BKG

Khoirunisa, - (2018) Solusi Fundamental Persamaan Eliptik Dengan Koefisien Matriks Definit Positif. Sarjana thesis, Universitas Brawijaya.

Indonesian Abstract

Persamaan eliptik merupakan persamaan diferensial parsial yang tidak bergantung terhadap waktu dan memiliki koefisien elemen matriks definit positif. Jika suatu persamaan eliptik memiliki kondisi batas yang memenuhi syarat smooth boundary maka persamaan tersebut dapat dicari solusi fundamentalnya. Pada skripsi ini dipelajari solusi fundamental persamaan eliptik yang dapat diperoleh dengan mencari solusi radial terlebih dahulu, kemudian menyederhan persamaan tersebut menjadi persamaan diferensial biasa yang lebih mudah diselesaikan.

English Abstract

The elliptic equation is a partial differential equation which is independent of time and has a positive definite matrix element coefficient. If an elliptic equation has a boundary condition that qualifies smooth boundary criteria then the equation can be searched for its fundamental solution. In this final project we study the fundamental solution of elliptic equations which can be obtained by searching the radial solution first, then simplifying the equation into ordinary differential equations that are more easily solved.

Other Language Abstract

UNSPECIFIED

Item Type: Thesis (Sarjana)
Identification Number: SKR/FMIPIA/2018/26/051800539
Uncontrolled Keywords: solusi fundamental, persamaan eliptik, matriks definit positif, fundamental solution, elliptic equation, positive definite matrix
Subjects: 500 Natural sciences and mathematics > 512 Algebra > 512.9 Foundation of algebra > 512.943 4 Matrices
Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika
Depositing User: Nur Cholis
URI: http://repository.ub.ac.id/id/eprint/8838
Text
Bagian Depan.pdf

Download | Preview
Text
BAB I.pdf

Download | Preview
Text
BAB II.pdf

Download | Preview
Text
BAB III.pdf

Download | Preview
Text
BAB IV.pdf

Download | Preview
Text
BAB V.pdf

Download | Preview
Text
Daftar Pustaka.pdf

Download | Preview

Actions (login required)

View Item View Item