 0.25 Qu, 0,5Qu, 0.75 Qu and 1Qu on the predetermined path. Furthermore, the same process we do on samples with geogrid reinforcement and with rain simulation

After the experiment was conducted, it was found that in the sampling that begins to occur the slope will decrease the resistivity value at the surface of the readings due to the excess pore pressure and the increase of resistivity value at the bottom of the reading due to the water content moving to the surface. In other samples also found at a certain depth will be a decrease in resistivity value due to the sample because the cracks that occur have been filled with high water content values.

Keywords: Geolistrik, Electrical Resistivity Tomography (ERT), Landslide, Residual Soil

BAB I PENDAHULUAN

1.1. Latar Belakang

Lereng alam terbentuk karena proses alam. Gangguan terhadap kestabilan terjadi bilamana tahanan geser tanah tidak dapat mengimbangi gaya-gaya yang menyebabkan gelincir pada bidang longsor. Sifat lereng yang kurang stabil dapat menimbulkan terjadinya kelongsoran secara tiba-tiba. Peristiwa tanah longsor atau dikenal dengan gerakan massa tanah, batuan atau kombinasinya merupakan fenomena alam, dimana alam mencari keseimbangan baru akibat adanya gangguan atau faktor yang memperngaruhi dan menyebabkan terjadinya pengurangan kuat geser serta peningkatan tegangan geser tanah. Dengan semakin berkembangnya suatu daerah dan semakin terbatasnya lahan untuk pembangunan fasilitas yang diperlukan manusia, mengakibatkan tidak dapat dihindari pembangunan di atas tanah yang sebelumnya sudah terbebani.

Di Indonesia sudah amat sering terjadi bencana longsor yang dapat merenggut korban jiwa dan juga kerugian secara materiil karena saat ini sudah umum dijumpai penduduk yang bertempat tinggal di daerah yang rawan longsor. Tentunya hal ini seharusnya dapat diantisipasi dengan cara melakukan perkuatan terhadap lereng seperti perkuatan lereng dengan Geogrid namun tahap awal yang harus dilakukan terlebih dahulu adalah menyelidiki kondisi dari lereng tersebut agar perkuatan yang dilakukan dapat maksimal.

Dalam suatu perencanaan struktur, hal yang cukup penting adalah melakukan penyelidikan tanah baik penyelidikan tanah di lapangan dan penyelidikan tanah di laboratorium. Jenis-jenis penyelidikan tanah di lapangan yang umum dilakukan antara lain pengujian DPC (Ducth Cone Penetrometer), bor mesin, pengujian penetrasi dengan SPT (Standart Penetration Test), pizocone, shear vane test, dll. Sedangkan untuk pengujian di laboratorium antara lain pengujian berat jenis, kadar air, hidrometer, analisa saringan, triaxial dan direct shear. Penyelidikan tanah yang digunakan untuk memprediksi bidang longsor dari suatu lereng adalah penyelidikan tanah di lapangan.

Untuk penyelidikan tanah di lapangan seperti sondir dan penetrasi dengan SPT, data yang dihasilkan memang dapat dengan cepat diketahui tetapi pengujian tersebut membutuhkan mobilisasi serta persiapan alat yang cukup mahal dan lama. Selain itu, ancaman terhadap keselamatan pekerja juga besar karena kondisi tanah yang kurang stabil.

Oleh karena itu perlu dicari metode yang lebih aman serta memberikan hasil data yang cepat dan akurat untuk melakukan penyelidikan tanah.

Salah satu alternatif metode yang bisa dipakai adalah penggunan metode penyelidikan geofisika, seperti geolistrik atau Electrical Resistivity Tomography (ERT). Penerapan metode Geofisika untuk penyelidikan tanah ini memiliki keunggulan dibandingkan metode Geoteknik yang umum dipakai, yaitu durasi waktu pelaksanaan yang lebih singkat serta biaya yang lebih murah (Craig, 2004). Hasil dari aplikasi ERT selanjutnya perlu diverifikasi dengan parameter tanah yang diperoleh dari tes tanah di laboratorium sesuai dengan standard yang berlaku.

Penelitian terdahulu tentang geolistrik pernah dilakukan oleh Irjan (2012) dan Juandi (2008). Penelitian keduanya bertujuan untuk mengetahui pemetaan potensi air tanah (aquifer) berdasarkan interpretasi data resistivitas pada suatu daerah tertentu. Selain itu, Fitriani, dkk (2012) Kesimpulan dari penelitian tersebut adalah hasil dari nilai resistivitas dapat digunakan untuk mengetahui potensi air dari suatu tanah. Muhammad Ato'urrahman (2014) melakukan penelitian geolistrik dalam skala laboratorium untuk mengetahui pengaruh kepadatan tanah dan pada pasir serta Heni Dewi Saidah (2014) juga melakukan penelitian geolistrik skala laboratorium untuk mengetahui hubungan kadar air dengan resistivitas pada tanah lempung. Namun dalam penelitian tersebut belum mendalami bagaimana penggunaan geolistrik atau ERT digunakan untuk memprediksi bidang longsor pada suatu lereng dalam skala laboratorium.

Penyelidikan ini diwujudkan dengan pembuatan suatu model fisik atau eksperimen lereng dengan variasi perkuatan Geogrid pada bidang longsor serta pemberian simulasi hujan. Kemudian dilakukan penyelidikaan geolistrik atau ERT untuk mendeteksi besarnya resistivitas tanah pada model fisik tersebut. Hasil penelitian dianalisis dan dilihat apakah dengan metode ERT dapat digunakan untuk memprediksi bidang runtuh pada suatu lereng.

1.2 Rumusan Masalah

Berdasarkan uraian di atas, rumusan masalah yang dapat diambil adalah sebagai berikut:

1. Apakah metode ERT dapat digunakan untuk memprediksi bidang longsor pada suatu lereng?

2. Bagaimana pengaruh variasi perkuatan geogrid dalam memprediksi bidang longsor menggunakan metode ERT?

3. Bagaimana pengaruh simulasi hujan dalam memprediksi bidang longsor menggunakan metode ERT?

1.3 Batasan Masalah

Agar penelitian ini dapat berfokus pada tujuan yang ingin dicapai, maka diberikan pembatasan permasalahan sebagai berikut:

1. Pengujian dasar seperti uji berat jenis, uji density, uji kadar air, uji distribusi grain size, serta uji batas-batas atterberg dilakukan di Laboratorium Mekanika Tanah dan Geologi Jurusan Sipil Fakultas Teknik Universitas Brawijaya

2. Tanah yang digunakan adalah tanah residual, Tanah yang terbentuk langsung akibat pelapukan kimiawi..

3. Ketinggian model lereng dengan tinggi puncak 30 cm dan tinggi terendah 6 cm dengan sudut lereng 30.

1.4 Tujuan Penelitian

Berdasarkan rumusan masalah yang ada, maka tujuan dari penelitian ini adalah sebagai berikut:

- 1. Mengetahui cara mengolah data hasil dari penyelidikan tanah berbasis geolistrik (ERT).
- 2. Mengetahui pengaruh perkuatan geogrid terhadap nilai resistivitas/tahanan jenis tanah residual.
- 3. Mengetahui pengaruh variasi hujan buatan terhadap bidang longsor lereng tanah residual

Manfaat yang diharapkan dari hasil penelitian ini adalah sebagai berikut:

1. Diketahuinya tingkat kesesuaian antara hasil ERT dengan pola keruntuhan pada lereng akibat pengaruh hujan akan memberikan dasar bagi pengembangan aplikasi ERT. Hasil penelitian ini selanjutnya dapat dijadikan sebagai dasar untuk mencegah longsor pada lereng.

2. Diketahuinya pengaruh dari perkuatan geogrid pada lereng terhadap pola retak keruntuhan lereng akan membantu perencanaan peningkatan daya dukung, terutama pada konstruksi pondasi.

BAB II TINJAUAN PUSTAKA

2.1 Tanah

2.1.1 Tanah Residual

Tanah adalah lapisan permukaan bumi yang berasal dari batuan yang telah mengalami berbagai rangkaian pelapukan oleh alam, sehingga membentuk regolit (lapisan partikel halus). Tanah merupakan bagian terluar dari bumi.

Tanah residual yaitu tanah yang terbentuk dari hasil pelapukan batuan secara kimiawi yang dapat dipengaruhi oleh oksigen, karbondioksida, dan air (terutama yang mengandung asam dan alkali) kemudian mengendap di atas batuan induknya, oleh karena itu biasanya pada tanah residual semakin tinggi kedalamannya kuat geser tanah semakin meningkat. Hal ini disebabkan oleh bagian tanah yang dekat dengan permukaan telah mengalami pelapukan yang lebih besar dibandingkan dengan tanah di bawahnya. Terdapat beberapa istilah seperti pasir, lempung, lanau atau lumpur digunakan untuk menggambarkan sifat tanah yang khusus, sebagai contohnya lempung adalah jenis tanah yang bersifat kohesif dan plastis,sedangkan pasir digambarkan sebagai tanah yang tidak kohesif(*granular*). Ukuran partikel dapat bervariasi dari lebih besar 100 mm hingga lebih kecil dari 0,001mm.

|--|

Nama Golongan	Ukuran Butiran (mm)				
Ivania Obioligan	Kerikil	Pasir	Lanau	Lempung	
Massachussets Institute of	>2	2 - 0.06	0.06 - 0.002	< 0.002	
Technology (MIT)		_ 0,00	0,00 0,001		
U.S. Departement of	>2	2 - 0.05	0.05 - 0.002	< 0.002	
Agriculture (USDA)			.,	,	
American Association of					
and Transportation Officals	76,2 - 2	2 - 0,075	0,075 - 0,002	< 0,002	
(AASHTO)					
Unified Soil Classification			Halus (vaitu lar	au dan	
System (U.S Bureau of	76,2 - 4,75	4,75 - 0,075	lempung < 0,075)		
Reclamation)					

Batasan-batasan	Ukuran	Golongan	Tanah

Kerikil	Pasir	Lanau Lanau dan lemoure	lem- pung	American Association of State Highway and Transportation Officia
Kerikil	Pasir	Lanau	lem- pung	U.S. Department of Agriculture
Kerikil	Pasir	Lanáu	pung	Massachusetts Institute of Technolo

Gambar 2.1 Batasan-batasan ukuran golongan tanah menurut beberapa sistem **Sumber** : (Braja M. Das, 1985 : 8)

Prosedur identifikasi lapangan ditunjukkan pada Tabel 2.2 (Pedoman Kimpraswil No: Pt T-

8-2002-B)

Tabel 2.2.

Prosedur Identifikasi Lapangar

Konsistensi	Indikasi Lapangan
Lunak	Bisa dibentuk dengan mudah dengan jari tangan
Sangat Lunak	Keluar diantara jari tangan jika diremas dalam
	kepalan tangan

2.1.2 Klasifikasi Tanah Berdasarkan Sistem Unified

Sistem klasifikasi unified atau bisa disebut dengan sistem kesatuan tanah merupakan sistem klasifikasi yang paling banyak dipakai dalam percobaan laboratorium. Percobaan laboratorium yang dipakai adalah analisis ukuran butir dan batas-batas atterberg. Sistem ini awalnya dikembangkan untuk pembangunan lapangan terbang sejak tahun 1942, tetapi diubah sedikit pada tahun 1952 agar dapat terpakai pada konstruksi bendungan dan konstruksi-konstruksi lainnya. (Soedarmo, G.D., 1997 : 61)

repository.ub.ac.id

Klasifikasi berdasarkan *Unified System* (Das. Braja. M, 1985), tanah dikelompokkan menjadi :

- Tanah butir kasar (*coarse-grained-soil*) yaitu tanah kerikil dan pasir dimana kurang dari 50% berat total contoh tanah lolos ayakan no.200. Simbol dari kelompok ini dimulai dengan huruf awal G atau S. G adalah untuk kerikil (*gravel*) atau tanah berkerikil, dan S adalah untuk pasir (*sand*) atau tanah berpasir.
- Tanah berbutir halus (*fine-grained-soil*) yaitu tanah dimana lebih dari 50 % berat total contoh tanah lolos ayakan no.200. Simbol dari kelompok ini dimulai dengan huruf awal M untuk lanau (*silt*) anorganik, C untuk lempung (*clay*) anorganik, dan O untuk lanau organik dan lempung organik. Simbol PT digunakan untuk tanah gambut (*peat*), *muck*, dan tanah-tanah lain dengan kadar organik yang tinggi.

Untuk klasifikasi yang benar, perlu memperhatikan faktor-faktor berikut ini:

- 1. Prosentase butiran yang lolos ayakan no.200 (fraksi halus).
- 2. Prosentase fraksi kasar yang lolos ayakan no.40.
- 3. Koefisien keseragaman (Uniformity coefficient, Cu) dan koefisien gradasi (gradation coefficient, Cc) untuk tanah dimana 0-12% lolos ayakan no.200.
- 4. Batas cair (LL) dan Indeks Plastisitas (PI) bagian tanah yang lolos ayakan no.40 (untuk tanah dimana 5% atau lebih lolos ayakan no.200).

Untuk tanah berbutir halus diklasifikasikan atas dasar plastisitas dan kadar persenyawaan organiknya. Dalam hal ini ukuran butir bukan merupakan dasar yang menentukan pembagiaannya. Sehingga sangat dibutuhkan diagram plastisitas.

Tabel 2.3.

Klasifikasi tanah Menurut *unifed* (U.S.C.S)

Divisi Utama			Simbol Kelompok	Nama Umum	Kriteria Klasifikasi
Ч	nan	butir	GW	Kerikil bergradasi	$C_{\rm U} = D_{60}/D_{10} > 4$
butir Kasar (Lebil ih dari 50% tertah	kit l	sedikit l		baik, kerikil	$C_C = 1 < < 3$
	% te			bercampur sedikit	
	npa- 1s)		pasir tanpa/tak ada		
	ih dai	ii (Ta halu		butiran halus	
Berl	Lebi	1urn	GP	Kerikil bergradasi	Tidak memenuhi
nah kil (l	kil (kil () ail M		buruk, kerikil	syarat C_U maupun
Ta	Keril	Keril		bercampur pasir	C _C untuk GW

BRAWIJAYA

					mengandung sedikit butiran halus		
		· Halus (Terdapat	outiran halus)	GM	Kerikil berlanau, kerikil mengandung pasir-lanau bergradasi buruk Kerikil berlempung	Batas-batas atterberg di bawah garis A atau PI < 4	
		Kerikil Berbuti	sejumlah t		kerikil mengandung pasir dan lempung bergradasi buruk	Batas-batas atterberg di atas A atau PI > 7	
	Pasir (Lebih dari 50% lolos pada ayakan no.4)	pada ayakan no.4) Pasir Bersih (Tanpa/sedikit butiran halus)	n halus)	SW	Pasir bergradasi baik, pasir dengan sedikit pasir tanpa butiran halus	$C_U = D_{60}/D_{10} > 6$ $C_C = 1 < < 3$	
			butira	SP SP	Pasir bergradasi buruk, dengan sedikit butiran halus	Tidak memenuhi syarat C _U maupun C _C untuk SW	
		dari 50% lolos	s (Terdapat	ı halus)	SM I	Pasir berlanau, pasir bercampur lanau bergradasi buruk	Batas-batas atterberg di bawah garis A atau PI < 4
		Pasir (Lebih Pasir Berbutir Halus sejumlah butiran	sejumlah butirar	SC	Pasir berlempung, pasir bercampur lempung bergradasi buruk	Batas-batas atterberg di atas A atau PI > 7	
Tanah Berbutir Halus	Lanau bercampur lempung dengan batas cair (Liquid Limit) kurang dari 50%		ML	Lanau tak organik dengan sedikit pasir halus, bubukan batu, atau pasir halus berlempung dengan sedikit plastis	Keterangan bisa dilihat pada Gambar 2.2.		

