BKG

Daniswara, Krisna Adilia (2017) Kekonvergenan Seragam Pada Integral Sinus. Sarjana thesis, Universitas Brawijaya.

Indonesian Abstract

Chaundy dan Jollife membuktikan bahwa deret trigonometri konvergen seragam jika barisan koefisien fakg monoton turun dan limit dari kak bernilai nol untuk k menuju tak hingga yang dikenal dengan Monotone Sequence (MS). Sesuai perkembangan zaman, kondisi kemonotonan kelas MS diperlemah dan dibentuk kelas-kelas baru diantaranya Mean Value Bounded Variation Sequence (MVBVS), Supremum Bounded Variation Sequence (SBVS), dan Supremum Bounded Variation Sequence type-2 (SBVS2). P. K´orus menuliskan bahwa deret trigonometri pada Mean Value Bounded Variation Function (MVBVF) konvergen seragam ke t jika limit dari xf(x) bernilai nol untuk x menuju tak hingga.

English Abstract

Chaundy and Jollife proved that trigonometric series converges uniformly if coefficient sequence fakg is nonincreasing and limit of kak is zero as k tends to infinity that has known as Monotone Sequence (MS). Due the development of the era, the monotonic condition of MS is weakened and forming new classes such as Mean Value Bounded Variation Sequence (MVBVS), Supremum Bounded Variation Sequence (SBVS), and Supremum Bounded Variation Sequence type-2 (SBVS2). P. K´orus wrote that trigonometric series in Mean Value Bounded Variation Function (MVBVF) converges uniformly in t if limit of xf(x) is zero as x tends to infinity.

Other Language Abstract

UNSPECIFIED

Item Type: Thesis (Sarjana)
Identification Number: SKR/FMIPA/2017/414/051709754
Uncontrolled Keywords: konvergen seragam, deret trigonometri, MVBVS, SBVS, SBVS2
Subjects: 500 Natural sciences and mathematics > 516 Geometry > 516.2 Euclidean geometry > 516.24 Trygonometry
Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam > Matematika
Depositing User: Nur Cholis
URI: http://repository.ub.ac.id/id/eprint/3898
Text
KRISNA ADILIA DANISWARA.pdf

Download | Preview

Actions (login required)

View Item View Item