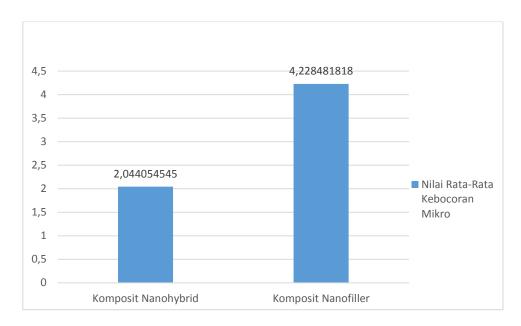
BAB 5

HASIL PENELITIAN DAN ANALISIS DATA


5.1 Hasil Penelitian

Penelitian ini menggunakan 22 sampel bahan tumpatan resin komposit yang terbagi menjadi dua kelompok. Kelompok A adalah bahan tumpatan resin komposit *nanohybrid* dan kelompok B adalah bahan tumpatan resin komposit *nanofiller*. Masing-masing kelompok berjumlah 11 sampel, dan kedua kelompok sampel diberi perlakuan yang sama yaitu dengan pengaplikasian bahan bleaching karbamid peroksida 10% selama 8 jam dalam satu minggu, kemudian dilakukan perendaman dengan *methylene blue* 1% selama 72 jam. Setelah itu, dilakukan pengukuran kebocoran mikro dengan mengamati penetrasi *methylene blue* 1% menggunakan mikroskop stereo *Olympus* SZX16.

Tabel 5.1. Hasil Pengamatan Kebocoran Mikro dari Kedua Sampel.

SAMPEL	Kelompok A	Kelompok B
1	2,1697	3,8692
2	2,0769	5,1538
3	2,649	3,1538
4	1,9231	4,1534
5	2,2615	3,3461
6	2,1	5,5384
7	2,3307	5,523
8	1,8846	4,346
9	1,323	3,907
10	1,4692	3,638
11	2,2969	3,8846
RATA - RATA	2,044054545	4,228481818

Tabel 5.1 menunjukkan besar kebocoran mikro pada kedua sampel resin komposit yang telah dilakukan *bleaching* karbamid peroksida 10%. Dimana nilai rata-rata resin komposit *nanofiller* menunjukkan bahwa kebocoran mikro lebih besar dibandingkan dengan nilai rata-rata resin komposit *nanohybrid*.

Gambar 5.1. Diagram Batang Perbedaan Rata-Rata Kebocoran Mikro Tumpatan Resin Komposit Nanohybrid dan Nanofiller

5.2 Analisis Data

Analisis data dilakukan setelah akhir perlakuan. Analisis dilakukan berdasarkan hasil pengukuran kebocoran mikro. Data dari masing-masing kelompok diuji kenormalan distribusinya dengan uji normalitas *Shapiro Wilk*. Kemudian dilakukan uji homogenitas varian *Levene*. Apabila data terdistribusi normal, maka data dapat dianalisis secara statistik menggunakan uji t dua sampel bebas (*independent t test*). Uji t digunakan untuk melihat perbedaan kebocoran mikro pada kedua sampel kelompok penelitian ini. Hasil analisis data dapat dilihat pada lampiran.

5.2.1 Uji Normalitas Data

Uji normalitas data dilakukan menggunakan uji *Shapiro Wilk*. Data dapat dikatakan normal apabila nilai signifikansi yang dihasilkan lebih dari 0,05 atau p > 0,05. Uji normalitas digunakan untuk mengetahui apakah sampel yang diambil berasal dari distribusi normal atau tidak. Pada penelitian ini didapatkan nilai signifikansi masing-masing kelompok sebesar 0,538 dan 0,166. Hasil tersebut menunjukkan bahwa p > 0,05, sehingga dapat diketahui data yang diperoleh terdistribusi normal.

5.2.2 Uji Homogenitas Varian

Uji homogenitas varian dilakukan setelah data dilakukan uji normalitas. Uji homogenitas dilakukan untuk mengetahui apakah data atau sampel memiliki varian yang homogen atau tidak. Pada uji homogenitas *Levene*, suatu data dikatakan memiliki varian yang homogen apabila nilai signifikansi p > 0,05. Uji homogenitas sampel diperoleh nilai signifikansi sebesar 0,204 dengan demikian dapat diketahui bahwa kedua kelompok sampel tersebut memiliki varian yang sama atau homogen.

5.2.3 Uji Independent T-test

Data yang telah diketahui terdistribusi normal dan homogen, setelah itu dilakukan uji parametrik dengan tingkat kemaknaan p < 0,05 yaitu dengan menggunakan uji *independent T-Test* untuk melihat perbedaan antara kedua kelompok sampel. Hasil yang didapat setelah dilakukan uji *independent T-Test* yaitu p = 0,000, hasil tersebut menunjukkan p < 0,05, sehingga dapat diartikan

terdapat perbedaan yang signifikan antara sampel kelompok A (resin komposit *nanohybrid*) dan kelompok B (resin komposit *nanofiller*).