	CL	Lanau berlempung
		tak organik dengan
		plastisitas rendah
		sampai sedang, lanau
		bercampur lempung,
		pasir halus
	OL	Lanau organik atau
		lanau berlempung
		organik dengan
		plastisitas rendah
		sedang
t)	МН	Lempung tak
[imi	GITA	organik, lempung
l biu	R	bercampur lanau,
(Liq	624	lempung gemuk
cair	СН	Lempung tak organik
atas %	QUA	dengan plastisitas
an b i 50°		tinggi, lempung
leng g dar		gemuk
ing c	OH	Lempung organik
ku		dengan plastisitas
our le		sedang hingga tinggi
amp	PT	Humus dan tanak
berc		Humus dan tanan
nau		dengan kadar
La		organik tinggi

Sumber: Braja M. Das (1985)

Gambar 2.2. Grafik Plastisitas

2.2 Lereng

Suatu permukaan tanah yang miring dengan sudut tertentu terhadap bidang horizontal kita namakan sebagai lereng. Menurut Cristady (1994) lereng tak terbatas merupakan kondisi di mana tanah yang mempunyai kedalaman tertentu dengan permukaan miring, terletak di atas lapisan batu dengan kemiringan permukaan yang sama. Disebut tak terbatas karena mempunyai panjang yang sangat besar dibanding kedalamannya. Jika diambil elemen tanah dengan lebar tertentu, gaya-gaya yang bekerja pada dua bidang vertikalnya akan sama karena pada lereng tak terbatas gaya-gaya yang bekerja di setiap sisi bidangnya dapat dianggap sama. Sifat-sifat tanah dan tegangan lereng tak terbatas pada salah satu bidang yang sejajar dengan lereng adalah sama maka kelongsoran pada lereng tak terbatas biasanya terletak dalam satu bidang yang sejajar dengan bidang lereng (*Sunggono, 1984*). Lereng dapat digolongkan dalam dua tipe yaitu lereng tak terbatas dan lereng terbatas (*Sunggono, 1984*).

Lereng terbatas menurut Cristady (1994) merupakan kondisi di mana suatu timbunan terletak di atas tanah asli yang miring. Akibatnya timbunan akan longsor di sepanjang bidang gelincir. Contoh kondisi ini adalah jika tanah timbunan diletakkan pada tanah asli yang miring dimana pada lapisan tanah asli masih terdapat lapisan lemah yang berada didasar timbunannya.

2.2.1 Kelongsoran Lereng

Bila permukaan tanah tidak datar, maka komponen berat tanah yang sejajar dengan kemiringan lereng akan menyebabkan tanah bergerak kearah bawah seperti pada **Gambar 2.1**. Bila komponen berat tanah tersebut cukup besar, kelongsoran lereng dapat terjadi, dengan kata lain, gaya dorong (*driving force*) melampaui gaya berlawanan yang berasal dari kekuatan geser tanah sepanjang bidang longsor.

Gambar 2.3. Kelongsoran Lereng

Bidang gelincir dapat terbentuk dimana saja di daerah-daerah yang lemah. Jika longsor terjadi dimana permukaan bidang gelincir memotong lereng pada dasar atau di atas ujung dasar dinamakan longsor lereng (*slope failure*) seperti yang diperlihatkan pada Gambar 2.2a. Lengkung kelongsoran tersebut disebut sebagai lingkaran ujung dasar (*toe circle*), jika bidang gelincir tadi melalui ujung dasar maka disebut lingkaran lereng (*slope circle*). Pada kondisi tertentu terjadi kelongsoran dangkal (*shallow slope failure*) seperti yang ditunjukkan pada Gambar 2.2b. Jika longsor terjadi dimana permukaan bidang gelincir berada agak jauh di bawah ujung dasar dinamakan longsor dasar (*base failure*) seperti pada Gambar 2.2c. Lengkung kelongsorannya dinamakan lingkaran titik tengah (*midpoint circle*) (Braja M. Das, 2002).

Lapisan keras

Gambar 2.4. Lengkung kelongsoran Toe Circle

Gambar 2.5 Lengkung kelongsoran Slope Circle

Gambar 2.6. Lengkung kelongsoran Midpoint Circle

2.2.2 Pengaruh Air Terhadap Kelongsoran Lereng

Kelongsoran dapat disebabkan oleh beberapa faktor dimana salah satunya adalah curah hujan. Kelongsoran bisa terjadi apabila intensitas hujan yang turun lebih tinggi dibanding kemampuan tanah untuk menyerap air hujan (Wudianto 2000). Pada daerah tropika basah seperti Indonesia, hujan merupakan penyebab utama terjadinya erosi, dengan pukulan air hujan yang langsung jatuh ke permukaan tanah, agrergat yang berukuran besar akan hancur menjadi partikel yang lebih kecil dan terlempar besama percikan air, yang akan terangkut bersama aliran permukaan. Pada tanah yang berlereng, air hujan yang turun akan lebih banyak berupa aliran permukaan, yang seterusnya air akan mengalir dengan cepat dan menghancurkan serta membawa tanah bagian atas (*top soil*) yang umumnya tanah subur (Brady, N, dan Buckman H, 1982).

Hujan dengan intensitas tertentu yang terjadi secara terus menerus pada waktu tertentu pula akan menyebabkan penambahan massa tanah pada lereng akibat terbentuknya storage oleh infiltrasi air hujan tersebut.

2.2.3 Pengaruh Perkuatan Geogrid Terhadap Kelongsoran Lereng

Geogrid adalah bahan Geosynthetic yang digunakan untuk memperkuat tanah. <u>Geogrid</u> biasanya digunakan untuk memperkuat sebagai dinding penahan, serta subbases atau subsoils bawah jalan, lereng atau bangunan. Hal ini memungkinkan geogrid mentransfer kekuatan untuk area yang lebih besar dari tanah. Geogrid biasanya terbuat bahan polimer, seperti poliester, polietilena atau polypropylene.

2.2.4 Jenis Geogrid

Jenis – jenis geogrid dan kegunaannya :

1. Geogrid Uni Axial

Uni-axial Geogrids adalah lembaran massif dengan celah yang memanjang dengan bahan dasar HDPE (High Density Polyethelene), banyak digunakan di Indonesia untuk perkuatan tanah pada DPT (dinding penahan tanah) dan untuk memperbaiki lereng yang longsor dengan menggunakan tanah setempat/bekas longsoran. Material ini memilki kuat tarik 40 kN/m hingga 190 kN/m. Geogrid jenis ini biasanya dipakai untuk perkuatan dinding penahan tanah dan perbaikan lereng yang longsor.

Geogrid Uni Axial berfungsi sebagai material perkuatan pada sistem konstruksi dinding penahan tanah (Retaining Wall) dan perkuatan lereng (Slope reinforcement)

Gambar 2.7. Geogrid Uni-Axial

2. Geogrid Bi-Axial

Bi-axial Geogrids dari bahan dasar polypropylene (PP) dan banyak digunakan di Indonesia sebagai bahan untuk meningkatkan tanah dasar lunak (CBR < 1%). Bi-axial Geogrid adalah lembaran berbentuk lubang-lubang bujursangkar di mana dengan struktur lubang ini partikel tanah timbunan akan saling terkunci dan kuat geser tanah akan naik dengan mekanisme penguncian ini. Kuat tarik bervariasi antara 20 kN/m – 40 kN/m. Geogrid Bi-Axial berfungsi sebagai stabilisasi tanah dasar. Seperti pada tanah dasar lunak (soft clay maupun tanah gambut).

Keunggulan Geogrid Bi-Axial ini antara lain :

- Kuat tarik yang bervariasi
- Kuat tarik tinggi pada regangan yang kecil
- Tahan terhadap sinar ultra violet
- Tahan terhadap rekasi kimia tanah vulkanik dan tropis
- Tahan hingga 120 tahun

Fungsinya sama dengan *Bi-axial* sebagai material stabilisasi tanah dasar lunak, hanya saja performance nya lebih baik. Hal ini disebabkan bentuk bukaan segitiga lebih kaku sehingga penyebaran beban menjadi lebih merata.

Gambar 2.9. Geogrid Triax

2.3 Geofisika

Geofisika adalah bagian dari ilmu bumi yang mempelajari bumi menggunakan kaidah atau prinsip-prinsip geofisika. Ilmu geofisika merupakan gabungan dari konsep-konsep Ilmu geologi dan fisika yang meliputi meteorologi (udara), geofisika bumi padat, elektrisitas atmosferis, fisika ionosfer dan oseanografi(laut).

Penelitian geofisika untuk mengetahui kondisi di bawah permukaan bumi melibatkan pengukuran di atas permukaan bumi dari parameter-parameter fisika yang dimiliki oleh batuan di dalam bumi. Dari pengukuran ini dapat ditafsirkan sifat-sifat dan kondisi di bawah permukaan bumi secara vertikal maupun horisontal. Dalam skala yang berbeda, metode geofisika dapat diterapkan secara global untuk menentukan struktur bumi, secara lokal untuk eksplorasi mineral dan pertambangan termasuk minyak bumi dan dalam skala kecil yaitu untuk aplikasi geoteknik (penentuan pondasi bangunan, dll).

Beberapa contoh kajian dari geofisika bumi padat misalnya seismologi yang mempelajari gempa bumi, ilmu tentang gunung api (Gunung Berapi) atau *volcanology*, geodinamika yang mempelajari dinamika pergerakan lempeng-lempeng di bumi, dan eksplorasi seismik yang digunakan dalam pencarian hidrokarbon.

Salah satu cara atau metode untuk memperoleh informasi bawah permukaan bumi (subsurface) dengan menggunakan metode survei geofisika. Metode tersebut merupakan salah satu cabang ilmu fisika yang mempelajari bidang bumi khususnya perut bumi berdasarkan konsep fisika. Survei geofisika yang sering dilakukan selama ini antara lain Metode gravitasi (gayaberat), magnetik, seismik, geolistrik (resistivitas) dan elektromagnetik.

2.4 Metode Geolistrik (Resistivitas)

Geolistrik merupakan salah satu metode geofisika yang mempelajari sifat aliran listrik di dalam bumi dan bagaimana cara mendeteksinya di permukaan bumi. Dalam hal ini meliputi pengukuran potensial, arus dan medan elektromagnetik yang terjadi baik secara alamiah ataupun akibat injeksi arus ke dalam bumi. Metode geolistrik (tahanan jenis) merupakan metode geofisika yang sangat popular dan sering digunakan baik dalam survey geologi maupun eksplorasi. Hal ini disebabkan karena metode geolistrik (tahanan jenis) sangat bagus untuk mengetahui kondisi atau struktur geologi bawah permukaan berdasarkan variasi tahanan jenis batuannya.

Pada metode geolistrik tahanan jenis ini, arus listrik diinjeksikan ke dalam bumi melalui dua elektroda arus.Kemudian beda potensial yang terjadi diukur melalui dua elektroda potensial. Dari hasil pengukuran arus dan beda potensial untuk setiap jarak elektroda yang berbeda kemudian dapat diturunkan variasi harga hambatan jenis masing-masing lapisan di bawah titik ukur (sounding point). Metoda ini lebih efektif jika digunakan untuk eksplorasi yang sifatnya dangkal, jarang memberikan informasi lapisan di kedalaman lebih dari 1000 feet atau 1500 feet. Oleh karena itu metode ini jarang digunakan untuk eksplorasi minyak tetapi lebih banyak digunakan dalam bidang engineering geology seperti penentuan kedalaman batuan dasar, pencarian reservoar air, juga digunakan dalam eksplorasi geothermal.

Resistivitas ditentukan dari suatu tahanan jenis semu yang dihitung dari pengukuran perbedaan potensi antar elektroda yang ditempatkan di bawah permukaan. Rangkain pengukuran tahanan jenis / Resistivitas batuan dapat dilihat pada **Gambar 2.10**.

Gambar 2.10. Siklus Elektrik Determinasi Resistivitas dan Lapangan Elektrik Untuk Stratum Homogenous Permukaan bawah tanah

Potensial pada dua elektroda arus permukaan terjadi apabila terdapat dua elektroda arus yang dibuat dengan jarak tertentu seperti pada gambar potensial pada titik-titik dekat permukaan akan dipengaruhi oleh kedua elektroda arus tersebut. Susunan elektrode arus dan potensial pada geolistrik ditunjukkan pada **Gambar 2.11**.

Gambar 2.11. Dua Pasang Elektrode Arus dan Potensial

Berdasarkan letak (konfigurasi) elektroda-elektroda arus, dikenal beberapa jenis metode resistivitas tahanan jenis, antara lain :

1. Konfigurasi Schlumberger

Metode Resistivitas dengan konfigurasi Schlumberger dilakukan dengan cara mengkondisikan spasi antar elektrode potensial adalah tetap, sedangkan spasi antar elektrode arus berubah secara bertahap (Sheriff, 1976). Prinsip utama pada Geolistrik Konfigurasi Schlumberger adalah dengan mengubah jarak Elektrode Arus tetapi tidak dengan Elektrode Potensial. Metode ini dilakukan dengan cara memindahkan elektorde dengan jarak tertentu maka akan diperoleh harga-harga tahanan jenis pada kedalaman yang sesuai dengan jarak elektrode

2. Konfigurasi Wenner

Konfigurasi Wenner merupakan salah satu konfigurasi yang sering digunakan dalam eksplorasi geolistrik dengan susunan jarak antar elektroda sama panjang seperti yang terlihat pada **Gambar 2.12**.

Gambar 2.12. Susunan Elektroda Konfigurasi Wenner

Dalam prosedur Wenner pada tahanan jenis mapping, empat elektroda konfigurasi (C2P2P1C1) dengan spasi yang sama dipindahkan secara keseluruhan dengan jarak yang tetap sepanjang garis pengukuran. Pemilihan spasi terutama tergantung pada kedalaman lapisan yang akan dipetakan.Resistivitas semu yang terbaca dalam konfigurasi wenner dapat dinyatakan dalam rumus :

 $\rho a = K$

(2-2)

Konfigurasi Wenner mempunyai kelebihan dan kekurangan. Menurut Burger (1992), kelebihan konfigurasi Wenner adalah dengan lebar spasi elektroda potensial yang besar maka tidak memerlukan peralatan yang sensitif. Sedangkan kekurangannya adalah semua elektroda harus dipindahkan untuk setiap pembacaan data resistivitas. Hal ini untuk mendapatkan sensitifitas yang lebih tinggi untuk daerah lokal dan variasi lateral dekat permukaan.

Faktor geometri pada konfigurasi Wenner sebesar:

 $\mathbf{K} = 2$

(2-3)

3. Konfigurasi Schlumberger - Wenner

Konfigurasi Wenner-Schlumberger adalah konfigurasi dengan sistem aturan spasi yang konstan dengan catatan faktor "n" untuk konfigurasi ini adalah perbandingan jarak antara elektroda C1-P1 (atau C2-P2) dengan spasi antara P1-P2. Jika jarak antar elektroda potensial (P1 dan P2) adalah a maka jarak antar elektroda arus (C1 dan C2) adalah 2na + a. Proses penentuan resistivitas menggunakan 4 buah elektroda yang diletakkan dalam sebuah garis lurus (Sakka, 2002).

Gambar 2.13. Pengaturan Elektroda Konfigurasi Wenner – Schlumberger

Pada konfigurasi Wenner-Schlumberger faktor geometri (K) tergantung oleh penempatan elektroda di permukaan. (2-4)

 $K=\pi n (n+1)\alpha$

4. Konfigurasi Dipole-dipole

Pada konfigurasi dipole-dipole, kedua elektroda arus dan elektroda potensial bagian luar terpisah dengan jarak a. Sedangkan elektroda arus dan elektroda potensial bagian dalam terpisah sejauh na, dengan n adalah bilangan bulat. Variasi n digunakan untuk mendapatkan berbagai kedalamantertentu, semakin besar n maka kedalaman yang diperoleh juga semakin besar. Tingkat sensitivitas jangkauan pada konfigurasi dipole-dipole dipengaruhi oleh besarnyaa dan variasi n (Waluyo, 2005). Skema konfigurasi dipole-dipole dapat dilihat pada Gambar 2.7.

Gambar 2.14. Konfigurasi Dipole-dipole

(2-5)

2.5. Permodelan Fisik

Sebagian lereng biasa kita temui di perbukitan, sisi bendung, tepi saluran, atau di daerah dengan ketinggian tertentu. Lereng yang sebenarnya merupakan suatu model fisik yang sangat besar jika harus digunakan sebagai variabel utama dalam sebuah penelitian. Dengan demikian yang dipakai sebagai pendekatan yaitu membuat permodelan suatu bentuk lereng yaitu model fisik hidrolik lereng.

