
3. Implementing Expectation Propagation on Next

Generation Wireless Systems

In this chapter, we provide two novel applications of EP detection algorithm for the

next generation of wireless system. The first is applying EP on SCMA detection side,

named EPA SCMA. EPA SCMA aims to solve the complexity problem of the original

detection algorithm in SCMA. The second application is using EP to support massive

MU-MIMO system. However, the implementation of conventional EP in MU-MIMO

system will result an impractical problem regarding to its computational complexity.

Therefore, we proposed a decentralized system in EP. The EP decentralized system

outperforms the approximate message passing (AMP) decentralized system which is

proposed in [6]. Furthermore, decentralized EP can be viewed as a low complexity

version of the centralized one.

3.1 MPA SCMA and EPA SCMA

SCMA is a modulation technique that directly modulates each group of binary

data into a complex multidimensional codeword. This codeword is taken from a

codebook, which is created by combining QAM mapper and symbol spreader. A

codebook is then formed sparsely. At the receiver side, the message passing algorithm

(MPA) can be implemented to achieve near optimal detection performance [32]. MPA

calculates marginal distribution for each transmitted signal, conditional on received

signal. The completeness probability information in each MPA’s node results an

outstanding performance of MPA. Besides that, the sparsity of SCMA codeword

makes a possibility of implementing MPA on SCMA. However, the complexity of

MPA detection increases exponentially with the codebook size, because in MPA’s

structure feedback messages must be computed on every iteration.
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To solve the complexity issue, many works have been completed either to reduce

the complexity through the codebook design or consider several extensions of the

MPA, such as max-log MPA [33], SIC MPA [34], and even combined extensions of

the MPA technique. However, these MPA-based detectors are suffering from an ex-

ponentially incremental complexity because the structure of MPA is still maintained.

Specifically, If the codebook size or the degree of freedom significantly increases, the

MPAs for SCMA quickly becomes prohibitive due to its computational complexity.

In this work, we propose a low complexity detection method for the SCMA de-

tector named the expectation propagation algorithm (EPA). The EPA approximates

the marginal distribution of the posterior probability by using an exponential fam-

ily [3]. Given that the probability in exponential family is easy to compute, the EPA

is suitable to deal with high order and dimensional system. We also provide theoret-

ical analysis to evaluate the performance of EPA SCMA. We show that the EPA for

SCMA can achieve near optimal detection performance as the numbers of transmit

and receive antennas grow. With the theoretical promise, we investigate the neces-

sity of constellation rotation, which is used to increase the degree of freedom [4, 5].

We show that for the uplink scheme, channel responses from different users vary and

thus increase the identifiability of each user. Therefore, appending a rotation value in

SCMA encoder is unnecessary. Our hypotheses are also verified by the experimental

results in Section 4. The removal of the rotation value can omit many unnecessary

calculations not only in decoding but also in SCMA encoding.

3.1.1 System Model

We consider a SCMA system with U users operating on S orthogonal subcarri-

ers. Each user equipment features Nt transmit antennas and the base station (BS)

possesses Nr receive antennas. Let K = UNt and N = SNr. In the SCMA, each

transmit symbol xk is transmitted over S subcarriers using d degree, and different
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Figure 3.1. Block diagram of uplink scheme SCMA transceiver

phase rotation values are introduced at different subcarriers [35]. For example, if

S = 4 and d = 2, the mapping can be

φk = [φk,s] =




e−j2π∆1

e−j2π∆2

0

0



,
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where ∆i ∈ [0, 1). Let hk,s ∈ CNr denote the channel vector from the k-th transmit

antenna to the BS at the s-th subcarrier, and we define

hk =




φk,1hk,1

φk,2hk,2
...

φk,Shk,S



.

Therefore, at the BS, the N -dimensional channel output vector y is expressed as

y =
K∑

k=1

hkxk + η

where η is the additive white Gaussian noise (AWGN) vector with zero mean and

covariance matrix σ2I. Let

H =
[
h1 h2 · · · hK

]
, x =

[
x1 x2 · · · xK

]T
.

