
2. Expectation Propagation Algorithm and MU-MIMO

Systems

As mentioned in chapter 1, we belief that EP is a low complexity algorithm that

suitable for MIMO data detector. The reason is EP solve the complexity problem

caused by optimal data detector such as belief propagation (BP) or also known as

message passing algorithm (MPA). Although there is a performance loss in EP apprx-

imation, however as the number of antennas grow, the EP performance can improve

significantly. At the same time, due to the exponential increment complexity in the

optimal data detector, it soon becomes prohibitive.

The EP approximates the marginal distribution of the posterior probability by

using an exponential family. Thus, the complexity of EP is much lower than the

optimal detector algorithm. To support our argument, latter in chapter 3 and 4,

we provide two applications of EP in massive MU-MIMO communication systems,

including the complexity analysis, performance evaluation, and theoretical analysis.

In this chapter, we would like to present the detail of single loop EP algorithm [3]

and its complexity analysis. Furthermore, we investigate the future works for EP,

either to improve its performance (double loop EP algorithm) or reduce its complexity

(approximation of inverse matrix value). We also briefly discuss about state evolution

(SE) which is used to perform a theoretical analysis. Lastly, regarding to the need of

implementing massive MU-MIMO for the near future fifth generation wireless system

(5G), we briefly introduce the MU-MIMO system model.

2.1 Single Loop Expectation Propagation

Before we discuss about the single loop expectation propagation algorithm, from

now on, we refer single loop EP algorithm as a EP algorithm. The idea of EP is
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to construct a tractable approximation p(x) by a distribution q(x). Given some

statistical model with latent variables x ∈ Ωδ, it can be factorized in the following

way

p(x) ∼ f(x)
I∏

i=1

ti(x) (2.1)

where, f(x) belongs to an exponential family F with sufficient statistics Φ(x) =

[φ1(x), φ2(x), · · · , φS(x)], and ti(x), ∀ ∈ I, are non-negative factors. Furthermore,

assume F is the multivariate Gaussian family, Φ(x) = {xi, xixj}δi,j=1.

The general purpose framework [12] in order to approximate p(x) is achieved

when the moments between p(x) and q(x) are equal. This is known as the moment

matching (MM) condition, where

Eq(x)[φj(x)] = Ep(x)[φj(x)],∀j ∈ S. (2.2)

When the p(x) and q(x) are defined in the same space and measure, the moment

matching condition is equal to finding q(x) that satisfies minimum Kullback-Leibler

divergence value.

q(x) = arg min
q′(x)ε(F )

DKL(p(x)||q′(x)), (2.3)

Equation (2.2) can be solved by doing the sequential EP algorithm, iteratively.

First, replace each one of ti(x) factors in (2.1) by a member t̃i(x), where t̃i ∈ F , ∀i ∈ I.

We can assume q(x) as an approximation of p(x), hence (2.1) can be rewritten as

q(x) ∼ f(x)
I∏

i=1

t̃i(x). (2.4)

Define q(0)(x) as initial value of q(x) and q(l)(x) as a q(x) at iteration l, q(x)

can be obtained by updating each one of the t̃i(x) factors independently. In [3] the

iteration of EP algorithm is

1) Calculate the cavity distribution

q(l)\i(x) =
q(l)(x)

t̃i(x)
∈ F . (2.5)

6



2) Compute the distribution p̂i(x) ∼ ti(x)q(l)\i(x), where p̂i(x) is approximation

value of pi(x), then compute

Ep̂i(x)[φj(x)],∀j ∈ S (2.6)

3) The updated factor t̃newi (x) can be obtained by

Et̃new
i q(l)\i(x)[φj(x)] = Ep̂i(x)[φj(x)],∀j ∈ S (2.7)

The iteration of EP algorithm will be done if either convergence criterion is met

or the maximum number of iteration is reached.

2.1.1 EP Message Passing

According to the principle of expectation propagation [13], the whole EP algo-

rithm can be interpreted as a message passing from estimation module (module A) to

demodulation module (module B). The rule of the message passing and the modules

of the EP is illustrated in Figure 2.1 and Figure 2.2.