Model fisik hidrolik lereng merupakan suatu bentuk miniatur atau pengecilan dari suatu bentuk sebenarnya. Pengecilan ini bertujuan untuk memperkecil volume bahan atau sampel penelitian sehingga biaya yang dikeluarkan menjadi lebih ekonomis dan pembatasan S BRAL masalah juga tidak terlalu melebar.

2.6 Resistivitas Batuan dan Mineral

Resistivitas merupakan salah satu sifat fisis yang dimiliki batuan, yaitu, kemampuan untuk dilewati arus listrik, jika batuan makin sukar dilewati oleh arus listrik maka besarnya tahanan yang diberikan oleh batuan tersebut semakin besar. Masing-masing jenis batuan memiliki nilai resistivitas yang berbeda.

Faktor-faktor yang mempengaruhi besarnya harga tahanan jenis menurut Rolia (2011) adalah:

1. Jenis Material

Besarnya tahanan jenis tergantung pada daya hantar listrik setiap material. Semakin mudah material menghantarkan arus listrik, maka tahanan jenisnya semakin kecil. Kandungan Air Dalam Batuan Semakin banyak kandungan air dalam batuan, maka tahanan jenisnya semakin kecil, karena air merupakan media penghantar arus listrik.

2. Porositas Batuan

Semakin besar porositas batuan, berarti semakin banyak pori-pori dalam batuan, maka semakin kecil tahanan jenisnya karena semakin banyak air yang terkandung di dalamnya.

3. Sifat Kimiawi

Air asin lebih mudah menghantarkan listrik daripada air tawar, sehingga tahanan jenisnya semakin kecil. Hal ini disebabkan karena terdapatnya ion-ion (Na+ dan Cl-) yang mampu menghantarkan arus listrik.

Harga resistivitas jenis batuan dan mineral dapat dilihat dari tabel kisaran resistivitas batuan.

Tabel 2.4.

Tabel Variasi Harga Thanan Jenis dari Beberapa Jenis Batuan Sedimen (Rolia Eva, 2011)

Jenis Batuan	Nilai Tahanan Jenis (Ωm)	
Lempung	3 - 30	
Lempung Berdebu	5 - 40	
Pasir Berlempung	5 - 50	
Lempung Berpasir	30 - 100	
Lempung Shale	50 - 200	
Pasir, Gravel	S 10 ² -5.10 ³	١.
Gips, Batu Gamping	10 ² - 5.10 ³	4
Batuan Kristalin	2.102 103	
Batu Bergaram, Anhydrate	2,10³ <	

Tabel 2.5.

Tabel Resistivitas Material-Material Bumi (Telford, 1990)

Material Resistivity	(ohm - meter)	Material Resistivity	(ohm - meter)
Pyrite (Pirit)	0.01 - 100	Shales (Batu Tulis)	20 - 2.000
Quartz (Kwarsa)	500 - 800.000	Sand (Pasir)	1 - 1.000
Calcite (Kalsit)	$1 \ge 10^{12} - 1 \ge 10^{13}$	Clay (Lempung)	1 – 100
Rokc Salt (Garam Batu)	30 – 1 x 10 ¹³	Ground Water (Air Tanah)	0.5 – 300
Granite (Granit)	200 - 100.000	Sea Water (Air Asin)	0.2
Andesite (Andesit)	1.7 x 10 ² - 45 x 10 ⁴	Magetite (Magnetit)	0.01 - 1.000
Basalt (Basal)	200 - 100.000	Dry Gravel (Kerikil Kering)	600 - 10.000
Limestones (Gamping)	500 - 10.000	Alluvium (Aluvium)	10 - 800
Sandstones (Batu Pasir)	200 - 8.000	Gravel (Kerikil)	100 - 600

3.1 Bagan Alir Tahapan Penelitian

Gambar 3.1. Diagram Alir Tahapan Penelitian

3.2 Waktu dan Tempat Penelitian

Penelitian dilakukan mulai bulan September 2015 di Laboratorium Mekanika Tanah dan Geologi Jurusan Teknik Sipil, Fakultas Teknik, Universitas Brawijaya.

3.3 Alat Dan Bahan Penelitian

Bahan yang digunakan pada penelitian ini adalah model yang terbentuk dari timbunan tanah.

Peralatan yang digunakan dalam penelitian ini antara lain:

- Peralatan uji analisis saringan (grand size analisys)
- Ayakan saringan no.4,10, 20, 40, 60, 100 dan 200
- Timbangan digital

(b)

Gambar 3.2 Peralatan untuk analisa saringan: (a) timbangan digital (b) ayakan. Peralatan uji berat jenis tanah (*specific grafity*)

- Labu ukur
- Timbangan digital
- Kompor listrik
- Termometer

Gambar 3.3 Peralatan untuk analisis berat jenis tanah : labu ukur.

Peralatan uji kepadatan (compaction)

- mould silinder Φ 15,5 cm
- pelat mold
- penumbuk dengan berat 2,5 kg dan tinggi jatuh 30 cm

Gambar 3.4 Peralatan untuk pemeriksaan kepadatan dan kadar air: (a) dan (b) *mould* silinder dan pelat *mould* (c) *proctor* standar dan *mould*

Peralatan uji kadar air tanah

- Density ring
- Timbangan digital
- Cawan
- Oven

(a)

(b)

(c)

Gambar 3.5. Peralatan untuk pemeriksaan kadar air: *density ring* (b) cawan (c) timbangan digital

Peralatan uji geolistrik

- Resistivity meter
- Kabel dan elektrode
- Roll meter
- Peralatan tulis-menulis

Gambar 3.6 Peralatan untuk pemeriksaan Geolistrik

3.3 Metode Penelitian

3.3.1 Pengujian Dasar Pada Tanah Pasir

Dalam penelitian ini dilakukan uji pemeriksaan pada tanah pasir, yaitu :

- Pemeriksaan analisis saringan menurut ASTM C-136-46
- Pemeriksaan berat jenis butiran tanah mengikuti ASTM D-854-58
- Pemeriksaan kepadatan standart (compaction) mengikuti ASTM D-698-70
- Pemeriksaan kadar air tanah mengikuti ASTM D-2216

3.3.2 Pembuatan Model

Tanah yang akan digunakan adalah Residual. Tanah yang akan digunakan sebagai model diayak terlebih dahulu dengan saringan no. 4 dan yang lolos saringan tersebut digunakan sebagai bahan model. Tanah akan dibuat menjadi 4 model. Model yang pertama dibentuk tanpa diberi perkuatan geogrid dan tanpa hujan, model yang kedua tanpa perkuatan geogrid dan diberi hujan buatan, model yang ketiga diberi perkuatan geogrid dan tanpa hujan buatan. Material

yang digunakan untuk bahan pembuatan *box* merupakan material yang memilik daya hantar listrik yang jelek (*isolator*). Sehingga, *Box* yang digunakan terbuat dari *fiberglass* dengan ukuran panjang 60 cm, lebar 60 cm dan tinggi *box* 60 cm.

Langkah-langkah pembuatan model lereng antara lain:

- 1. Mengayak tanah yang akan digunakan menggunakan ayakan no 4 sehingga didapatkan tanah dengan gradasi halus hingga sedang
- Memasukan tanah yang sudah diayak ke dalam *box* secara bertahap sesuai dengan Gambar 3.7. tiap lapisan tanah digilas dengan menggunakan silinder beton. Tanah digilas hingga mencapai tanah dengan kepadatan yang direncanakan. Kemudian dilakukan pengecekan kadar air dan kepadatan menggunakan *density ring*
- Mendiamkan tanah selama ±30 menit agar tanah dapat melakukan pergeseran untuk mengisi rongga-rongga yang belum terisi
- 4. Membuat kemiringan dengan sudut kemiringan 30°

Gambar 3.7 skema pembuatan model

3.3.3 Metode Simulasi Hujan

Pembuatan simulasi hujan pada penelitian ini dilakukan menggunakan pipa PVC yang diberi lubang pada bagian sisi pipa. Air yang digunakan pada simulasi hujan ditaruh pada sebuah wadah dengan ketinggian tertentu dan dialirkan melalui pipa yang telah diberi lubang sehingga air akan mengalir melalui lubang-lubang pada pipa. Pemberian air dilakukan selama waktu tertentu dengan debit yang telah ditentukan dan hanya difokuskan pada bagian atas dan bagian miring lereng.

Gambar 3.8 Tampak depan saat pemberian simulasi hujan

3.3.4. Metode Pembebanan

Pengujian pembebanan dilakukan dengan menggunakan dongkrak hidrolik. Sebagai pengukur besarnya beban yang terjadi, digunakan *load cell* dengan kapasitas 5 ton dan dapat langsung dibaca besarnya beban yang terjadi.

Dongkrak hidrolik dihubungkan ke piston yang terhubung dengan batang portal (*frame*) yang terbuat dari baja profil. Secara manual dongkrak hidrolik dilakukan pemompaan yang memberikan tekanan pada piston yang kemudian tekanan dari piston disalurkan melalui *load cell*, agar terbaca beban yang diberikan. Piston besi dihubungkan dengan sebuah balok kayu sebagai pondasi menerus sehingga beban yang disalurkan pada lereng dapat merata sepanjang lebar lereng yang direncanakan. Letak piston bantuan diatur sedemikian rupa sehingga terpasang pada pusat pelat baja terpasang tepat simetris di atas permukaan benda uji.

Gambar 3.9 skema pembebanan Lereng

3.3.5. Metode Penyelidikan Geolistrik

Resistivitas bawah permukaan dapat diperoleh dari beda potensial jika arus diinjeksikan ke dalam lapisan tanah melalui 4 buah elektroda. Besar beda potensial yang terukur tergantung pada resistivitas batuan bawah permukaan. Arus yang diinjeksikan adalah arus DC atau frekuensi sangat rendah. Pemetaan lokasi penelitian untuk survey geolistriik dilakukan pada satu lintasan menggunakan konfigurasi *werner* seperti pada **Gambar 3.11**.

Gambar 3.10 Tampak Atas Pemetaan Lokasi

		I	1	I						I	I		L	I					1	I	1	I	I	1	L
		+	+	+	+	+	+	+	+	;	+	+	:	+	;	;	;	:	+	;	+	+	+		
				÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷				
						+	+	+++	+	+	+++	+	+	+	+	+	+	+	+						
								+	*	*	+++	*	;	*	;	÷	+								
										+	+	;	;	*	+										
												+	*												
L	Elect	ro	d e																						
+	Datur	n p	01	n t	İN	p	s e	U C	10	s e	cti	0 1	1												

Gambar 3.11 Susunan elektrode dan urutan pengukuran data ERT konfigurasi werner

Proses pengambilan data geolistrik dapat dilakukan dengan langkah sebagai berikut:

- 1. Menyusun rangkaian resistivitymeter
- 2. Mengaktifkan resistivity kemudian menginjeksikan arus listrik ke dalam lapisan tanah melalui kabel konektor penghubung dan elektroda.
- 3. Melakukan pengukuran pada lintasan kemudian mencatat arus listrik (I) dan beda potensial (V) antara 2 titik elektroda.
- 4. Menghitung tahanan jenis hasil pengukuran.

3.4 Rancangan Penelitian

Pada percobaan ini dibuat empat model dengan empat variasi jenis kondisi tanah untuk setiap model. Rancangan percobaan yang akan dilakukan dapat dilihat pada gambar berikut.

Gambar 3.12 ukuran box penelitian

Gambar 3.14 Model Lereng Dengan Perkuatan Geogrid

3.5 Metode Analisis Data

Nilai tahanan jenis hasil pengukuran geolistrik berupa tahanan jenis semu, untuk memperoleh nilai tahanan jenis sebenarnya dilakukan dengan menghitung resistivitas (ρ) semu hasil pengukuran menggunakan persamaan:

$$\rho = k x \frac{\Delta V}{I}$$

dengan I arus dalam Ampere, ΔV beda potensial dalam volt, ρ tahanan jenis dalam Ohm meter dan k faktor geometri elektroda dalam meter. Kemudian data hasil pengukuran tersebut diolah dengan menggunakan bantuan *software Res2Dinv* untuk menampilkan penampang *isoresistivity* 2D seperti pada **Gambar** 3.15.

Gambar 3.15 Contoh Hasil inversi resistivitas pada penyelidikan geolistrik model

3.6 Variabel Penelitian

Penelitian menggunakan dua variabel, yaitu variabel terikat (*dependent*) dan variabel bebas (*antecedent*). Variabel dalam penelitian ini adalah sebagai berikut. Variabel bebas (*antecedent*) dalam penelitian ini antara lain:

- Variasi perkuatan geogrid
- Variasi hujan buatan
- Penyelidikan tanah berbasis geolistrik
- Beban yang digunakan pada percobaan

Variabel konsekuensi (dependent) dalam penelitian ini antara lain:

- Resistivitas pada sampel
- Kadar air

BAB IV PEMBAHASAN

4.1. Klasifikasi Tanah

4.1.1. Analisa Gradasi Butiran Tanah

Pada Pengujian ini bertujuan untuk dapat menentukan pembagian butir (gradasi) agregat kasar dan agregat halus dari tanah yang akan dipergunakan untuk sampel pengujian geolistrik. Dalam pengujian gradasi akan digunakan Saringan dengan ukuran secara berturut-turut yaitu mulai dari saringan nomer 4, 10, 20, 40, 50, 80, 100, 200, dan pan. Pengujian ini dilakukan dengan cara dilakukan penggetaran sampel tanah melalui satu set saringan yang mana lubang-lubang saringan tersebut memiliki diameter semakin kecil dari atas ke bawah.

Gambar 4.1. Grafik gabungan analisa gradasi butiran dan hidrometer

Berdasarkan hasil pengujian yang telah dilakukan, diperoleh data tanah yang lolos saringan nomor 200 sebesar 24,83% karena prosentase tanah tertahan saringan nomor 200 lebih dari 50% sehingga tanah digolongkan menjadi tanah berbutir kasar

4.1.2. Analisa Spesific Gravity

Pada Pengujian ini ditujukan untuk mengetahui Spesific grafity tanah sebagai sampel dalam penelitian geolistrik. Specific gravity adalah perbandingan berat butiran tanah dengan berat air pada volume yang sama dan suhu tertentu.

Sampel yang digunakan adalah tanah asli berasal dari Gunung Banyak Kab. Batu,Jawa Timur. Hasil pengujian specific gravity disajikan pada Tabel 4.1

Tabel 4.1.Nilai Hasil Uji Specific Gravity

Picnometer	1	2	3
Specific Gravity	2,539	2,528	2,539
Rata-rata		2,535	

4.1.3. Analisa Indeks Plastisitas (PI)

Pada Pengujian ini bertujuan untuk mengetahui jenis tanah pada sampel yang digunakan dalam pengujian geolistik. Indeks plastisitas (PI) merupakan perbedaan antara batas cair (LL) dan batas plastis (PL) suatu tanah. Batas cair (LL) adalah kadar air dimana suatu tanah berubah dari keadaan cair menjadi keadaan plastis. Batas plastis (PL) adalah batas terendah dari tingkat keplastisan suatu tanah.

Tabel 4.2.

Hasil Pemeriksaan Batas Cair dan Batas Plastis Tanah

LL	LL 2	PI
(%)	(%)	(%)
44,4219	38.031	6.39

Dari hasil tersebut nantinya akan digunakan untuk menentukan jenis tanah yang digunakan dalam pengujian geolistrik.

4.1.4. Klasifikasi Tanah Berdasarkan Sistem Unified

Diperoleh data tanah yang lolos saringan nomer 200 sebesar 24,83 %. Berpedoman pada Unified Soil Classification System (USCS), digolongkan tanah sebagai tanah berbutir kasar dengan jenis tanah pasir karena prosentase tanah tertahan saringan no 200 lebih dari 50%. Selain itu, dari pengujian atterberg diperoleh nilai Liquid Limit (LL) sebesar 44,213 % dan Indek Plastisitas (PI) sebesar 6,39 %. Batas – batas atterberg tersebut berada di bawah garis A. Sehingga dapat disimpulkan bahwa tanah tersebut adalah jenis tanah SM (pasir berlanau, pasir bercampur lanau bergradasi buruk).

