BAB III

METODE PENELITIAN

3.1 Data Penelitian

Data yang digunakan adalah data yang mengandung *outlier* berpengaruh dan tidak memenuhi asumsi asumsi dalam regresi linier berganda. Berikut adalah data yang digunakan

Tabel 3.1: Tabel Data yang Digunakan

Data	Penulis	Judul Skripsi	Variabel
1	Ratih	Pengaruh Tingkat Suku	Y = Perkembangan
	Dwianitasari	Bunga Deposito	nilai transaksi
		Berjangka dan Nilai	obligasi korporasi di
		Tukar Rupiah atas USD	pasar modal
	7	terhadap Perkembangan	X_1 = Tingkat suku
	5	Nilai Transaksi Obligasi	bunga
		Korporasi di Pasar	$X_2 = Nilai tukar$
		Modal	rupiah atas USD
2	Dicky	Pengaruh Ekstensifikasi	Y = Realisasi
	Irwansyah	Wajib Pajak, Kepatuhan	penerimaan pajak
		Wajib Pajak, dan	penghasilan pasal 21
		Tingkat Pencairan	$X_1 = Ekstensifikasi$
		Tunggakan terhadap	wajib pajak
		Realisasi Penerimaan	$X_2 = Kepatuhan$
		Pajak Penghasilan Pasal	wajib pajak
		21	$X_3 = Tingkat$
			pencairan tunggakan
3	Arin	Pengaruh Luas Lahan,	Y= tingkat produksi
	Wulandari	Jumlah Bibit, Jumlah	X_1 = luas lahan (m ²)
		Pakan, dan Obat-obatan	X_2 = jumlah bibit
		terhadap Produksi dan	(ekor)
		Pendapatan Petani	X_3 = jumlah
		Budidaya Ikan Jaring	pakan(sak)
		Sekat	X_4 = obat-
			obatan(pak)

Tabel 3.1 (Lanjutan)

Data	Penulis	Judul Skripsi		Variabel
4	Mirna	Analisis	Variabel-	Y = Return On
	Susanti	Variabel	yang	Investment (ROI)
4		Mempengaruhi	Return	$X_1 = \text{Total Dept to}$
134		On Investment((ROI)	total Asset (TDAR)
HTT (X_2 = Net Sales (NS)
		CITE	13	$X_3 = Struktur Modal$
		13		(SM)
				X_4 = Perputaran
				Piutang (PP)
				X_5 = Current Debt to
			a.\	Current Asset
		PX3 ((CD/CA)
5	Ardina Citra	Pengaruh	Realisasi	Y = Jumlah Realisasi
	Swantari		Realisasi	Pendapatan Pemda
		Belanja dan	Jumlah	$X_1 = Jumlah$
		Uang Beredar	terhadap	Realisasi
		Likuiditas	dan	Pengeluaran Belanja
		Pertumbuhan Ekonomi		$X_2 = Jumlah Uang$
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	四 排放	Beredar
				$X_3 = Likuiditas$
		Y		Investasi Daerah

3.2 Metode Analisis Data

3.2.1 Membuat Model Regresi Awal dengan MKT

Hal pertama yang perlu dilakukan adalah menduga parameter regresi linier berganda dengan MKT sebagai model awal. Pendugaan parameter dilakukan dengan meregresikan variabel respon terhadap variabel prediktor. Dengan menerapkan pendugaan regresi MKT maka diperoleh persamaan (2.14). Pendugaan parameter regresi tersebut digunakan untuk memperoleh nilai duga y_i berdasarkan persamaan (2.1)

3.2.2 Deteksi Outlier

- 1. Menghitung h_{ii} berdasarkan persamaan (2.16) kemudian membandingkannya dengan kriteria pengujian berdasarkan persamaan (2.17)
- Menghitung TRES berdasarkan persamaan (2.18) kemudian membandingkannya dengan kriteria pengujian berdasarkan persamaan (2.19)

3.2.3 Deteksi Pengamatan Berpengaruh

- 1. Menghitung DFITS berdasarkan persamaan (2.20) kemudian membandingkannya dengan kriteria pengujian berdasarkan persamaan (2.21)
- 2. Menghitung D_i berdasarkan persamaan (2.22) kemudian membandingkannya dengan kriteria pengujian berdasarkan persamaan (2.23)

3.2.4 Pengujian Asumsi Analisis Regresi

- Memeriksa kenormalan galat menggunakan uji Kolmogorov Smirnov berdasarkan persamaan (2.24) kemudian membandingkannya dengan kriteria pengujian berdasarkan persamaan (2.25)
- 2. Memeriksa kehomogenan ragam galat menggunakan uji Glejser, berdasarkan persamaan (2.26)-(2.29)
- 3. Memeriksa asumsi kebebasaan antar galat menggunakan uji Durbin Watson berdasarkan persamaan (2.32) kemudian membandingkannya dengan kriteria pengujian
- 4. Memeriksa asumsi ada atau tidaknya multikolinieritas antar variabel prediktor menggunakan VIF berdasarkan persamaan (2.33) kemudian membandingkannya dengan kriteria pengujian