Given that, K is the total user number, N is the total receiver number, y =

[y1, y2, · · · , yN ] is the received signal, and H = [h1,h2, · · · ,hN ] denotes the channel

vector and its channel response from the k-th transmit antenna to the BS at the n-th

receiver antennas. Furthermore, define a = n-th receiver at the BS, the messages

from estimation module (mi→a) and the demodulation module (ma→i) are given as

follow:

ml+1
i→a(xi) ∝

Proj[Px(xi)
∏

bm
l
b→i(xi)]

ml
a→i(xi)

(2.8)

ml
a→i(xi) ∝

Proj[ml
i→a(xi) x

∫ K∏

j=1,j 6=i
ml
j→a(xj)P (ya|xj)]

ml
i→a(xi)

, (2.9)

where,

P (ya|xj) =
1

πσ2
e

|ya −
K∑

a=1

hHa xj|2

σ2
(2.10)
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Figure 2.1. EP message passing rule

and
∏

bm
l
b→i(xi) ∝ Nc(xli, µli; Σl

i). After projection, ml
i→a(xk) is approximated as

Nc(xk, x̂lk, vlk). (2.11)

The proven is given as follow. Noting that y = hixi +
I∑

j=1,j 6=i
hjxj + η, where η ∼

N (0, σ2I) denotes the Additive White Gaussian Noise (AWGN). Then, we can obtain

∫ I∏

j=1,j 6=i
ml
j→a(xk)P (ya|x) ∝ Nc



xk;

ya −
K∑

j=1,j 6=k
ha,jx̂

l
j

ha,k
,

σ2 +
K∑

j=1,j 6=k
|ha,j|2vlj

|ha,k|2



.
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Figure 2.2. Block diagram of EP

Finally, (2.11) can be Rewritten as

mt
a→i(xi) ∝ Nc



xk;

ya −
K∑

j=1,j 6=k
ha,jx̂

l
j

ha,k
,

σ2 +
K∑

j=1,j 6=k
|ha,j|2vlj

|ha,k|2



. (2.12)

2.1.2 Detail of EP Algorithm

EP algorithm is started by reconstructing equation (2.4). The prior input distri-

bution (t̃i) is replaced by an indepedent Gaussian distribution, such that

q(x) ∝ N (y : Hx, σ2I)
K∏

i=1

ex
H
i γi+γ

H
i xi−λi|xi|2 (2.13)

where, γ ∈ RK , and λ ∈ RK ,∀i ∈ K. Equation (2.13) fulfills the MMSE approx-

imation to the posterior distribution p(x|y) as presented in [14], [15]. Performing
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Gaussian product Lemma [16] on (2.13), we can define q(x) by its Gaussian mean

vector µ and covariance matrix Σ as given in (2.15a) and (2.15b). Before passing

the messages to the next module, the prior information has to be removed from the

estimation value as the process is called the calculation of cavity distribution. Cal-

culating the cavity distribution from estimation module is the same as finding the

extrinsic values of xext
A and vext

A , which are given in (2.16a) and (2.16b), respectively.

In the demodulation module, the expectation and variance of the posterior es-

timator (xpost
B ,vpost

B ) are computed by calculating conditional expectation from the

extrinsic information of xA. Considering that M is the cardinality of transmitted

symbols, for each k-th user, the expectations in (2.17a) and (2.17b) are with respect

to P (xk|xA,k), which can be obtained by the Bayes rule

P (xk|xA,k) =
P (xA,k|xm)Px(xm)

P (xA,k)
, (2.14)

where

P (xA,k|xm)Px(xm) =
1

M

1

πvA,k
exp

(
−|xA,k − xm|

2

vA,k

)
,

P (xA,k) =
1

M

1

πvA,k

M∑

m=1

exp

(
−|xA,k − xm|

2

vA,k

)
.

The results of (2.17a) and (2.17b) are obviously identical to the (2.12), as it can be

considered as the posterior message from demodulation module.

The extrinsic values of the demodulation module, i.e., vext
B and xext

B , are calculated

in (2.18a) and (2.18b), respectively. Noting that, the value of vext
B may return a

negative. In this case, we simply use the previous value of vext
B and xext

A as a new pair

of updating parameters. After the iteration converges, the conditional expectation

given by (2.17a) is expected to be the estimated signals. The complete algorithm is

shown in Algorithm 1.

2.1.3 EP Computational Complexity

EP computational complexity becomes the key issue to determine the success

of the EP. Specifically, EP is expected to solve the complexity problem of optimal

10



Initialization: γ0
B→A = 0,λ0

B→A = 1
Es

I, d(Q) = diag(Q);

for l = 1 : Lmax do

Estimation Module:

(1) Compute the a posteriori mean/variance of xA:

vpost
A,l = Σl =

(
σ−2HHH + d(λl−1

B→A)
)−1

(2.15a)

xpost
A,l = µl = Σl

(
σ−2HHy + γl−1

B→A

)
(2.15b)

(2) Compute the extrinsic mean/variance of xA:

vext
A,l =

(
1

d(Σl)
− d(λl−1

B→A)
)−1

(2.16a)

xext
A,l = d(vlA→B)