4.1.5.Analisa Uji Pemadatan (Compaction Test)

Uji pemadatan bertujuan untuk mendapatkan nilai berat isi kering (γ_d) maksimum, hal ini menunjukan tanah memiliki kepadatan maksimum dan nilai kadar air

optimum (OMC) tanah. Pengujian ini mengacu pada ASTM-D-698-70 metode B. pada pengujian ini proctor yang digunakan memiliki berat 2,5 kg dengan tinggi jatuh 12 inchi atau 30,48 cm, Mold yang digunakan memiliki diameter 15,2 cm dan tinggi 11,6 cm, dan jumlah tumbukan sebanyak 56 tumbukan untuk setiap lapisannya.

Dari hasil uji pemadatan , didapatkan kadar air optimum (OMC) tanah sebesar 19,72 % dan kepadatan (ɣd) maksimum sebesar 1,175 gr/cm3. Nilai kepadatan inilah yang akan menjadi acuan dalam menentukan kepadatan model lereng.

Gambar 4.2. Grafik pemadatan standar tanah

4.1.6. Analisa Kepadatan Tanah Model

Dalam pelaksanaannya sulit untuk mendapatkan nilai kepadatan sesuai dengan hasil uji pemadatan di laboratorium. Karena itu digunakan kepadatan tanah model. Dari perbandingan antara berat isi kering model (γ _{dlap}) dan berat isi hasil uji pemadatan di laboratorium (γ _{dlap}) maka akan didapatkan nilai kepadatan relatif. Nilai kepadatan relatif yang ditetapkan adalah sebesar 90%. Maka didapatkan nilai kepadatan tanah model rencana adalah sebesar 1.058 gr/cm3 dengan kadar air sebesar 26%.

Dalam pembuatan model proses pengisian sampel tanah dilakukan dengan membagi menjadi 5 lapisan tanah dengan ketinggian masing-masing 6 cm pada setiap lapisannya agar kepadatan yang diinginkan dapat merata. Setiap lapisan sampel tanah dilakukan usaha pemadatan, pemadatan pada model dilakukan dengan memberikan tumbukan menggunakan alat penumbuk berupa besi berpegangan dengan berat 9,6 kg pada papan kayu berukuran 30 x 30 cm dengan tebal 3cm yang ditempatkan di atas tanah model yang akan dipadatkan, pemberian papan di atas tanah model berfungsi sebagai pemerata tekanan tumbukan pada tanah sehingga tekanan pada tumbukan yang diterima tanah dapat terdistribusi dengan merata. Setelah lapisan tanah mencapai ketinggian yang telah direncanakan dilakukan pengujian density menggunakan density ring untuk mengetahui nilai kepadatan model (Ydlap).

4.1.7. Analisa Kuat Geser Langsung (Direct Shear)

Uji kuat geser langsung bertujuan untuk mengetahui nilai parameter kuat geser tanah, diantaranya adalah nilai sudut geser tanah (ø) dan kohesi tanah (c). Hasil dari pengujian ini berupa grafik hubungan antara tegangan normal (σ) dan tegangan geser (τ). Dari grafik tersebut dapat diperoleh nilai kohesi (c) dan sudut geser tanah (ø) dengan menghubungkan ketiga titik yang diperoleh dengan garis lurus sehingga membentuk garis yang memotong sumbu vertical pada nilai kohesi (c) dan memotong sumbu horizontal dan memberntuk nilai sudut geser tanah (ø). Berdasarkan pengujian yang dilakukan didapatkan nilai sudut geser tanah (ø) sebesar 23,898 ° dan nilai kohesi sebesar 0,148 kg/cm2. Grafik hasil pengujian uji geser langsung disajikan pada Gambar 4.3

Gambar 4.3. Grafik hasil uji geser langsung pada model (a) grafik hubungan tegangan geser dan tegangan geser (b) grafik hubungan tegangan normal dan tegangan geser

(a)

4.2. Pengujian Model Test

Dalam penelitian ini digunakan box dengan ukuran 60 x 60 x 60 cm berbahan acrylic yang diisi dengan sampel tanah dan dibentuk menjadi lereng. Dalam proses pembuatannya, pengisian tanah dilakukan dengan membagi 5 lapisan dengan tinggi tiap lapisannya sebesar 6 cm. pada setiap lapisan dilakukan control volume, yaitu mengontrol berat basah tanah yang dimasukan dalam satu lapusan yaitu seberat 29,5 kg pada tiap lapisannya. Pemeriksaan kadar air dan kepadatan tanah dilakukan menggunakan density ring

Setelah tanah mencapai ketinggian 30 cm, tanah didiamkan selama kurang lebih 30 menit sehingga diharapkan tanah dapat menyatu dengan baik dan mengisi rongga-rongga yang masih ada. Selanjutnya lereng dibuat dengan sudut kemiringan 30°. Sedangkan Pada sampel lain yang menggunakan geogrid sebagai perkuatan lereng diatas lapisan ke 3 diletakan paranet sebagai tiruan geogrid lalu ditimbun lapisan tanah ke 4 lalu dilanjutkan sampai lapisan ke 5 Selanjutanya lereng dibuat seperti pembuatan sampel tanpa perkuatan geogrid. Letak dari penempatan paranet didasarkan dari Bidang longsor yang acuannya didapatkan dari hasil simulasi menggunakan aplikasi SLOPE/W.

4.2.1. Penentuan Beban Ultimit (Qu)

Untuk menentukan beban ultimit (Qu) yang dapat diterima oleh lereng yang telah dibuat dilakukan pengujian pembebanan pada model. Pengujian pembebanan dilakukan menggunakan balok kayu dengan lebar 4,5 cm dan panjang 58 cm sehingga luasnya 261*cm*² yang diasumsikan sebagai pondasi menerus yang akan memberikan beban menerus pada model yang dihubungkan dengan load cell sebagai alat pembaca beban dan piston hidrolik yang terhubung dengan dongkrak hidrolik sebagai alat pemberi beban. Pengujian pembebanan dilakukan untuk menentukan nilai beban ultimit dilakukan perlahan hingga beban yang dapat ditahan oleh lereng tidak lagi bertambah atau memiliki nilai yang sama sampai tiga kali pemompaan dongkrak, dan nilai beban terakhir yang muncul pada pengukuran diartikan sudah tercipta bidang longsor sehingga dimasukan sebagai nilai Qu

4.2.2. Penyelidikan Geolistrik.

Pengujian geolistrik dilaksanakan menggunakan alat resistivitymeter yang dihubungkan dengan 4 buah elektroda. 4 elektroda tersebut terdiri dari 2 buah elektroda arus (elektroda positif dan negatif) dan 2 buah elektroda potensial tegangan (elektroda positif dan negatif). Digunakan elektroda berbahan stainless steel berdiameter 5 mm dan panjang 30 cm yang ujung meruncing untuk memudahkan dalam penancapan elektroda ke tanah. Pengujian geolistrik dilakukan dengan metode multi elektroda, sehingga setiap titik pengujian ditempatkan satu elektroda dan dilakukan pembacaan secara bergantian dengan cara digunakan penjepit kabel, hal ini dilaksanakan untuk menghindari terjadinya kerusakan permukaan tanah yang dikhawatirkan akan berpengaruh terhadap pembacaan arus dan tegangan pada tanah.

Pengujian geolistrik menggunakan konfigurasi Wenner dengan jarak antar elektroda sebesar 4 cm dan terdapat 14 buah titik penempatan elektroda pada lintasan horizontal dan 16 buah titik pada lintasan diagonal. Sehingga terdapat 26 datum point pada lintasan horizontal dan 35 datum point pada lintasan diagonal.

Gambar 4.4. Stacking chart konfigurasi Wenner

Pengujian geolistrik dilakukan pada 8 lintasan yang terdiri dari 6 lintasan horizontal dan 2 lintasan diagonal seperti pada **Gambar 4.5** dan **Gambar 4.6**. Pengujian geolistrik pada satu model dilakukan sebanyak 5 kali pada pembebanan yang berbeda-beda, pengujian dilakukan pada setelah model mendapatkan beban sebesar 0 Q_u , 0,25 Q_u , 0,5 Q_u , 0,75 Q_u dan Q_u .

Gambar 4.6. Pengujian geolistrik tampak atas model

4.2.3. Pemberian Simulasi Hujan

Pemberian simulasi hujan dilakukan dengan menggunakan alat berupa gallon air dengan kapasitas 19 L yang disambungkan dengan rangkaian pipa PVC dengan jarak antar pipa 12cm. pipa PVC telah diberi lubang sebelumnya menggunakan mata bor dengan ukuran 0,5 mm dengan jarak antar lubang sebesar 3 cm. lubang pada satu pipa dengan pipa lain dibuat bersilangan, hal ini ditujukan agar air yang nantinya membasahi permukaan sampel dapat merata sesuai dengan keadaan saat hujan di realita.

Pemberian air dilakukan dengan membuka kran pada gallon sehingga volume air yang telah ditentukan dapat keluar dengan memperhatikan volume awal dan akhir dari air dalam waktu tertentu. Perhitungan waktu dan berkurangnya volume air dilakukan ketika air sudah keluar melalui lubang pada pipa PVC karena dibutuhkan waktu proses pengisian dari gallon menuju pipa . Dan ketika waktu sudah mencapai waktu yang ditentukan maka kran pada gallon ditutup dan ditunggu hingga air yang masih terdapat pada selang maupun pipa tidak dapat lagi keluar.

Volume yang digunakan dalam penelitian ini adalah sebesar 5 L dalam waktu 2 menit. Sehingga debit yang keluar adalah sebesar 41,7 ml/dt.

4.3. Hasil Pengujian

4.3.1. Interpretasi dan Hasil Inverse 2 Dimensi Model

Interpretasi merupakan Gambaran atau pemodelan dari hasil percobaan yang telah dilakukan. Interpretasi data dapat dilakukan berdasarkan hasil procesing data dengan nilai resistivitas tiap lapisan yang ditunjukkan dengan gradasi warna pada inversi 2 dimensi oleh aplikasi res2dinv. Hasil interpretasi tersebutlah yang nantinya digunakan untuk analisis keretakan tanah model dan mencocokannya dengan keretakan yang ter lihat secara visual pada model lereng. Pada penelitian ini dilakukan penyamaan warna yang menunjukan nilai resistivitas lapisan, hal ini ditujukan untuk memudahkan dalam menganalisis keretakan yang terjadi pada lapisan tanah. Lintasan yang dilakukan penyamaan warna hanya lintasan 1,3,4 dan 5 Hal ini dikarenakan lintasan tersebut adalah lintasan yang sangat terlihat perubahan yang diakibatkan oleh penambahan beban.

4.3.2. Model Tanpa Perkuatan Geogrid Dan Tanpa Pemberian Simulasi Hujan

Pada sampel tanpa perkuatan geogrid sampel yang digunakan diciptakan tanpa adanya retakan dan perkuatan geogrid sehingga sampel dianggap sebagai sampel murni yang belum mengalami retakan pada bidang longsor dan juga belum mengalami perkuatan. Pada sampel ini diasumsikan memiliki struktural tanah yang masih alami seperti di sebuah lereng yang belum pernah mengalami pola keretakan dan penambahan perkuatan. Untuk

4.3.2.1. Hasil Pemeriksaan Kepadatan dan Kadar Air

Uji kepadatan dan kadar air pada setiap lapisan model dilakukan dengan diambil sebanyak 3 sampel. Uji kepadatan dilaksanakan menggunakan *density ring*. Dari data-data tersebut, maka akan didapatkan kepadatan dan kadar air tiap lapisan yang nantinya dapat di rata-rata sehingga menghasilkan kepadatan dan kadar air dari sampel. Hasil pengujian kepadatan dan kadar air sampel tanpa perkuatan geogrid disajikan pada **Tabel 4.3**.

Tabel 4.3.

lapisan	berat isi kering (gr/cm3)	kadar air (%)
1	1,04	26,12
2	1,03	26,41
3	1,14	26,35
4	1,12	25,83
5	1,18	25,23
rata-rata	1,102	25,990

Nilai berat isi kering dan kadar air sampel tanpa perkuatan geogrid

4.3.2.2.Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid pada lintasan 1

Hasil penampang resistivitas bawah permukaan untuk model tanpa perkuatan geogrid pada lintsan 1 untuk beban 0 Qu sampai dengan beban Qu ditunjukan pada **Gambar 4.8** Sampai dengan **Gambar 4.12**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm

Gambar 4.8. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 1 dengan beban 0 Qu

Gambar 4.9. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 1 dengan beban 0.25 Qu

Gambar 4.10. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 1 dengan beban 0.5 Qu

Gambar 4.11. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada

lintasan 1 dengan beban 0.75 Qu

Gambar 4.12. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 1 dengan beban 1 Qu

Dari **Gambar 4.8** sampai dengan **Gambar 4.12** dapat terlihat perubahan nilai resistivitas terhadap lapisan tanah sampai dengan kedalaman 7,95 cm pada lintasan elektroda 1. Lintasan elektroda 1 merupakan lintasan dibuatnya retakan dan lintasan diletakannya beban, dan juga bagian kepala (head) dari bidang longsor yang terbentuk setelah diberi beban.

Pada **Gambar 4.8** merupakan gambar sampel saat belum mengalami pembebanan (pembebanan 0Qu) sehingga pada gambar ini ditampilkan gambar pada kondisi alami dari sampel pada lintasan 1. Pada gambar ini terbentuk lapisan dengan resistivitas $265 - 433 \Omega$ m dengan warna biru muda dari kedalaman 3.1 cm hingga 7.95 cm hingga ke ujung tengah bawah atau tepatnya jarak 2.8 cm-3,2 cm. **Pada Gambar 4.9** merupakan gambar sampel saat diberikan pembebanan sebesar 0.25 Qu nampak terbentuk lapisan dengan resistivitas $265 - 433 \Omega$ m dengan warna biru muda dari kedalaman 3.1 cm namun tidak hingga dasar

repository.ub.ac.id

kedalaman 7.95 cm tetapi pada dasar kedalaman 7.95cm tercipta lapisan dengan resistivitas $265 - 433 \Omega$ m berwarna abu-abu yang tepatnya jarak 2.8 cm-3,2 cm. **Pada Gambar 4.10** merupakan gambar sampel saat diberikan pembebanan 0.5 Qu tidak nampak banyak perbedaan dibanding gambar 4.8 pada bagian dasar atau kedalaman 7.95cm jarak 2.8cm – 3.2 cm namun tercipta lapisan berwarna biru gelap dengan reisitivitas dibawah 99.5 dan 99.5 – 162 Ωm sehingga di perkirakan air mulai naik ke permukaan akibat gaya pembebanan karena nilai resistivitas pada permukaaan yang rendah.

Pada Gambar 4.11 dan 4.12 hasil penelitian geolistrik relatif sama dengan lapisan dasar kedalaman 7.95 cm jarak 2.8 – 3.2 cm mengalami kenaikan nilai resistivitas dengan nilai 433- 708 Ωm berwarna hijau tua.

Nilai resistivitas pada **Gambar 4.8** sampai dengan **Gambar 4.11** nampak pada bagian permukaan mulai mengalami penurunan nilai resistivitas sedangkan pada bagian dasar mengalami peningkatan nilai resistvitas ketika mulai mengalami pembebanan dari 0 Qu ke 1Qu. hal ini dimungkinan karena tanah mengalami tekanan air pori ekses yang disebabkan karena sampel mengalami pembebanan hingga air pada dasar sampel mulai bergerak naik ke permukaan. Lintasan 1 adalah lintasan yang terletak di dekat beban diletakan memiliki nilai tekanan air pori ekses yang cukup besar hal ini sesuai dengan penelitian yang dilakukan oleh Lehtonen V. (2013)

4.3.2.3.Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid Pada Lintasan 3

Hasil penampang resistivitas bawah permukaan untuk model tanpa perkuatan geogrid pada lintsan 3 untuk beban 0 Qu sampai dengan beban Qu ditunjukan pada **Gambar 4.13** Sampai dengan **Gambar 4.17**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm.