Finally, we obtain

y = Hx + η. (3.1)

The input-output relationship of the SCMA can be viewed as a MIMO communication

system with K inputs and N outputs. Figure 3.1 illustrates a block diagram of the

SCMA transceiver.

3.1.2 MPA SCMA

MPA has known as a powerful detection algorithm which also brings a great per-

formance even near to the maximum likelihood performance. Evaluating our system

model, SCMA matrices should be formed in sparse matrices model. This sparsity

makes a possibility to apply MPA for SCMA technique especially uplink case.

The MPA can be classified as a iterative decoding algorithm. Its working princi-

ple is based on the message passing between information nodes and variable nodes.

initializing that the prior - probability is equal and the variable nodes message as
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m0
i→a =

1

M
(3.2)

The updater messages of information nodes and variable nodes are sequentially

given by

mi→a(xi)
l+1 ∝ PX(xi)

N∏

b=1,b 6=a
ml
b→i(xi) (3.3)

ma→i(xi)
l ∝

∫ K∏

j=1,j 6=i
[dxjm

l
j→a(xj)]P (ya | x) (3.4)

After doing L iteration, the approximation value of xi (x̂) is

x̂i = arg max
(∏

mL
a→i(xi)

)
(3.5)

Despite the successful implementation of MPA SCMA particularly on the detec-

tion side, as the transceiver antennas grow, the computational complexity signifi-

cantly increase. Recently, many researches have been done in order to reduce the

MPA SCMA computational complexity. One of them, as proposed in [36] is called

threshold-based MPA.

The main idea is set a belief threshold in order to ensure that the codewords

are reliable or not. The evaluation of these codewords is going to be done in every

iteration. If a user has a reliable codeword, this corresponding user will be decoded

right away. Thus, the user will not be given a message update anymore after the de-

coding process. In this way, the threshold-based MPA will remove many unnecessary

calculations.

Nevertheless, the threshold-based MPA have not fixed the exponential complexity

problem on MPA algorithm. It means the MPA still grows exponentially with the

codebook size, and quickly becomes prohibitive.
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3.1.3 EPA SCMA

The input vector x to the equivalent MIMO channel H is a combined constel-

lation Ω1 × · · · × ΩK , where Ωk is the set of constellation of the th transmission.

Our target is to detect x based on y given the full knowledge of the channel matrix

H. The complexity of the optimal detection increases exponentially with the size

of the transmission and becomes prohibitive. To solve this problem, we adopt the

EPA (Algorithm 1). Noting that, we have configured our SCMA system model fol-

lowing the linear form in (3.1). Therefore, we can directly apply the EPA to fine the

approximated signals as mentioned in chapter 2.

3.1.4 MPA and EPA Complexity Analysis

We compare the computational complexity of the three different algorithms: MPA,

threshold-MPA, and EPA. Let It denotes the number of Iteration. Table 3.1 shows

Table 3.1 Computational Complexity Comparison.

Comparison Setting1 M = 4, N = 128, K = 196, It=10, d=2

MPA O(7.63617 X 1064)

Threshold-MPA O(5.71086 X 1064)

EPA O(62914560)

Comparison Setting2 M = 4, N = 64, K = 96, It=10, d=2

MPA (BL) O(1.24128 X 1035)

Threshold-MPA O(9.25765 X 1034)

EPA O(7864320)

the complexity orders of two comparison settings. The implementation of MPA is

prohibitive. Although threshold-MPA can decrease approximately 25% of the origi-

nal MPA complexity, its implementation remains prohibitive. The EPA for SCMA
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successfully handles these situations, and its complexity is less than 10−20% of the

MPA complexity.

3.2 Decentralized Expectation Propagation in massive MU-MIMO Sys-

tem

As mentioned in chapter 1, massive MU-MIMO will be a core of next generation

wireless systems (5G). Considering the receiver side, simple linear processing such as

minimum mean square error (MMSE) or zero forcing (ZF) can be use for maximizing

the benefits of massive MU-MIMO system [28]. The challenge of massive MU-MIMO

implementation is regarding to its complexity [37]. Many works have been done in

order to reduce the complexity of massive MU-MIMO implementation.