(
µl

d(Σl)
− γl−1

B→A

)
(2.16b)

Demodulation Module:

(3) Compute the a posteriori mean/variance of xB:

xpost
B,l ← E{x|xext

A,l,v
ext
A,l} (2.17a)

vpost
B,l ← Var{x|xext

A,l,v
ext
A,l} (2.17b)

(4) Compute the extrinsic mean/variance of xB:

vext
B,l = λlB→A =

(
1

vpost
B,l

− 1

vext
A,l

)−1

(2.18a)

xext
B,l = γlB→A =

(
xpost
B,l

xpost
B,l

−
xext
A,l

vext
A,l

)−1

(2.18b)

end

Algorithm 1: EP Algorithm

detector algorithm such as belief propagation (BP) [17] as well as maintaining small

performance loss. In this section, we provide a comparison regarding to the complexity

of BP as a optimal detector algorithm and EP as a low complexity detector. First,

we briefly explain the complexity of BP as a optimal detector algorithm. Next, we
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compare the EP and BP complexity under the same settings. Finally, we discuss about

matrix inversion lemma that can reduce the direct calculation of EP complexity.

EP and BP Complexity

Given that a system model which has transmitter antennas Nt = 8, receiver anten-

nas Nr = 8, and employs 256 QAM modulation. The complexity of BP is O(|A|)Nt ,

where A denotes the cardinality of the QAM modulation. Therefore, the complexity

of BP algorithm in the system model given above is O(2568). Furthermore, if we

increase the transceiver antennas, now become Nt = 16, Nr = 16, the complexity of

BP will be O(25616). Now, we prove that BP complexity is incremental exponentially

and soon becomes prohibitive.

EP complexity is dominated by the calculation of inverse matrix in (2.15a). The

higher the number of transceiver antennas, the higher the dimensional of the EP

inverse matrix. Given the number of iteration (l = 10), the complexity of EP is

O(lNrN
2
t ). Under the same system model mentioned above, the complexity of EP

is O(5120), 10−14% of the BP complexity. Furthermore if we continue increase the

transceiver antennas, now become Nt = 16, Nr = 16, the complexity of EP will be

O(40960), still much lower than BP complexity. It is clearly that EP complexity is

increase linearly with the dimension of the system instead of exponentially, therefore

EP solves the complexity problem of BP.

EP Matrix Inversion Lemma

As mentioned before, EP complexity lies in the inverse matrix Σ. The direct

calculation of the inverse matrix will result O(lN3
t ). If Nr is less than Nt, a better

approach to reduce the complexity of EP is by using matrix inversion lemma. Define

P = d(λl−1
B→A), the matrix inversion lemma is given by

(
σ−2HHH + P

)−1
= P−1 − σ−2P−1HH(I + σ−2HP−1HH)−1HP−1 (2.19)
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Now, the complexity of EP is O(lN2
rNt).

2.2 Future Work For Expectation Propagation

In this section, we investigate the future works for EP, either to improve its perfor-

mance or reduce its complexity. We introduce a double loop algorithm that proposed

in [18] as a way to improve the EP performance. The other way to improve the EPA

performance is using a combination of Gaussian message and EP message as proposed

in [19]. For reducing the complexity of EP algorithm, as proposed in [20] - [21], the

approximation of the inverse matrix value in (2.15a) can be used instead of compute

the inverse matrix itself.

2.2.1 Double Loop EP

As described in [22], [18], the original EP has a bad fixed point issue. Bad fixed

point means after EP approximation value reaches a fixed point, this fixed point can

not achieve EP’s truly convergence value. This issue causes a performance degrada-

tion in EP. To figure out the bad fixed point issue, [18] proposes a double loop EP

algorithm.

The idea of double loop algorithm is to perform a jointly solving of the extrinsic

computation and expectations calculation. Thus, the converge point can be guar-

anteed. The double loop algorithm can be divided into two parts which are outer

and inner loop. The outer loop is identical to the one for the singe loop. The inner

loop refers to perform a numerical method iteration which solves the jointly equation

of extrinsic and expectations in (2.16a, 2.16b) and (2.17a, 2.17b). According to the

Algorithm 1, the jointly equation can be written as

γ l +
xpostB,l

vpostB,l

= γ l−1 +
xpostA,l

vpostA,l

(2.20)

λl +
1

vpostB,l

= λl−1 +
1

vpostA,l

(2.21)
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collecting variable terms and constant terms on the left and right hand side, respec-

tively. The equation 2.20 and 2.21 can be solved iteratively by a numerical method

solver such as Newton method.