Gambar 4.13. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 3 dengan beban 0 Qu

Gambar 4.14. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada

lintasan 3 dengan beban 0.25 Qu

Gambar 4.15. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 3 dengan beban 0.5 Qu

Gambar 4.16. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 3 dengan beban 0.75 Qu

Gambar 4.17. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 3 dengan beban 1 Qu

Dari **Gambar 4.13** sampai dengan **Gambar 4.17** dapat terlihat perubahan nilai resistivitas terhadap lapisan tanah sampai dengan kedalaman 7,95 cm pada lintasan elektroda 3. Lintasan elektroda 3 merupakan lintasan yang terletak di bagian atas dari kaki (toe) bidang longsor.

Pada **Gambar 4.13** merupakan gambar sampel saat belum mengalami pembebanan (pembebanan 0Qu) sehingga pada gambar ini ditampilkan gambar pada kondisi alami dari sampel pada lintasan 3. **Pada Gambar 4.13** di dominasi oleh lapisan tanah yang memiliki nilai resistivitas sebesar 99.5 – 162 Ω m sehingga dari kedalamana 1,08 hingga 7,95 ditafsirkan kadar air yang ada cukup merata karena memiliki nilai resistivitas yang rendah. Pada **Gambar 4.14 dan 4.15** hasil yang ditemukan relatif sama pada nilai resistivitas lapisan pada permukaan dan pada dasar sampel. Namun bila dibandingkan dengan gambar 4.13 lapisan yang memiliki nilai resistivitas 162 - 265 Ω m mulai mengalami perubahan bentuk lapisan. Pada **Gambar 4.16** lapisan biru muda yang memiliki nilai resistivitas sebesar 265 – 433 Ω m mulai muncul pada jarak 24-36 cm di permukaan sampel dan sedangkan lapisan berwarna biru tua yang memiliki resistivitas 99.5 – 162 Ω m mulai cenderung mulai berkumpul di tengah sampel. Hal ini menunjukan pada gambar 4.16 telah mulai terbentuk retakan-retakan sehingga air mengalami pergerakan mengisi keretakan yang ada sehingga muncul nilai resistivitas yang rendah sesuai dengan penelitian yang dilakukan oleh Tomas Panek (2008).

Pada **Gambar 4.17** lapisan hijau muda yang memiliki nilai resistivitas $433 - 708\Omega$ m mulai muncul pada jarak 24-36 cm di permukaan sampel dan lapisan berwarna biru tua yang memiliki resistivitas 99.5 – 162 Ω m yang sebelumnya pada **Gambar 4.16**. mulai cenderung mulai berkumpul di tengah sampel luasannya semakin besar sehingga dapat diartikan mulai muncul retakan yang besar dan terjadi kelongsoran. hal ini dikarenakan tekanan air pori ekses mengakibatkan bertambahnya beban guling, selain itu tekanan air pori ekses pun mengakibatkan air mengisi jalur bidang longsor sehingga tanah yang berada pada jalur bidang longsor kehilangan kuat geser tanah sehingga terjadi keruntuhan hal ini sesuai dengan

penelitian yang dilakukan oleh Ogbonnaya (2005).

4.3.2.4.Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid Pada Lintasan 4

Hasil penampang resistivitas bawah permukaan untuk model tanpa perkuatan geogrid pada lintsan 3 untuk beban 0 Qu sampai dengan beban Qu ditunjukan pada **Gambar 4.18** Sampai dengan **Gambar 4.22**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm.

Gambar 4.18. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 4 dengan beban 0 Qu

Gambar 4.19. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 4 dengan beban 0.25 Qu

Gambar 4.20. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 4 dengan beban 0.5 Qu

Gambar 4.21. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 4 dengan beban 0.75 Qu

Gambar 4.22. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 4 dengan beban 1 Qu

Dari **Gambar 4.18** sampai dengan **Gambar 4.22** dapat terlihat perubahan nilai resistivitas terhadap lapisan tanah sampai dengan kedalaman 7,95 cm pada lintasan elektroda 4. Lintasan elektroda 4 merupakan lintasan yang terletak di bagian bawah kaki (toe) bidang longsor. Bagian ini merupakan tempat berkumpulnya air setelah lereng mengalami keruntuhan, air yang mengalir melalui retakan pada bidang longsor akan mengalir dan berkumpul pada daerah ini.

Pada **Gambar 4.18** merupakan gambar sampel saat belum mengalami pembebanan (pembebanan 0Qu) sehingga pada gambar ini ditampilkan gambar pada kondisi alami dari sampel pada lintasan 4. Pada gambar 4.18 terlihat didominasi oleh lapisan beresistivitas rendah dengan nilai 99.5 – 162 Ω m dari bagian permukaan yang menunjukkan bahwa di dominasi lapisan berkadar air tinggi. Pada **Gambar 4.19** ketika diberi tekanan sebesar 0.25Qu hasilnya relatif hampir sama dengan **Gambar 4.18** saat belum diberikan pembebebanan nampak belum banyak terjadi perubahan. Pada **Gambar 4.20** tampak muncul lapisan berwarna biru muda dengan nilai resistivitas sebesar 265 -433 Ω m yang ditafsirkan telah muncul retakan-retakan pada sampel percobaan dan air mulai bergerak mengisi retakan yang muncul sehingga tercipta nilai resistivitas yang rendah pada lapisan tersebut. Pada **Gambar 4.21** dan **Gambar 4.22** tampak bagian permukaan sampel mulai mengalami penurunan nilai resistivitas dengan muncul lapisan berwarna biru tua berisitivitas 99.5 – 162 Ω m secara merata sedangkan pada bagian dasar terbentuk lapisan-lapisan
repository.ub.ac.id

beresistivitas tinggi. Dimunkinkan tekanan air pori ekses mengakibatkan air mengisi jalur bidang longsor yang pada lintasan elektroda 4 hanya terbentuk pada salah satu sisi saja, sehingga tanah yang berada pada jalur bidang longsor kehilangan kuat geser tanah sehingga terjadi keruntuhan hal ini sesuai dengan penelitian yang dilakukan oleh Ogbonnaya (2005). Retakan yang terbentuk pada salah satu sisi tersebut akan terisi air dan mengakibatkan nilai resistivitas pada daerah retakan mengecil hal ini sesuai dengan penelitian yang dilakukan oleh Tomas Panek (2008)

4.3.2.5. Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid Pada Lintasan 5

Hasil penampang resistivitas bawah permukaan untuk model tanpa perkuatan geogrid pada lintsan 3 untuk beban 0 Qu sampai dengan beban Qu ditunjukan pada **Gambar 4.23** Sampai dengan **Gambar 4.27**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm.

Gambar 4.23. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 5 dengan beban 0 Qu

Gambar 4.24. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 5 dengan beban 0.25 Qu

Gambar 4.25. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 5 dengan beban 0.5 Qu

Gambar 4.26. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 5 dengan beban 0.75 Qu

Gambar 4.27. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid pada lintasan 5 dengan beban 1 Qu

Dari **Gambar 4.23** sampai dengan **Gambar 4.27** dapat terlihat perubahan nilai resistivitas terhadap lapisan tanah sampai dengan kedalaman 7,95 cm pada lintasan elektroda 5. Lintasan elektroda 5 merupakan lintasan berada di bawahi kaki lereng sehingga letaknya di bagian yang cukup jauh dari lokasi bidang longsor. Berbeda dengan lintasan 4 pada lintasan ini air yang mengalir melalui retakan pada bidang longsor akan mengalir dan berkumpul pada daerah ini sehingga pola gambar yang muncul relatif sama.

Dari **Gambar 4.23** sampai dengan **Gambar 4.27** lapisan dengan nilai resistivitas 99.5–162 Ω m dapat terlihat sampai dengan kedalaman 7,95 cm. hal ini menunjukan beban yang ditahan oleh lereng tidak mengakibatkan air mengalami tekanan ke atas pada lapisan ini, sehingga air cenderung akan tetap merata. Bisa di lihat dari bagian dasar kedalaman 7,95 cm sampel memiliki lapisan dengan nilai resisitivitas yang sama dari semua gambar.

1.3.2.6. Interpretasi 2 Dimensi Model Tanpa Perkuatan Geogrid

Hasil inverse 2 Dimensi pada hasil tiap lapisan disejajarkan membentuk potongan sesui letak lintasan model lereng. Hal ini dilakukan untuk memudahkan dalam memprediksi keretakan yang terjadi pada model lereng. bagian lintasan yang digunakan untuk membuat gambar interpretasi adalah pada bagian tengah lintasan, hal ini dikarenakan bagian paling dalam saat pembacaan adalah pada bagian tengah. Pembuatan Interpretasi 2 dimensi berikut dilakukan menggunakan software autoCAD.

Gambar 4.28. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0 Qu

Pada **Gambar 4.28** dimana sampel tanah mengalami pembebanan 0 Qu mulai dari lintasan elektroda 1 pada kedalaman 0-7.95 Cm didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m hanya saja ada sedikit lapisan biru muda dengan nilai resistivitas 162-265 Ω m. Pada lintasan elektroda 3,4 dan 5 tampak didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m dari kedalaman 0-7.95 Cm.

Gambar 4.29. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.25 Qu

Pada **Gambar 4.29** dimana sampel tanah mengalami pembebanan 0.25 Qu mulai dari lintasan elektroda 1 pada kedalaman 0-7.95 Cm didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m namun terjadi penebalan lapisan biru muda dengan nilai resistivitas 162-265 Ω m dibandingkan dengan **Gambar 4.28** hal ini dimunkinkan sesaat setelah mengalami tekanan air tertekan menuju ke bagian permukaan oleh adanya tekanan air pori ekses yang disebabkan oleh pemberian beban. Pada lintasan elektroda 3,4 dan 5 tampak didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m dari kedalaman 0-7.95 Cm.

Gambar 4.30. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.5 Qu

Pada **Gambar 4.30** dimana sampel tanah mengalami pembebanan 0.5 Qu mulai dari lintasan elektroda 1 didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m sedangkan pada bagian bawah lapisan berwarna biru muda dengan nilai resistivitas 99.5–162 Ω m memiliki ketebalan yang sama dengan **Gambar 4.29**. Pada lintasan elektroda 3 dan 4 tampak didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m dari

kedalaman 0-7.95 Cm. Pada lintasan elektroda 5 kedalaman 0-6 Cm tampak lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m sedangkan pada kedalaman 6-7.95 Cm muncul lapisan berwarna hijau dengan nilai resistivitas 265-433 Ω m yang menunjukkan mulai terjadi retakan pada pembacaan kedalaman 6-7.95 lintasan 5.

Gambar 4.31. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.75 Qu

Pada **Gambar 4.31** dimana sampel tanah mengalami pembebanan 0.75 Qu pada lintasan elektroda 1 didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m, namun pada bagian bawah lapisan mulai mengalami meningkatan nilai resistivitas dengan munculnya lapisan berwarna hijau dengan nilai resistivitas 265-433 Ω m. Pada lintasan elektroda 3 tampak didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m dari kedalaman 0-7.95 Cm. Pada lintasan 4 pada bagian bawah nampak muncul lapisan biru muda dengan nilai resistivitas 99.5–162 Ω m sehingga dimunkinkan bahwa retakan mulai menyebar hingga terbaca pada lintasan 4. Pada lintasan elektroda 5 kedalaman 0-6 Cm tampak lapisan berwarna biru dengan nilai resistivitas 265-433 Ω m yang menunjukkan mulai terjadi retakan pada pembacaan 6-7.95 lintasan 5 hampir sama dengan **Gambar 4.30**.

Gambar 4.32. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 1 Qu

Pada **Gambar 4.32** dimana sampel tanah mengalami pembebanan 1 Qu pada lintasan 1 bila kita bandingkan dengan lintasan 1 dari **Gambar 4.31** terlihat penebalan lapisan berwana hijau pada kedalaman 6-7.95 Cm. Pada lintasan 3 tak tampak begitu banyak perbedaan dibandingkan lintasan 3 dari **Gambar 4.28** hingga **Gambar 4.31**. Pada lintasan elektroda 4 terdapat kenaikan nilai resistivitas dibandingkan dengan gaambar-gambar sebelumnya dengan adanya lapisan berwarna kuning dengan nilai resistivitas 708-1155 Ω m. Demikian pula dengan lintasan 5 muncul kenaikan nilai signifikan dengan munculnya lapisan berwarna kuning dengan nilai resistivitas 1155-1887 Ω m. Hal ini dapat diartikan bahwa retakan pada lereng terdeteksi pada lintasan 1,4 dan 5 dengan ditandai dengan perubahan nilai resitivitas lapisan. Sedangkan pada lintasan 3 tidak dilewati oleh retakan karena dari Gambar 4.28 hingga 4.32 tidak menunjukkan perubahan yang signifikan.

4.3.3. Model Dengan Perkuatan Geogrid Dan Tanpa Pemberian Simulasi Hujan

Alat yang digunakan untuk pembuatan model dengan perkuatan geogrid adalah menggunakan paranet sebagai interpelasi geogrid pada model. Pada atas lapisan ke 3 diletakan paranet sebagai tiruan geogrid lalu ditimbun lapisan tanah ke 4 lalu ditekuk sampai lapisan ke 5 Selanjutanya lereng dibuat seperti pembuatan sampel tanpa perkuatan geogrid. Letak dari penempatan paranet didasarkan dari Bidang longsor yang acuannya didapatkan dari hasil simulasi menggunakan aplikasi SLOPE/W. dengan Geogrid diletakkan pada 6cm di bawah permukaan sampel dan 12 cm di bawah sampel meliputi prediksi bidang lereng. Bidang longsor yang terbentuk pada model dengan

perkuatan geogrid pada bidang longsor terlihat pada Gambar 4.33

Gambar 4.33. Bidang longsor yang terbentuk pada model perkuatan Geogrid

4.3.3.1.Hasil Pemeriksaan Kepadatan dan Kadar Air

Uji kepadatan dan kadar air dilakukan pada setiap lapisan model dengan diambil sebanyak 3 sampel. Uji kepadatan dilakukan menggunakan *density ring*. Dari data-data tersebut, maka akan didapatkan kepadatan dan kadar air tiap lapisan yang nantinya dapat di rata-rata sehingga menghasilkan kepadatan dan kadar air dari lereng model. Hasil pengujian kepadatan dan kadar air untuk model dengan perkuatan geogrid pada bidang longsor disajikan pada **Tabel 4.4**.

Tabel 4.4.

Nilai berat isi kering dan kadar air sampel dengan perkuatan geogrid

lapisan	berat isi kering (gr/cm3)	kadar air (%)
1	1,04	25,17
2	1,03	25,52
3	1,15	25,98
4	1,12	25,38
5	1,17	24,67
rata-rata	1,100	25,343

4.3.3.2.Hasil Inversi 2 Dimensi Model Dengan Geogrid pada Lintasan 1

Hasil penampang resistivitas bawah permukaan untuk model dengan perkuatan geogrid pada lintsan 1 untuk beban 0 Q_u sampai dengan beban Q_u ditunjukan pada **Gambar 4.34** Sampai dengan **Gambar 4.38**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm. Pada lintasan ini geogrid dilewati pada 6 cm dari permukaan gambar inversi 2D

Gambar 4.34. Penampang resistivitas 2D lapisan bawah permukaan model perkuatan geogrid pada lintasan 1 dengan beban 0 Qu

Gambar 4.35. Penampang resistivitas 2D lapisan bawah permukaan model perkuatan geogrid pada lintasan 1 dengan beban 0.25 Qu

Gambar 4.36. Penampang resistivitas 2D lapisan bawah permukaan model perkuatan geogrid pada lintasan 1 dengan beban 0.5 Qu

Gambar 4.37. Penampang resistivitas 2D lapisan bawah permukaan model perkuatan geogrid pada lintasan 1 dengan beban 0.75 Qu

Gambar 4.38. Penampang resistivitas 2D lapisan bawah permukaan model perkuatan geogrid pada lintasan 1 dengan beban 1 Qu

Dari **Gambar 4.34** sampai dengan **Gambar 4.38** dapat terlihat perubahan nilai resistivitas terhadap lapisan tanah sampai dengan kedalaman 7,95 cm pada lintasan elektroda 1. Lintasan elektroda 1 merupakan lintasan diletakannya beban, dan juga bagian kepala (head) dari bidang longsor yang terbentuk setelah diberi beban.