Maximum ratio combining (MRC) [38], full dimension MIMO [39], and decentral-

ized equalization in massive MU-MIMO [6] are recognized as the previous works for

supporting massive MU-MIMO and also solve its complexity problem at once. Fur-

thermore, we investigate that the prior art in [6] is the most efficient way to reduce

the massive MU-MIMO complexity.

As presented in [6], decentralized architecture is introduced in order to obtain

higher spectral efficiency than the maximum ratio combining (MRC) method. More-

over, it also naturally enables distributed processing. However, we indicate that the

performance of approximated message passing algorithm (AMP) [6] is unacceptable.

Furthermore, if the performance of the original centralized algorithm could not satisfy

the expectation performance, the decentralized architecture would be useless.

Considering the uplink data detection case, we proposed several improvements

of [6]. First, we propose decentralized expectation propagation algorithm (EPA) to

support massive MU-MIMO system which outperforms decentralized AMP. Second,

we significantly reduce the complexity of EPA [3] itself by implementing the partial

decentralized of EPA. Originally, the dimension of the EP inverse matrix is equal with

the dimension of transmitter antennas. By implementing the partial decentralized
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system, we significantly reduce the dimension of the inverse matrix to become C

times smaller than the original one, where C denotes the number of decentralized

system we have.

Next, we aim to improve the fully decentralized architecture performance while

maintaining a low latency system. Therefore, we introduce semi fully decentralized

architecture. Finally, we provide a theoretical verification to prove that our algorithms

perform well.

3.2.1 System Model

We consider an up-link cellular network with K users. The base station (BS) is

equipped with N receive antennas. In this paper we focus on the K ≤ N system

model. The input vector x is a combined constellation Ω1 × · · · × ΩK , where Ωk

is the set of constellation of the kth transmission. Therefore, the cardinality of the

transmitted signal is |Ω|.
On the other hand, the received signal of an uncoded massive MU-MIMO uplink

system is given by

y = Hx + n (3.6)

where y ∈ CN denotes the received signal , H ∈ CNxK denotes the channel vector

from the transmit users antennas to the BS antennas, and lastly, n ∈ CN denotes the

additive white Gaussian noise (AWGN) vector with zero mean and covariance matrix

σ2I

In the decentralized system, as proposed in [6], [40], we follow to partition N BS

antennas into C ≥ 1 independent antenna clusters. The writing style of decentral-

ized system is given as CxNxK. Wireless equipment has been already provided for

each cluster. The cth cluster, ∀c ∈ C will has an access to the local state channel

information (CSI). Finally, in clustering overview, we define y = [yT1 ,y
T
2 , · · · ,yTC ]T ,

H = [HT
1 ,H

T
2 , · · · ,HT

C ]T , and n = [nT1 ,n
T
2 , · · · ,nTC ]T . Rewriting (3.6) in decentral-
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ized manner, the input output relationship of uncoded massive MU-MIMO system

is

yc = Hcx + nc,∀c ∈ C. (3.7)

3.2.2 Fully Decentralized Expectation Propagation (FD-EP) Algorithm
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As illustrated in Figure 3.2a, FD-EP structure can be viewed as a group of C EP

modules that works identically and independently. At the beginning, all of the signals

which contain of the noise are received in EP decentralized modules. Specifically,

each module will receive N
C

signals as we have C decentralized modules. Then, each

EP module will begin their own iteration. After the iteration converge, the EP

demodulation modules will send their approximation results (xpost
B,c ,∀c ∈ C) to the

equalization process module. Once the equalization process has been done, the hard

decision is performed in order to estimate the transmitted signal.