However, the complexity of the double loop EP algorithm is increased significantly

and soon becomes prohibitive as the number of QAM modulation grows large. The

reason is the computational burden in the numerical solver. The solver needs an

exhaustive iteration in order to find the solution of (2.20). In a large number of

constellation, equation (2.20) will be very complex, thus the numerical solver might

not efficiently to be used.

Considering the motivation of proposing the EP algorithm i.e. to solve the com-

plexity problem of optimal detector, double loop implementation which causes a high

complexity of EP is denying the purpose of the EP itself. We conclude that the dou-

ble loop EP algorithm is difficult to be implemented. However, in the future works,

EP bad fixed point still be a promising work that needs to be solved. So, the EP

performance can be significantly improved.

2.2.2 Approximation of Inverse matrix

In this section, we briefly describe a way to reduce the EP complexity. Even

though EP is known as a low computational complexity detector algorithm, however

its complexity still too high especially for a large scale system.

As mentioned above, the complexity of EP lies on the inverse matrix in (2.15a).

The way to reduce the EP complexity i.e. approximating the value of the inverse

matrix without compute the inverse itself. In [23], conjugate gradient method is

proposed to directly find the value of (2.15b) without calculating the inverse matrix

in (2.15a). However, (2.16a) also needs the diagonal term of Σ which is now become

unknown. As a future work, we note two promising candidates to approximate the

value of diagonal term inverse matrix those are fast algorithm to extract diagonal
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inverse matrix [20] and probing method for computing the diagonal of a matrix inverse

[24]

Furthermore, in case of sparse matrix, the promising candidates are LDU fac-

torization as proposed in [25] and estimation of the diagonal elements of a sparse

precision matrix [21].

2.3 EP State Evolution

We then employ the performance analysis framework in [26] to develop the state

evolution (SE) of the EPA shown in Algorithm 1. The performance analysis frame-

work is derived from a large scale system. Considering a large scale system, vext
B and

vext
A in (2.18a) and (2.16a) can be approximated by their average values vB and vA, re-

spectively. Following this assumption, the inputoutput transfer function of estimation

module can be derived by substituting (2.15a) and (2.18a) into (2.16a), yielding

vA =
(
K−1tr(σ−2HHH + v−1

B I)−1
)−1 − v−1

B . (2.22)

Now, vA represents the input variance of the demodulation module and can be re-

garded as the SNR of the equivalent scalar additive white gaussian noise (AWGN)

channel

y = x+ vAη. (2.23)

This equivalent scalar AWGN channel can be considered as a k-th channel under K

users. Consistent with our assumption, where vB and vA are the average values vext
B

and vext
A ; each k-th channel model on (2.17a) will have an identical value. To simplify

our explanation on SE, we only adopt k-th channel model (2.23), as an identical

parallel channel model in (2.17a). Similarly, we define v as the scalar version of

(2.17b). Therefore, v can be calculated by

v = Var{x|xA, vA} = E{|x− E{x|xA, vA}|2}, (2.24)
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where the expectation is with respect to P (x|xA) given by (2.14). Referring to (2.18a),

vB can be defined as

vB =
(
v−1 − vA

)−1
. (2.25)

The iteration of the EP algorithm is identical to the SE in (2.22) and (2.25). The

SE is self-consistent. That is, the iteration of estimation and demodulation module

can be traced from (2.22) and (2.25) without iterating the entire algorithm. Let v∗

denote the iteration as converging. Regarding the scalar AWGN channel (2.23), the

theoretical BER as a function of vA can be calculated using the Q function. The SE

of (2.22) and (2.25) is identical to that in [27] whose fixed points have MSE consistent

with the MMSE from [27].

2.4 Massive MU-MIMO Systems

Massive MU-MIMO system is believed to be a key technology for next generation

of wireless system. Hundreds or even thousands antennas will be employed in order to

fulfill the requirements of 5G technology such as massive connectivity, better quality

of service, higher throughput, lower latency, and lower control signaling overhead.

From [28], [29], [30], [31], it can be concluded that MU-MIMO systems has some

critical advantages i.e. 1) Allows a direct gain in multiple access capacity 2) Line

of sight propagation is no longer a problem 3) Increase in spectral efficiency 4) Near

optimal simple coherent linear processing techniques

In this thesis, we focus on considering uplink scheme data transceiver. Therefore,

the system model of MU-MIMO can be described in 2.3. Suppose base station employs

N number of receiver antennas, U denotes the number of users, and each user employ

Nt number of transmitter antennas. Define K = UNt, the received signals can be

construct as

y = Hx + η (2.26)

where, y is N x 1 received signals, H is N x K channel gain, and x is K x 1 transmitted

signals.
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