Pada **Gambar 4.34** merupakan gambar sampel saat belum mengalami pembebanan (pembebanan 0Qu) sehingga pada gambar ini ditampilkan gambar pada kondisi alami dari sampel pada lintasan 1. Pada gambar ini tampak dari permukaan hingga kedalaman 7.95 Cm hasil yang didapatkan didominasi warna biru dengan nilai resistivitas $99.5 - 168 \Omega m$. Pada **Gambar 4.35** dan **Gambar 4.36** tidak nampak perubahan yang signifikan pada lapisan yang muncul didominasi warna biru dengan nilai resistivitas $99.5 - 168 \Omega m$. Pada **Gambar 4.38** pada kedalaman 0-3.28 Cm nampak mulai terjadi kenaikan nilai resitivitas dengan munculnya lapisan berwarna biru muda dengan nilai resistivitas $265 - 434 \Omega m$ meski tidak begitu besar. Pada **Gambar 4.39** pada permukaan hingga kedalaman 3.28 Cm nampak lapisan berwarna biru muda dengan nilai resitivitas 265 - 434 Ωm mengalami penebalan,

Sehingga dimunkinkan pada lapisan tersebut mengalami keretakan.

Nilai resistivitas pada **Gambar 4.34** sampai dengan **Gambar 4.39** nampak pada bagian permukaan mulai mengalami penurunan nilai resistivitas sedangkan pada bagian dasar mengalami peningkatan nilai resistivitas ketika mulai mengalami pembebanan dari 0 Qu ke 1Qu. hal ini dimungkinan karena tanah mengalami tekanan air pori ekses yang disebabkan karena sampel mengalami pembebanan hingga air yang ada pada sampel air pada dasar sampel mulai bergerak naik ke permukaan. Lintasan 1 adalah lintasan yang terletak di dekat beban diletakan memiliki nilai tekanan air pori ekses yang cukup besar hal ini sesuai dengan penelitian yang dilakukan oleh Lehtonen V. (2013)

4.3.3.3. Hasil Inversi 2 Dimensi Model Dengan Geogrid pada Lintasan 3

Hasil penampang resistivitas bawah permukaan untuk model dengan geogrid pada lintasan 3 untuk beban 0 Q_u sampai dengan beban Q_u ditunjukan pada **Gambar 4.39** Sampai dengan **Gambar 4.43**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm

Gambar 4.39. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 3 dengan beban 0 Qu

Gambar 4.40. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 3 dengan beban $0.25 Q_{\rm u}$

Gambar 4.41. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 3 dengan beban $0.5 Q_u$

Gambar 4.42. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 3 dengan beban $0.75 Q_u$

Gambar 4.43. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 3 dengan beban 1 Q_u

Dari Gambar 4.39 sampai dengan Gambar 4.43 dapat terlihat perubahan nilai resistivitas terhadap lapisan tanah sampai dengan kedalaman 7,95 cm pada lintasan elektroda 3. Pada Gambar 4.39 merupakan gambar sampel saat belum mengalami pembebanan sehingga pada gambar ini kita jadikan acuan awal kondisi sampel pada kondisi normal. Pada bagian permukaan nampak lapisan berwarna biru dengan nilai resistivitas 162 – 265 Ω m kemudian ke arah dasar tergradasi semakin meningkat.

Pada **Gambar 4.40** nampak pada bagian permukaan mengalami perubahan nilai resistivitas dengan muncul lapisan warna biru muda dengan nilai resistivitas $162 - 265 \Omega m$ dan semakin ke dasar semakin kecil nilai resistivitasnya dengan adanya lapisan warna biru dengan nilai resistivitas 99.5-162 yang diduga air mengisi retakan yang muncul saat pembebanan ini.

Pada **Gambar 4.41.** terjadi perubahan signifikan pada lapisan pada kedalaman 5.71-7.95 cm yakni muncul lapisan dengan resistivitas berwarna hijau bernilai $265 - 433 \Omega m$ sedangkan pada bagian permukaan masih seperti gambar sebelumnya memiliki lapisan berwarna biru dengan nilai resistivitas $162 - 265 \Omega m$.

Pada **Gambar 4.42** tidak nampak begitu banyak perubahan yang signifikan dibandingkan dengan gambar sebelumnya yakni pada lapisan permukaan memiliki lapisan dengan nilai resistivitas $162 - 265 \Omega m$ dan pada kedalaman 5.71-7.95 cm memiliki lapisan berwarna hijau dengan nilai resistivitas $265 - 433 \Omega m$.

Pada **Gambar 4.43** merupakan sampel mengalami pembebanan maksimum nampak pada bagian permukaan memiliki lapisan berwarna hijau dengan nilai resistivitas 265-433 Ω m dan pada kedalaman 3.29 cm hingga 7.95 cm memilki lapisan berwarna biru dengan nilai reisistivitas bernilai 99.5-162 Ω m. Pada gambar ini nampak terdapat kesenjangan signifikan pada lapisan yang dibatasi kedalaman 3.29 cm. Hal ini dimunkinkan pada sampel ini tercipta keretakan dan rongga-rongga yang pada akhirnya terisi oleh air sehingga pada tercipta nilai resistivitas yang rendah dan tinggi pada lapisan berdekatan sesuai dengan penelitian yang dilakukan oleh Tomas Panek (2008).

4.3.3.4. Hasil Inversi 2 Dimensi Model Dengan Geogrid Pada Lintasan 4

Hasil penampang resistivitas bawah permukaan untuk model dengan geogrid pada lintasan 5 untuk beban 0 Q_u sampai dengan beban Q_u ditunjukan pada **Gambar 4.44** Sampai dengan **Gambar 4.48**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm

Gambar 4.44. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 4 dengan beban 0 Q_u

Gambar 4.45. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 4 dengan beban 0.25 Q_u

Gambar 4.46. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 4 dengan beban $0.5 Q_u$

Gambar 4.47. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 4 dengan beban 0.75 Qu

geogrid pada lintasan 4 dengan beban 1 Qu

Dari **Gambar 4.44** sampai dengan **Gambar 4.48** dapat terlihat perubahan nilai resistivitas terhadap lapisan tanah sampai dengan kedalaman 7,95 cm pada lintasan elektroda 4. Pada **Gambar 4.44** merupakan gambar sampel saat belum mengalami pembebanan sehingga pada gambar ini kita jadikan acuan awal kondisi sampel pada kondisi normal. Pada bagian permukaan nampak lapisan berwarna biru dengan nilai resistivitas 99.5 – 163 Ω m.

Pada **Gambar 4.45** dan **Gambar 4.46** tidak nampak perubahan signifikan yang muncul pada hasil pembacaan dengan didominasi lapisan berwarna biru dengan nilai resistivitas 99.5 – 163 Ωm dari permukaan hingga kedalaman 7.95 cm. Pada **Gambar 4.47** mulai nampak adanya perubahan dengan munculnya lapisan berwarna hijau dengan nilai resistivitas 344-708 Ωm hingga kedalalaman 3.2 cm sedangkan pada bagian lainnya didominasi lapisan berwarna biru dengan nilai resistivitas 99.5 – 163 Ωm. repository.ub.ac.id

Pada **Gambar 4.48** lapisan hijau dengan nilai resistivitas 434 - 708 Ωm pada permukaan hingga kedalaman 3.2 cm tampak sedikit menebal seiring penambahan beban dengan munculnya lapisan berwarna biru muda dengan nilai resistivitas 163 - 434 Ωm. Secara garis besar dari **Gambar 4.44** hingga **Gambar 4.48** tiap penambahan beban lapisan yang tercipta didominasi oleh lapisan berwarna biru dengan nilai resistivitas 99.5 – 163 Ωm sehingga disimpulkan tidak adanya retakan yang tercipta pada lapisan ini.

4.3.3.5. Hasil Inversi 2 Dimensi Model Dengan Geogrid Pada Lintasan 5

Hasil penampang resistivitas bawah permukaan untuk model dengan geogrid pada lintasan 5 untuk beban 0 Q_u sampai dengan beban Q_u ditunjukan pada **Gambar 4.49** Sampai dengan **Gambar 4.53**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm

Gambar 4.50. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 5 dengan beban $0.25 Q_u$

Gambar 4.51. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 5 dengan beban $0.5 Q_u$

Gambar 4.52. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 5 dengan beban $0.75 Q_{\rm u}$

Gambar 4.53. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid pada lintasan 5 dengan beban 1 Q_u

Dari Gambar 4.49. sampai dengan Gambar 4.53. dapat terlihat perubahan nilai resistivitas terhadap lapisan tanah sampai dengan kedalaman 7,95 cm pada lintasan elektroda 5. Lintasan elektroda 5 merupakan lintasan berada di bawah kaki lereng. Pada Gambar 4.49. kita dapat melihat bahwa dari permukaan hingga kedalaman 7.95 cm didominasi oleh lapisan berwarna biru dengan nilai resisitivitas 99.5 – 163 Ω m dengan pada bagian dasar cenderung mengecil nilai resistivitasnya. Pada Gambar 4.50. dan Gambar 4.51. tidak tampak begitu banyak perubahan signifikan yang terjadi, gambar didominasi lapisan berwarna biru dengan nilai resistivitas 99.5 – 163 Ω m dan pada bagian dasar cenderung mengecil nilai resistivitas 99.5 – 163 Ω m dan pada bagian dasar cenderung mengecil nilai resistivitas 99.5 – 163 Ω m dan pada bagian dasar cenderung mengecil nilai resistivitas 99.5 – 163 Ω m dan pada bagian dasar cenderung mengecil nilai resistivitas 99.5 – 163 Ω m dan pada bagian dasar cenderung mengecil nilai resistivitas 99.5 – 163 Ω m dan pada bagian dasar cenderung mengecil nilai resistivitas 99.5 – 163 Ω m dan pada bagian dengan meningkatnya nilai resistivitas pada bagian dasar dengan nilai terbesar berwarna oranye 1156-1889 Ω m dan penurunan nilai resistivitas pada bagian permukaan dengan nilai resistivitas 99.5 – 163 Ω m.

Pada Gambar 4.53. lapisan dengan nilai resistivitas yang tinggi mulai semakin menebal dibandingkan dengan gambar sebelumnya pada bagian dasar dan pada bagian permukaan lapisan dengan nilai resistivitas rendah nampak mulai semakin menyebar. Hal ini

diperkirakan karena tanah mengalami tekanan air pori ekses yang disebabkan oleh sampel mengalami pembebanan hingga air yang ada pada sampel air pada dasar sampel mulai bergerak naik ke permukaan.

4.3.2.6.Interpretasi 2 Dimensi Model Dengan Perkuatan Geogrid

Hasil inverse 2 Dimensi pada hasil tiap lapisan disejajarkan membentuk potongan sesui letak lintasan model lereng. Hal ini dilakukan untuk memudahkan dalam memprediksi keretakan yang terjadi pada model lereng. bagian lintasan yang digunakan untuk membuat gambar interpretasi adalah pada bagian tengah lintasan, hal ini dikarenakan bagian paling dalam saat pembacaan adalah pada bagian tengah. Pembuatan Interpretasi 2 dimensi berikut dilakukan menggunakan software autoCAD.

Gambar 4.54. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0 Qu

Pada **Gambar 4.54** dimana sampel tanah mengalami pembebanan 0 Qu mulai dari lintasan elektroda 1 pada kedalaman 0-7.95 Cm didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m hanya saja ada sedikit lapisan biru muda dengan nilai resistivitas 162-265 Ω m. Pada lintasan elektroda 3,4 dan 5 tampak didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m dari kedalaman 0-7.95 Cm.

Gambar 4.55. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.25 Q_u

Pada **Gambar 4.55.** dimana sampel tanah mengalami pembebanan 0.25 Qu lintasan elektroda 1 pada kedalaman 0-7.95 Cm didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m. Pada lintasan 3 dari permukaan didominasi warna biru dengan nilai resistivitas 99.5–162 Ω m dan cenderung memiliki warna semakin gelap serta menurun nilai resistivitasnya ke bagian dasar. Pada lintasan elektroda 4 dan 5 tidak mengalami perubahan signifikan dengan didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m dari kedalaman 0-7.95 Cm.

Gambar 4.56. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.5 Qu

Pada **Gambar 4.56.** dimana sampel tanah mengalami pembebanan 0.5 Qu lintasan elektroda 1 tidak mengalami perubahan pada kedalaman 0-7.95 Cm didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m. Pada lintasan 3 mengalami perubahan dimana pada lintasan ini bagian dasar mengalami kenaikan nilai resistivitas dengan munculnya lapisan berwarna hijau dengan nilai resistivitas 265–434 Ω m dan pada bagian permukaan memiliki lapisan resistivitas lebih rendah. Pada lintasan elektroda 4 dan 5 tidak

mengalami perubahan signifikan dengan didominasi lapisan berwarna biru dengan nilai resistivitas 99.5–162 Ω m dari kedalaman 0-7.95 Cm.

Gambar 4.57. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.75 Q_u

Pada **Gambar 4.57.** dimana sampel tanah mengalami pembebanan 0.75 Qu lintasan elektroda 1,3,4 dan 5 tidak mengalami perubahan signifikan dan cenderung memiliki hasil yang sama dengan hasil pada saat pembebanan 0.5Qu

Gambar 4.58. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 1 Qu

Pada **Gambar 4.58.** merupakan sampel diberi pembebanan maksimum. Pada hasil yang didapatkan pada lintasan 1 memiliki lapisan berwarna biru dengan nilai resistivitas 99.5-162 Ω m dan pada bagian permukaan memiliki lapisan biru muda dengan nilai resistivitas $162-265 \Omega$ m. Pada lintasan 3 mengalami perubahan signifikan dibandingkan gambar sebelumnya dengan adanya lapisan berwarna hijau di permukaan dengan nilai resistivitas $265-434 \Omega$ m

repository.ub.ac.id

dan semakin ke bawah nilai resistivitas menurun dengan lapisan berwarna biru bernilai resistivitas 99.5–162 Ω m. Hal ini dimunkinkan karena telah muncul retakan pada lintasan ini sehingga akan terisi air dan mengakibatkan nilai resistivitas pada daerah retakan mengecil hal ini sesuai dengan penelitian yang dilakukan oleh Tomas Panek (2008). Pada lintasan 5 nampak merubahan dengan nilai resistivitas pada bagian permukaan cenderung turun dan pada bagian dasar cenderung naik. Hal ini dimunkinkan pada lintasan ini air bergerak ke permukaan akibat oleh tekanan air pori ekses akibat dari pembebanan.

4.3.4. Model Tanpa Perkuatan Geogrid Dan Pemberian Simulasi Hujan

Pada sampel tanpa perkuatan geogrid sampel yang digunakan diciptakan tanpa adanya retakan dan perkuatan geogrid sehingga sampel dianggap sebagai sampel murni yang belum mengalami retakan pada bidang longsor dan juga belum mengalami perkuatan. Namun pada sampel ini diberikan simulasi hujan menggunakan pipa paralon yang dilubangi.

Pada sampel ini diasumsikan memiliki struktural tanah yang masih alami seperti di sebuah lereng yang belum pernah mengalami pola keretakan dan penambahan perkuatan. Untuk lebih jelasnya akan di tampilkan pada **Gambar 4.59**

Gambar 4.59. Retakan yang terbentuk pada sampel tanpa perkuatan geogrid dan diberi simulasi hujan

4.3.4.1. Hasil Pemeriksaan Kepadatan dan Kadar Air

Uji kepadatan dan kadar air dilakukan pada setiap lapisan model dengan diambil sebanyak 3 sampel. Uji kepadatan dilakukan menggunakan *density ring*. Dari data-data tersebut, maka akan didapatkan kepadatan dan kadar air tiap lapisan yang nantinya dapat di rata-rata sehingga menghasilkan kepadatan dan kadar air dari lereng model. Hasil pengujian kepadatan dan kadar air untuk model tanpa perkuatan geogrid dan pemberian simulasi hujan disajikan pada **Tabel 4.5**.

Tabel 4.5.