To simplify our explanation on EP decentralized system, we first consider cth EP

module and its detail algorithm. We describe the equalization process which results

the x̂ afterwards. In cth EP module, the EP algorithm is started by replacing the
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Figure 3.2. Block diagram Decentralized Expectation Propagation systems.

prior input distribution of the received signal by an indepedent Gaussian distribution,

such that

q(x) ∝ N (yc : Hcx, σ
2I)

K∏

i=1

ex
H
i γi,c+γHi,cxi−λi,c|xi|2 (3.8)

where, q(x) is EP approximation, γi,c ∈ RK , and λi,c ∈ RK ,∀i ∈ K. We define

γc = [γ1,c, γ2,c, · · · , γK,c]T and λc = [λ1,c, λ2,c, · · · , λK,c]T as updating parameters.

Equation (3.8) fulfills the MMSE approximation to the posterior distribution p(x|y)

as presented in [14], [15].

Performing Gaussian product Lemma on (3.8), we can define q(x) by its Gaussian

mean vector µc and covariance matrix Σc as given in (3.10a) and (3.10b). Before

passing the messages to the next module, the prior information has to be removed

from the estimation value, this process is called the calculation of cavity distribution.

Calculating the cavity distribution from estimation module is the same as finding

the extrinsic values of xext
A,c and vext

A,c, which are given in (3.11a) and (3.11b), respec-
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tively. In the demodulation module, the expectation and variance of the posterior

estimator (xpost
B,c ,v

post
B,c ) are computed by calculating conditional expectation from the

extrinsic information of xA,c.

Consider kth user ∀k ∈ K, the expectations in (3.12a) and (3.12b) are with respect

to P (xk|xkA,c), which can be obtained by the Bayes rule

P (xk|xA,c,k) =
P (xA,c,k|xm)Px(xm)

P (xA,c,k)
, (3.9)

where

P (xA,c,k|xm)Px(xm) =
1

M

1

πvA,c,k
exp

(
−|xA,c,k − xm|

2

vA,c,k

)
,

P (xA,c,k) =
1

M

1

πvA,c,k

M∑

m=1

exp

(
−|xA,c,k − xm|

2

vA,c,k

)
.

Next, the extrinsic values of the demodulation module, i.e., vext
B,c and xext

B,c, are calcu-

lated in (3.13a) and (3.13b), respectively. The value of vext
B,c may return a negative. In

this case, we simply use the previous value of vext
B,c and xext

A,c as a new pair of updating

parameters. After the iteration converges, the conditional expectation that given by

(3.12a) is expected to be the estimated signals. The complete algorithm is shown in

Algorithm 2.

After the EP iteration for every module converge, we expect to extract the ap-

proximation results i.e. (xext
A,c, vext

A,c), c = [1, · · · , C]. Noting that, the extrinsic value

of xA,c is chosen because it is a Gaussian distribution.

Now, we proceed the equalization process to result the final approximation of

transmitted signal x̂. There are two steps in equalization process. Those are, equal-

ization computation and expectations computation. We define the outcome of equal-

ization and expectations computation as x̂e and x̂. For kth user, the equalization

equation given as

xe,k = ve,k

C∑

c=1

xext
A,c,k

vext
A,c,k

(3.14)

where,

ve,k =
C∑

c=1

1

vext
A,c,k

. (3.15)
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Initialization: γ0
c,B→A = 0,λ0

c,B→A = 1
Es

I, d(Q) = diag(Q);

for l = 1 : Lmax do

Estimation Module (Module A):

(1) Compute the a posteriori mean/variance of xA,c:

vpost
A,c,l = Σl

c =
(
σ−2HH

c Hc + d(λl−1
B→A,c)

)−1
(3.10a)

xpost
A,c,l = µlc = Σl

c

(
σ−2HH

c yc + γl−1
B→A,c

)
(3.10b)

(2) Compute the extrinsic mean/variance of xA,c:

vext
A,c,l =

(
1

d(Σl
c)
− d(λl−1

B→A,c)
)−1

(3.11a)

xext
A,c,l = d(vext

A,c,l)

(
µlc

d(Σl
c)
− γl−1

B→A,c

)
(3.11b)

Demodulation Module (Module B):

