SYMBOL AND NOTATION

α	=	Concrete stress block area parameter
γ	=	Concrete stress block centroid parameter
α_{re}	=	Preloaded stress block area parameter
γ_{re}	=	Preloaded stress block centroid parameter
E _a	=	Strain value of tangential intersection line with initial curve slope
ε _c	=	Concrete strain
ε _{cm}	=	Maximum concrete strain
E _{cc}	=	Concrete strain at peak stress of confined concrete
ε ₀	=	Concrete strain at peak stress (0.002)
ε _{nl}	=	Concrete plastic strain
ε _{ro}	=	Concrete residual strain when receiving partial unloading
ε _s	=	Steel reinforcement strain, usually used for bottom reinforcement
ε _{un}	=	Unloading strain
ε _s ,	=	Top reinforcement strain of reinforced concrete beam
٤ _{sr}	=	Repair rebar strain
λ	=	Modification factor of lightweight concrete
φ	=	Beam curvature
\dot{A}_{b}	=	Area of rebar for length development calculation
A_s	=	Cross section area or rebar for bottom reinforcement
A_s '	=	Cross section area of rebar for top reinforcement
A_{sr}	=	Cross section area of repair rebar
<i>b</i> ″	=	Width of confined concrete core measured to outside of stirrups
C_{c}	=	Resultant of compression force by concrete stress block
C_s	=	Resultant of compression force by top steel reinforcement
С	=	Total compression force of beam cross section
е	=	Exponential number
d	=	Distance from top fiber of beam to center of bottom steel reinforcement
d_b	=	Diameter of rebar for length development
d_r	=	Distance from top fiber of beam to center of repair rebar
d'	=	Distance from top fiber of beam to center of top steel reinforcement
Ε	=	Material elasticity
E_S	=	Elasticity value of steel reinforcement
E_r	=	Elasticity of concrete during reloading
E_c	=	Elasticity value of concrete
f_c	=	Concrete stress
f'_c '	=	28 days concrete strength tested on cylindrical specimens
f'_{cc} '	=	Maximum concrete stress of confined concrete
f_s	=	Steel reinforcement stress, usually used for bottom rebar reinforcement
$f_{s'}$	=	Top steel reinforcement stress
f_{sr}	=	Repair rebar steel reinforcement stress
f_{new}	=	Concrete stress of reloaded concrete with the same strain of its unloading
		strain
f_{ro}	=	Concrete stress of partially unloaded concrete
f_r	=	Tensile strength of concrete (rupture modulus)
l_d	=	Required length development of steel reinforcement

- Δl = Length of calculated steel reinforcement
- K_u = Unloading constant
- kd = Distance from top fiber of beam section to beam neutral axis
- S_L = Clear distance between ribs of deformed rebar
- H_L = Depth of ribs of deformed rebar
- u = Bond strength between concrete and rebar in elastic region
- u_f = Bond strength between concrete and rebar in yield and strain hardening region
- T = Total tension force of beam cross section
- T_s = tension force created by bottom reinforcement
- T_{sr} = Tension force create by repair rebar
- Z = Confinement parameters of concrete confined by stirrups or hoops