Nilai berat isi kering dan kadar air model tanpa perkuatan geogrid dan pemberian simulasi hujan

lapisan	berat isi kering (gr/cm3)	kadar air (%)
1	0,94	25,67
2	1,03	26,41
3	1,14	26,02
4	1,12	25,83
5	1,18	25,23
rata-rata	1,083	25,834

1.3.4.2. Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid Dan Pemberian Simulasi Hujan Pada Lintasan 1

Hasil penampang resistivitas bawah permukaan untuk model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintsan 1 untuk beban 0 Q_u sampai dengan beban Q_u ditunjukan pada **Gambar 4.60** Sampai dengan **Gambar 4.64**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm.

Gambar 4.60. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban 0 Q_u

Gambar 4.61. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban $0.25 Q_{\rm u}$

 $Gambar \ 4.62. \ Penampang \ resistivitas \ 2D \ lapisan \ bawah \ permukaan \ model \ tanpa \ perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban 0.5 Qu$

 $Gambar \ 4.63. Penampang \ resistivitas \ 2D \ lapisan \ bawah \ permukaan \ model \ tanpa \ perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban 0.75 Qu$

Gambar 4.64. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban 1 Q_u

Dari **Gambar 4.60** sampai dengan **Gambar 4.64** dapat terlihat perubahan nilai resistivitas terhadap lapisan tanah sampai dengan kedalaman 7,95 cm pada lintasan elektroda 1. Lintasan elektroda 1 merupakan lintasan diletakannya beban. Gambar tersebut dilakukan penyederhanaan warna dengan menggunakan *software* AutoCAD, sehingga hanya memilki 4 janis warna saja yaitu warna biru untuk nilai resistivitas 0–99.5 Ω m, warna kuning untuk nilai resistiitas 443–708 Ω m warna hijau untuk nilai resistivitas

708– 1155 Ωm, warna merah untuk nilai resistivitas 1155 – 3085 Ωm dan warna pink untuk nilai resistivitas 708–1155, penyederhanaan warna ini dilakukan agar memudahkan dalam analisa nilai resistivitas.

Pada **Gambar 4.60** sampai dengan **Gambar 4.64** pada lapisan permukaan sampai kedalaman 5,41 cm terdapat lapisan berwarna biru dengan nilai resistivitas $0-99.5 \Omega m$, pada bagian ini tidak terlihat perubahan yang signifikan seiring dengan pertambahan beban yang diberikan. Pada kedalaman 5,41–7,95cm barulah terlihat perubahan pada kedalaman 5,41–7,95cm barulah terlihat perubahan pada nerah. Pada Gambar 4.71 dimana sampel menerima beban ultimate terdapat lapisan perwarna pink yang menunjukkan nilai resistivitas yang tinggi bernilai 1155–3085 Ωm

1.3.4.3.Hasil Inversi 2 Dimensi Model Tanpa Geogrid Dan Pemberian Simulasi Hujan pada Lintasan 3

Hasil penampang resistivitas bawah permukaan untuk model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 untuk beban 0 Q_u sampai dengan beban Q_u ditunjukan pada **Gambar 4.65** Sampai dengan **Gambar 4.69**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm

Gambar 4.65. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 dengan beban 0 Q_u

Gambar 4.66. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 dengan beban $0.25 Q_{\rm u}$

Gambar 4.67. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 dengan beban 0.5 Qu

 $Gambar \ 4.68. \ Penampang \ resistivitas \ 2D \ lapisan \ bawah \ permukaan \ model \ tanpa \ perkuatan \ geogrid \ dan \ pemberian \ simulasi \ hujan \ pada \ lintasan \ 3 \ dengan \ beban \ 0.75 \ Q_u$

Gambar 4.69. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 dengan beban $1Q_u$

Dari Gambar 4.65 sampai dengan Gambar 4.69 dapat terlihat perubahan nilai resistivitas terhadap lapisan tanah sampai dengan kedalaman 7,95 cm pada lintasan elektroda 1. Lintasan elektroda 1 merupakan lintasan diletakannya beban. Gambar tersebut dilakukan penyederhanaan warna dengan menggunakan *software* AutoCAD, sehingga hanya memilki 4 janis warna saja yaitu warna biru untuk nilai resistivitas 0–99.5

 Ω m, warna kuning untuk nilai resistiitas 99.5–443 Ω m, warna hijau untuk nilai resistiitas 443–708 Ω m, warna merah untuk nilai resistivitas 708 – 1155 Ω m dan warna pink untuk nilai resistivitas 1155–3085 Ω m, penyederhanaan warna ini dilakukan agar memudahkan dalam analisa nilai resistivitas.

Pada **Gambar 4.65** sampai dengan **Gambar 4.69** pada lapisan permukaan sampai kedalaman 5,41 cm memiliki lapisan berwarna biru dengan nilai resistivitas 0 – 99.5 Ω m, pada bagian ini tidak tampak perubahan yang signifikan seiring dengan pertambahan beban yang diberikan. Pada **Gambar 4.65** dan **Gambar 4.66** tak tampak ada perbedaan pada kedalaman 5.41 Cm–7.95 Cm sedangkan pada **Gambar 4.67** hingga **Gambar 4.69** lapisan berwarna kuning dengan nilai resistivitas 99.5–443 Ω m tampak mengalami penebalan hingga puncaknya pada **Gambar 4.69** terdapat warna merah untuk nilai resistivitas 708 – 1155 Ω m dan warna pink untuk nilai resistivitas 1155–3085 Ω m yang mendadakan pada lapisan tersebut tercipta resistivitas yang tinggi saat pengujian. Hal ini dimungkinkan keretakan akibat dari bidang longsor mulai terbentuk sehingga pada bagian ini tidak dibasahi oleh air jadi tercipta kontur dengan nilai resistivitas tinggi mulai menebal.

4.3.4.4.Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid dan Pemberian Simulasi Hujan pada Lintasan 4

Hasil penampang resistivitas bawah permukaan untuk model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 untuk beban 0 Q_u sampai dengan beban Q_u ditunjukan pada **Gambar 4.70** Sampai dengan **Gambar 4.74**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm.

Gambar 4.70. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 dengan beban 0 Q_u

Gambar 4.71. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 dengan beban 0.25 Qu

Gambar 4.72. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 dengan beban $0.5 Q_{\rm u}$

Gambar 4.73. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 dengan beban $0.75 Q_u$

Gambar 4.74. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 dengan beban 1 Q_u

Dari **Gambar 4.70** sampai dengan **Gambar 4.74** dapat terlihat perubahan nilai resistivitas terhadap lapisan tanah sampai dengan kedalaman 7,95 cm pada lintasan elektroda 4. Gambar tersebut dilakukan penyederhanaan warna dengan menggunakan *software* AutoCAD, sehingga hanya memilki 4 janis warna saja yaitu warna

biru untuk nilai resistivitas 0–99.5 Ω m, warna kuning untuk nilai resistiitas 99.5–443 Ω m, warna hijau untuk nilai resistiitas 443–708 Ω m, warna merah untuk nilai resistivitas 708–1155 Ω m dan warna pink untuk nilai resistivitas 1155–3085 Ω m, penyederhanaan warna ini dilakukan agar memudahkan dalam analisa nilai resistivitas.

Pada **Gambar 4.70** sampai dengan **Gambar 4.74** pada lapisan permukaan sampai kedalaman 5,41 cm memiliki lapisan berwarna biru dengan nilai resistivitas 0 - 99.5 Ω m, pada bagian ini tidak tampak perubahan yang signifikan seiring dengan pertambahan beban yang diberikan. Pada **Gambar 4.70** dan **Gambar 4.74** tak tampak ada perbedaan signifikan pada kedalaman 5.41 Cm–7.95 Cm hanya saja lapisan berwarna kuning untuk nilai resistiitas 99.5–443 Ω m sedikit menebal sedangkan pada **Gambar 4.70** hingga **Gambar 4.74** lapisan berwarna kuning dengan nilai resistivitas 99.5–443 Ω m tampak mengalami penebalan hingga puncaknya pada **Gambar 4.74** terdapat lapisan berwarna merah dan pink yang mendadakan pada lapisan tersebut tercipta resistivitas yang tinggi saat pengujian. Hal ini dimungkinkan keretakan akibat dari bidang longsor mulai terbentuk sehingga pada bagian ini tidak dibasahi oleh air jadi tercipta kontur dengan nilai resistivitas tinggi mulai menebal.

1.3.4.4.Hasil Inversi 2 Dimensi Model Tanpa Perkuatan Geogrid dan Pemberian Simulasi Hujan pada Lintasan 5

Hasil penampang resistivitas bawah permukaan untuk model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 untuk beban 0 Q_u sampai dengan beban Q_u ditunjukan pada **Gambar 4.75** Sampai dengan **Gambar 4.79** pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm.

Gambar 4.75. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5 dengan beban 0 Q_u

Gambar 4.76. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5 dengan beban 0.25 Qu

Gambar 4.77. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5 dengan beban $0.5 Q_u$

Gambar 4.78. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5 dengan beban 0.75 Qu

Gambar 4.79. Penampang resistivitas 2D lapisan bawah permukaan model tanpa perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5 dengan beban $1Q_u$

Dari Gambar 4.74 sampai dengan Gambar 4.79 dapat terlihat perubahan nilai resistivitas terhadap lapisan tanah sampai dengan kedalaman 7,95 cm pada lintasan elektroda 4. Gambar tersebut dilakukan penyederhanaan warna dengan menggunakan *software* AutoCAD, sehingga hanya memilki 4 janis warna saja yaitu warna

biru untuk nilai resistivitas 0–99.5 Ω m, warna kuning untuk nilai resistiitas 99.5–443 Ω m, warna hijau untuk nilai resistiitas 443–708 Ω m, warna merah untuk nilai resistivitas 708–1155 Ω m dan warna pink untuk nilai resistivitas 1155–3085 Ω m, penyederhanaan warna ini dilakukan agar memudahkan dalam analisa nilai resistivitas.

Dari Gambar 4.74 sampai dengan Gambar 4.79 pada kedalaman 5.41 Cm memiliki kesamaan berupa bidang kontur berwarna biru bernilai resistivitas 0–99.5 Ω m dengan ketebalan yang tak begitu mengalami perubahan signifikan. Dari Gambar 4.74 sampai dengan Gambar 4.79 pada kedalaman 5.41-7,95cm tidak terlihat perubahan yang signifikan seiring dengan bertambahnya beban yang diberikan, hal ini dimungkinkan karena bidang longsor tidak sampai pada lapisan ini dan tekanan yang terjadi akibat beban tidak sampai mempengaruhi lapisan ini.

4.3.2.6. Interpretasi 2 Dimensi Model Tanpa Perkuatan Geogrid dan Pemberian simulasi hujan

Hasil inverse 2 Dimensi pada hasil tiap lapisan disejajarkan membentuk potongan sesuai letak lintasan model lereng. Hal ini dilakukan untuk memudahkan dalam memprediksi keretakan yang terjadi pada model lereng. bagian lintasan yang digunakan untuk membuat gambar interpretasi adalah pada bagian tengah lintasan, hal ini dikarenakan bagian paling dalam saat pembacaan adalah pada bagian tengah. Pembuatan Interpretasi 2 dimensi berikut dilakukan menggunakan software autoCAD.

Gambar 4.80. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0 Q

Pada **Gambar 4.80**. lintasan 1,3 dan 4 memiliki kesamaan lapisan didominasi berwarna biru dengan nilai resistivitas $0-99.5 \Omega m$ dari permukaan hingga kedalaman 7.95

 Ω m. Sedangkan pada lintasan 5 pada kedalaman 0-5.41 Cm memiliki berwarna biru dengan nilai resistivitas 0–99.5 Ω m dan pada kedalaman 5.41-7.95 Cm berwarna kuning dengan nilai resistivitas 99.5–443 Ω m hal ini dimunkinkan karena pada kedalaman tersebut air dari simulasi hujan tidak mengalir hingga lapisan tersebut hingga memiliki nilai resistivitias yang lebih besar.

Gambar 4.81. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.25 Qu

Pada **Gambar 4.81** lintasan 1 nampak mengalami perubahan berupa munculnya sedikit lapisan berwarna kuning dengan nilai 99.5-443 Ω m yang dimunkinkan retakan muncul pembacaan lintasan ini. Pada lintasan 3 dan 4 tidak mengalami perubahan yaitu lapisan berwarna biru dengan nilai resistivitas 0-99.5 Ω m dari permukaan hingga kedalaman 7.95 Cm. Pada lintasan 5 tidak memiliki perbedaan signifikan dengan lintasan 5 gambar sebelumnya, yakni pada kedalaman 0-5.41 Cm memiliki lapisan berwarna biru dengan nilai resistivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai resistivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai resistivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai resistivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai resistivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai resistivitas 0-99.5 Cm memiliki lapisan berwarna kuning dengan nilai resistivitas 99.5-443 Ω m.

Gambar 4.82. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.5 Qu

Pada **Gambar 4.82** lintasan 1 mengalami perubahan berupa penebalan lapisan berwarna kuning dengan nilai resistivitas 99.5-443 Ω m dimunkinkan air mulai naik ke permukaan akibat penambahan pembebanan. Pada lintasan 3 dan 4 nampak mengalami perubahan di bagian bawah pembacaan dengan muncul lapisan berwarna kuning dengan nilai resistivitas 99.5-443 Ω m. Pada lintasan 5 tidak ada perubahan yang signifikan dibandingkan hasil pembacaan lintasan 5 sebelumnya.

Gambar 4.83. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 0.75 Qu

Pada **Gambar 4.83** lintasan 1 mengalami perubahan berupa penebalan lapisan berwarna kuning dengan nilai resistivitas 99.5-443 Ω m dan muncul sedikit lapisan berwarna hijau dengan nilai resistivitas 443-708 Ω m diperkirakan retakan mulai membesar pada pembacaan litasan ini. Pada lintasan 3 dan 4 tidak nampak perubahan signifikan dibanding pembacaan **Gambar 4.82** yakni bagian bawah pembacaan lapisan berwarna

kuning dengan nilai resistivitas 99.5-443 Ω m. Pada lintasan 5 tidak ada perubahan yang signifikan dibandingkan hasil pembacaan lintasan 5 sebelumnya.

Gambar 4.84. Interpretasi 2 Dimensi model tanpa geogrid dengan beban 1 Qu

Pada **Gambar 4.84.** lintasan 1,3,4 dan 5 tidak mengalami perubahan yang signifikan dibandingkan dengan **Gambar 4.83.** Dari hasil perbandingan hasil **Gambar 4.80** hingga **Gambar 4.84** diperkirakan retakan yang terjadi terdeteksi pada lintasan 1,3 dan 4 sedangkan pada lintasan 5 tidak terdeteksi. Hal ini karena pada lintasan 1,3 dan 4 pada bagian bawah mengalami kenaikan nilai resisitivitas seiring kenaikan pembebanan yang dimunkinkan saat terjadinya pembebanan tanah mengalami tekanan air pori ekses dimana air akan memberikan tekanan sehingga air akan naik ke permukaan.

4.3.5. Model Dengan Perkuatan Geogrid dan Pemberian Simulasi Hujan

Pada sampel tanpa perkuatan geogrid sampel yang diciptakan memiliki perkuatan geogrid sehingga sampel dianggap sebagai sampel yang telah mengalami perubahan dari kondisi murni. Pada sampel ini diberikan simulasi hujan menggunakan pipa paralon yang dilubangi. Pada sampel ini diasumsikan memiliki struktural tanah yang telah mengalami perubahan dan penambahan perkuatan. Untuk lebih jelasnya akan di tampilkan pada **Gambar 4.85**

4.3.5.1.Hasil Pemeriksaan Kepadatan dan Kadar Air

Uji kepadatan dan kadar air dilakukan pada setiap lapisan model dengan diambil sebanyak 3 sampel. Uji kepadatan dilakukan menggunakan *density ring*. Dari datadata tersebut, maka akan didapatkan kepadatan dan kadar air tiap lapisan yang nantinya dapat di rata-rata sehingga menghasilkan kepadatan dan kadar air dari lereng model. Hasil pengujian kepadatan dan kadar air untuk model dengan perkuatan geogrid dan pemberian simulasi hujan disajikan pada **Tabel 4.6**.

Tabel 4.6.