(3) Compute the a posteriori mean/variance of xB:

xpost
B,c,l ← E{x|xext

A,c,l,v
ext
A,c,l} (3.12a)

vpost
B,c,l ← Var{x|xext

A,c,l,v
ext
A,c,l} (3.12b)

(4) Compute the extrinsic mean/variance of xB:

vext
B,c,l = λlB→A,c =

(
1

vpost
B,c,l

− 1

vext
A,c,l

)−1

(3.13a)

xext
B,c,l = γlB→A,c =

(
xpost
B,c,l

xpost
B,c,l

−
xext
A,c,l

vext
A,c,l

)−1

(3.13b)

end

Algorithm 2: EP Algorithm for cth decentralized EP module

Collecting the xe,k and ve,k,∀k ∈ K, we have xe = [xe,1, xe,2, · · · , xe,K ] and ve =

[ve,1, ve,2, · · · , ve,K ]. The final step is to perform the expectations calculation. The

process is quite similar to the (3.13a) and (3.13b), where the equation is given by

x̂← E{x|xe,ve}, v̂← Var{x|xe,ve} (3.16)
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The expectations are with respect to P (x|xe), where for each kth user, the detail of

calculation is similar to that in (3.9).

3.2.3 Partial Decentralized Expectation Propagation (PD-EP) Algorithm

PD-EP system has a similar framework as the FD-EP system. The only difference

is PD-EP structure needs to perform equalization process in every iteration. As

depicted in 3.2b, each one of EP module is required to send their approximation

values to the equalization process module in every iteration. Then, equalization

module will send its output back to the EP modules. In this scenario, equalization

module act as a demodulation module for each EP module. The given information

that sent by the equalization module is identical for every EP module.

According to the Algorithm 2, the iteration of PD-EP system is described as fol-

low. We first initialize the γ0
c,B→A = 0,λ0

c,B→A = 1
Es

. Identical to the FD-EP system,

first, we compute (3.10a), (3.10b), (3.11a), and (3.11b), respectively. Instantly, we get

(xext
A ,vext

A ) for each cth EP module. As described in above, PD-EP needs to perform

equalization process in every iteration. Therefore, we compute the equalization equa-

tion for each cth module and kth user, as given in 3.14 and 3.15, respectively. Next,

we calculate the expectations in 3.16. Noting that, the whole equalization process is

identical to that in FD-EP. In order to get the updating parameters, we send back

the result of 3.16 to the each cth EP module as a posterior value of xB,c and compute

(3.13a) and (3.13b), respectively. Finally, we close the loop by recalculating (3.10a),

(3.10b), respectively, using the new updating parameters (γ l−1
c,B→A,λ

l−1
c,B→A). After the

iteration converge, the outcome of the equalization module (x̂) is extracted as the

approximation of transmitted signals.

Regarding to the advantages of FD architecture, we wish to maintain the benefits

of FD-EP while improving its performance. For this reason, we propose a semi fully

decentralized (Semi-FD) architecture. The Semi-FD system is a combination between

FD-EP and PD-EP. Furthermore, we define the equalization process and EP decen-
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Figure 3.3. FD-EP and PD-EP Performance Analysis

tralized iteration as the outer loop and inner loop. Unlike the PD-EP that requires

to perform equalization process in every iteration, the outer loop number of Semi-FD

system can be set before. Therefore, the equalization process will be done as much

as the given outer loop number. In this way, we achieve a better performance than

the FD-EP and reduce the latency of PD-EP, at the same time.

3.2.4 Decentralized EP Performance Analysis

Figure 3.3 illustrates the theoretical analysis of FD-EP and PD-EP. For a small

scale system, such as 3 x 16 x 16 massive MU-MIMO system, PD and FD-EP perfor-

mance cannot achieve an optimal performance. However, as the transceiver antennas

grow (3 x 256 x 256) the performance of FD-EP and PD-EP are significantly im-

proving. Furthermore, PD-EP successfully reach the theoretical BER performance.

Therefore, we have proved that PD-EP is able to reach the optimal performance. On
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the other hand, we indicate that FD-EP performance is not good enough because it

cannot attain its theoretical BER performance.
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