4 5

rata-rata

Simulasi Hujan			
lapisan	berat isi kering (gr/cm3)	kadar air (%)	
1	1,08	26,19	
2	1,04	25,94	
3	1,05	25,49	
-			

1,12

1,22

1,102

Nilai Berat Isi Kering Dan Kadar Air Model Dengan Perkuatan Geogrid Dan Pemberian Simulasi Hujan

25,83

27,62

26,213

4.3.5.2. Hasil Inversi 2 Dimensi Model Dengan Perkuatan Geogrid Dan Pemberian Simulasi Hujan pada Lintasan 1

Hasil penampang resistivitas bawah permukaan untuk model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 untuk beban 0 Q_u sampai dengan beban Q_u ditunjukan pada **Gambar 4.77** Sampai dengan **Gambar 4.82**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm.

Gambar 4.88. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban 0.5 Qu

Gambar 4.89. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban 0.75 Q_u

Gambar 4.90. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 dengan beban Qu

Pada Gambar 4.86 saat belum diberi pembebanan terlihat lapisan yang muncul di dominasi dengan warna biru dengan nilai resistivitas 0-99.5 Ωm dari permukaan hingga kedalaman 7.95 Cm. Pada Gambar 4.87 pada kedalaman 0-5.41 cm tampak lapisan berwarna biru dengan nilai resistivitas 0-99.5 Ωm, namun pada kedalaman 5.41-7.95 Cm muncul lapisan berwarna kuning dengan nilai resistivitas 99.5–448 Ωm. Pada Gambar 4.88 pada kedalaman 0-5.41 Cm tidak tampak perbedaan dengan dua gambar sebelumnya yakni memiliki lapisan berwarna biru dengan nilai resistivitas 0–99.5 Ωm namun pada kedalaman 5.41- 7.95 memiliki lapisan berwarna kuning dengan nilai resistivitas 99.5-448 Ωm dan lapisan berwarna hijau dengan nilai resistivitas 448-708 Ωm. Pada Gambar 4.89 nampak perubahan dengan adanya penebalan lapisan berwarna kuning nilai resistivitas 99.5-448 Ωm dan lapisan berwarna hijau nilai resistivitas 448-708 Ωm yang menunjukkan peningkatan nilai lapisan resisitivitas dikarenakan tanah mengalami tekanan air pori ekses yang disebabkan karena sampel mengalami pembebanan hingga air yang ada pada sampel air pada dasar sampel mulai bergerak naik ke permukaan. Pada Gambar 4.90 merupakan sampel dengan pembebenan Qu hal yang perlu di cermati adalah adanya lapisan dengan warna merah bernilai 708-1155 Ω m pada kedalaman 5.41-7.95 cm yang menunjukkan bahwa dimunkinkan ada lapisan lintasan 1 ini telah terbentuk karena perbedaan nilai resistivitas lapisannya dengan Gambar 4.86 hingga Gambar 4.89.

4.3.5.3. Hasil Inversi 2 Dimensi Model Dengan Perkuatan Geogrid Dan Pemberian Simulasi Hujan pada Lintasan 3

Hasil penampang resistivitas bawah permukaan untuk model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 untuk beban 0 Q_u sampai dengan beban Q_u ditunjukan pada **Gambar 4.91** Sampai dengan **Gambar 4.95**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm.

Gambar 4.91. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 dengan beban 0 Q_u

Gambar 4.92. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 dengan beban $0.25 Q_{\rm u}$

Gambar 4.93. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 dengan beban $0.5 Q_{\rm u}$

Gambar 4.94. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 dengan beban 0.75 Qu

Gambar 4.95. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 3 dengan beban Q_u

Dari **Gambar 4.91** hingga **Gambar 4.95** hasil yang ditemukan tidak begitu banyak mengalami perubahan yang signifikan di kedalaman 0-7.95 Cm. Lapisan yang ditemukan didominasi oleh warna biru dengan nilai resistivitas 0-99.5 Ω m. Sehingga dapat disimpulkan retakan tidak terdeteksi pada lapisan ini

4.3.5.4.Hasil Inversi 2 Dimensi Model Dengan Perkuatan Geogrid Dan Pemberian Simulasi Hujan pada Lintasan 4

Hasil penampang resistivitas bawah permukaan untuk model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 untuk beban 0 Q_u sampai dengan beban Q_u ditunjukan pada **Gambar 4.96** Sampai dengan **Gambar 4.100**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm.

Gambar 4.96. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 dengan beban 0 Q_u

Gambar 4.97. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 dengan beban 0.25 Q_u

Gambar 4.98. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 dengan beban 0.5 Qu

Gambar 4.99. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 dengan beban $0.75 Q_{\rm u}$

Gambar 4.100. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 4 dengan beban Q_u

Dari **Gambar 4.96** hingga **Gambar 4.100** hasil yang ditemukan tidak begitu banyak mengalami perubahan yang signifikan di kedalaman 0-7.95 Cm cenderung memiliki hasil yang mirip yakni lapisan yang ditemukan didominasi oleh warna biru dengan nilai resistivitas 0-99.5 Ω m. Sehingga dapat disimpulkan retakan tidak terdeteksi pada lapisan ini.

4.3.5.2. Hasil Inversi 2 Dimensi Model Dengan Perkuatan Geogrid Dan Pemberian Simulasi Hujan pada Lintasan 5

Hasil penampang resistivitas bawah permukaan untuk model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 1 untuk beban 0 Q_u sampai dengan beban Q_u ditunjukan pada **Gambar 4.101** Sampai dengan **Gambar 4.105**. pada Gambar tersebut diperoleh model lapisan bawah permukaan dengan kedalaman 7,95 cm dengan panjang bentang 60 cm.

Gambar 4.101. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5 dengan beban 0 Qu

 $Gambar \ 4.102. \ Penampang \ resistivitas \ 2D \ lapisan \ bawah \ permukaan \ model \ dengan \ perkuatan \ geogrid \ dan \ pemberian \ simulasi \ hujan \ pada \ lintasan \ 5 \ dengan \ beban \ 0.25 \ Q_u$

Gambar 4.103. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5 dengan beban $0.5 Q_u$

Gambar 4.104. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5 dengan beban 0.75 Q_u

Gambar 4.105. Penampang resistivitas 2D lapisan bawah permukaan model dengan perkuatan geogrid dan pemberian simulasi hujan pada lintasan 5 dengan beban Q_u

Dari **Gambar 4.101** hingga **Gambar 4.105** hasil yang ditemukan tidak begitu banyak mengalami perubahan yang signifikan di kedalaman 0-5.41 Cm cenderung memiliki hasil yang mirip yakni lapisan yang ditemukan didominasi oleh warna biru dengan nilai resistivitas 0-99.5 Ω m. Sedangkan pada kedalaman 5.41-7.95 Cm memiliki lapisan berwarna kuning dengan nilai resistivitas 99.5-443 Ω m. Karena pada tiap gambar antar pembebanan tidak ditemukan perbedaan yang signifikan Sehingga dapat disimpulkan retakan tidak terdeteksi pada lapisan ini.

4.3.2.6. Interpretasi 2 Dimensi Model Dengan Perkuatan Geogrid Dan Simulasi Hujan

Hasil inverse 2 Dimensi pada hasil tiap lapisan disejajarkan membentuk potongan sesuai letak lintasan model lereng. Hal ini dilakukan untuk memudahkan dalam memprediksi keretakan yang terjadi pada model lereng. bagian lintasan yang digunakan untuk membuat gambar interpretasi adalah pada bagian tengah lintasan, hal ini dikarenakan bagian paling dalam saat pembacaan adalah pada bagian tengah. Pembuatan Interpretasi 2 dimensi berikut dilakukan menggunakan software autoCAD.

Gambar 4.106. Interpretasi 2 Dimensi model dengan geogrid dengan beban 0 Qu

Pada **Gambar 4.106** untuk lintasan 1,3 dan 4 memiliki kesamaan lapisan berwarna biru dengan nilai resistivitas 0-99.5 Ω m dari permukaan hingga kedalaman 7.95 Cm. Pada lintasan 5 kedalaman 0-5.41 Cm memiliki lapisan berwarna biru dengan nilai restivitas 0-99.5 Ω m dan pada kedalaman 5.41-7.95 Cm memiliki lapisan berwarna kuning dengan nilai resistivitas 99.5-443 Ω m yang hal ini dimunkinkan karena pada kedalaman tersebut air dari simulasi hujan tidak mengalir hingga lapisan tersebut hingga memiliki nilai resistivitias yang lebih besar.

Gambar 4.107. Interpretasi 2 Dimensi model dengan geogrid dengan beban 0.25Qu

repository.ub.ac.id

Pada **Gambar 4.107** untuk lintasan 1 nampak mengalami sedikit perubahan di bagian bawah dengan muncul lapisan berwarna kuning dengan nilai resistivitas 99.5-443 Ω m, hal ini menunjukkan pengaruh penambahan pembebabanan mengakibatkan air pori mulai naik ke permukaan. Pada lintasan 3 dan 4 tidak mengalami perubahan yaitu lapisan berwarna biru dengan nilai resistivitas 0-99.5 Ω m dari permukaan hingga kedalaman 7.95 Cm. Pada lintasan 5 tidak memiliki perbedaan signifikan dengan lintasan 5 gambar sebelumnya, yakni pada kedalaman 0-5.41 Cm memiliki lapisan berwarna biru dengan nilai restivitas 0-99.5 Ω m dan pada kedalaman 5.41-7.95 Cm memiliki lapisan berwarna kuning dengan nilai resistivitas 99.5-443 Ω m

Gambar 4.108. Interpretasi 2 Dimensi model dengan geogrid dengan beban 0.5Qu

Pada **Gambar 4.108** lintasan 1 nampak mengalami perubahan berupa munculnya sedikit lapisan berwarna hijau dengan nilai 443-708 Ω m yang dimunkinkan retakan mulai membesar pada pembacaan lintasan ini. Pada lintasan 3 dan 4 tidak mengalami perubahan yaitu lapisan berwarna biru dengan nilai resistivitas 0-99.5 Ω m dari permukaan hingga kedalaman 7.95 Cm. Pada lintasan 5 tidak memiliki perbedaan signifikan dengan lintasan 5 gambar sebelumnya, yakni pada kedalaman 0-5.41 Cm memiliki lapisan berwarna biru dengan nilai resistivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai resistivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai resistivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai resistivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai resistivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai resistivitas 0-99.5 Ω m dan pada kedalaman 5.41-7.95 Cm memiliki lapisan berwarna berwarna kuning dengan nilai resistivitas 99.5-443 Ω m

Gambar 4.109. Interpretasi 2 Dimensi model dengan geogrid dengan beban 0.75 Q_u

Pada **Gambar 4.109** lintasan 1 nampak mengalami perubahan berupa semakin menebalnya lapisan berwarna hijau dengan nilai 443- 708 Ω m yang dimunkinkan retakan mulai membesar pada pembacaan lintasan ini. Pada lintasan 3 dan 4 tidak mengalami perubahan yaitu lapisan berwarna biru dengan nilai resistivitas 0-99.5 Ω m dari permukaan hingga kedalaman 7.95 Cm. Pada lintasan 5 tidak memiliki perbedaan signifikan dengan lintasan 5 gambar sebelumnya, yakni pada kedalaman 0-5.41 Cm memiliki lapisan berwarna biru dengan nilai restivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai restivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai restivitas 99.5-443 Ω m

Gambar 4.110.Interpretasi 2 Dimensi model dengan geogrid dengan beban 1 Qu

443 pac ber Cm seb

Pada **Gambar 4.110** lintasan 1 semakin menebal lapisan berwarna hijau dengan nilai 443- 708 Ω m seiring dengan memberian Qu yang dimunkinkan retakan mulai membesar pada pembacaan lintasan ini. Pada lintasan 3 dan 4 tidak mengalami perubahan yaitu lapisan berwarna biru dengan nilai resistivitas 0-99.5 Ω m dari permukaan hingga kedalaman 7.95 Cm. Pada lintasan 5 tidak memiliki perbedaan signifikan dengan lintasan 5 gambar sebelumnya, yakni pada kedalaman 0-5.41 Cm memiliki lapisan berwarna biru dengan nilai restivitas 0-99.5 Cm memiliki lapisan berwarna biru dengan nilai restivitas 0-99.5 Ω m dan pada kedalaman 5.41-7.95 Cm memiliki lapisan berwarna kuning dengan nilai resistivitas 99.5-443 Ω m. Sehingga dapat disimpulkan bahwa retakan terdeteksi pada lintasan 1 pada kedalaman 5.41 hingga 7.95, sedangkan pada lintasan 3,4 dan 5 tidak terdeteksi retakan yang muncul.

BAB V

5.1. Kesimpulan

Berdasarkan pengujian, pembahasan dan analisis dari bab 4 sebelumnya dapat diambil beberapa kesimpulan sebagai berikut :

- 1. Berdasar pada data hasil pengukuran resistivitymeter yang kemudian diolah menggunakan Microsoft Exel, Notepad, Res2dinv dan Autocad didapati bahwa metode ERT dapat digunakan untuk memprediksi retakan yang ada pada sampel lereng. Sampel yang telah mengalami retakan cenderung mengalami penurunan nilai resistivitas pada permukaan akibat tekanan air pori ekses dan pada kasus lain pada retakan terjadi penurunan nilai resistivitas karena retakan menciptakan rongga yang diisi oleh kadar air
- Secara emplisit penggunaan geogrid tidak menganggu dalam proses membacaan dari alat resistivitymeter dan masih dapat diolah hingga menemukan prediksi lokasi retak. Namun resistivitymeter tidak bisa digunakan untuk menentukan lokasi Geogrid
- 3. Simulasi hujan berpengaruh dalam proses penggunaan resistivitymeter karena ketika diberikan simulasi hujan sampel tanah mengalami kenaikan kadar air sehingga terjadi penurunan nilai resistivitas yang drastis. Sehingga dalam hal ini diminimalisir dengan dilakukan penyerdehanaan skala untuk proses pencarian retakan.

5.2. Saran

Setelah melakukan penetilitian mengenai pengaruh kadar air terhadap nilai resistivitas atau tahan jenis, ada beberapa hal yang harus diperhatikan untuk penyempurnaan penelitian yang lebih lanjut. Hal-hal tersebut sebagai berikut:

- 1. Diperlukan alat resistivitymeter yang lebih modern agar nilai yang didapat bisa lebih akurat
- 2. Agar lebih bisa akurat diharapkan kedepannya bisa membuat sampel dengan dimensi yang lebih besar sehngga kedalaman pembacaan bisa lebih dalam.
- 3. Diperlukan penelitian lebih lanjut pada lereng dengan parameter variasi kadar air, jenis lapisan dan konfigurasi Geolistrik yang lain.

DAFTAR PUSTAKA

Buckman dan Nyle.C. Brady., 1982. Ilmu Tanah. Bhatara Karya Aksara. Jakarta

Craig, R.F. 2004. Soil Mechanics, 7th Edition. London : Spon Press.

- Panek, Tomas. 2008. Application of electrical Resistivity Tomography(ERT) in the study of various types of slope deformations in anisotropic bedrock : case studies from the flysch carpathians. *Studia geomorphologica carpatho- balcanica vol XIJI, 2008: 57-73 PLISSN 0081-6434*
- V. Lehtonen. 2013. Two Methods for estimating excess pore pressure in LEM. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013
- Das, Braja M.1991."Mekanika Tanah (Prinsip-Prinsip Rekayasa Geoteknik) Jilid 1". Jakarta :Erlangga. Hardiyatmo,Hary Chistady.2007."*Mekanika Tanah 2 (Edisi Keempat)*". Yogyakarta : GADJAH MADA UNIVERSITY PRESS.
- IGWE, Ogbonnaya. 2005. Excess pore water pressure change necessary to cause flow liquefaction failure of sands loaded in undrained condition. Annual of disas. Prev. Res. Inst., Kyoto Univ., No. 48 B, 2005
- Rolia, Eva. 2011. Penggunaan Metode Geolistrik untuk Mendeteksi Keberadaan Air tanah. Jurnal Tapak Vol. 1 No. 1 November 2011. Fakultas Teknik Universitas Muhammadiyah Metro.
- Sakka. 2002. *Metode Geolistrik Tahanan Jenis*. Makassar : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanudin.
- Wesley, D Laurence. 2010. "Mekanika Tanah Untuk Tanah Endapan dan Residu" Yogyakarta: ANDI.