3.2.5 Pendugaan Parameter Regresi Robust dengan Penduga MM

Prosedur penduga MM adalah menduga parameter regresi dengan penduga S kemudian dilanjutkan dengan penduga M. Prosedurnya sebagai berikut:

- A. Menduga parameter model regresi dengan penduga S. Langkahlangkahnya sebagai berikut:
 - 1. Menghitung $\hat{\beta}$ dengan MKT berdasarkan persamaan (2.14) sehingga diperoleh galat e_i
 - 2. Menduga parameter model regresi dengan Metode Kuadrat Terkecil Terboboti Iteratif (*Iteratively Reweighted Least Square* / IRLS) langkah-langkah sebagai berikut:
 - a. Menentukan nilai w_i berdasarkan persamaan (2.37)
 - b. Menduga parameter model regresi dengan MKT terboboti $\beta^* = (X'WX)^{-1}X'WY$ sehingga diperoleh galat e_m yang baru
 - c. Menjadikan galat langkah (b) sebagai galat awal langkah (a) sehingga didapatkan nilai w_i baru.
 - d. Iterasi diulang sampai didapatkan kekonvergenan sehingga diperoleh $\hat{\beta}_m$ yang merupakan penduga M dan didapatkan galat e_m yang baru.
 - e. Menghitung S_m berdasarkan persamaan berikut :

$$S_m = \frac{med |e_i|}{0.6475}$$

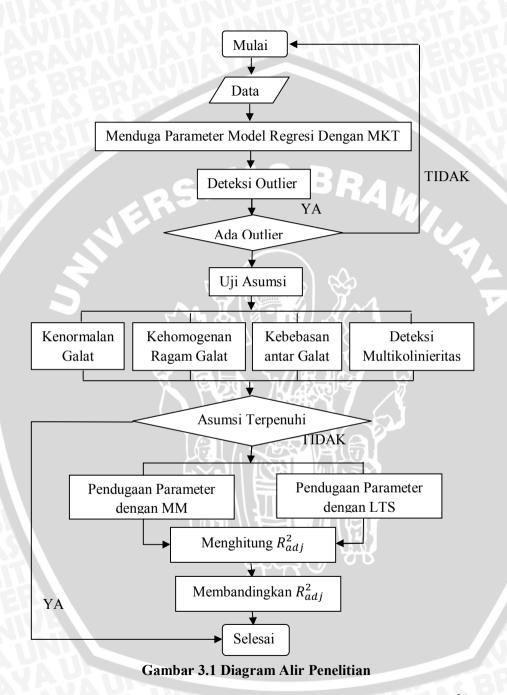
- 3. Menduga parameter model regresi dengan metode IRLS galat yang diperoleh pada langkah (2.d). Langkah-langkah pendugaan adalah sebagai berikut :
 - a. Mengambil subset contoh berukuran p
 - b. Menentukan nilai $S_s = S_m$
 - c. Menghitung nilai w_i berdasarkan persamaan (2.41)
 - d. Menduga parameter model regresi dengan MKT terboboti $\boldsymbol{\beta}^* = (X'WX)^{-1}X'WY$ sehingga diperoleh galat e_i yang baru.
 - e. Menghitung S_m berdasarkan persamaan berikut :

$$S_S = \frac{me\hat{d} |e_i|}{0.6475}$$

f. Menjadikan langkah (d) sebagai galat awal langkah (c) sehingga didapatkan nilai S_s dan w_i baru.

- g. Iterasi diulang sampai didapatkan kekonvergenan sehingga diperoleh $\hat{\beta}_s$ dan simpangan baku S_s baru
- h. Menyatakan $\hat{\beta}_s$ dengan nilai simpangan baku S_s terkecil sebagai penduga parameter model dari penduga S.
- B. Menduga parameter model regresi dengan penduga MM. Langkahlangkahnya sebagai berikut:
 - a. Menghitung galat e_i (i = 1, 2, ..., n) dari penduga S.
 - b. Menentukan nilai $S_{MM} = S_S$
 - c. Menghitung nilai w_i berdasarkan persamaan (2.47)
 - d. Menduga parameter model regresi dengan MKT terboboti : $\boldsymbol{\beta}^* = (X'WX)^{-1}X'WY$ sehingga diperoleh galat e_i yang baru.
 - e. Menjadikan galat langkah (4) sebagai galat awal pada langkah (1) sehingga didapatkan nilai w_i yang baru dengan nilai S_{MM} tetap (skala estimasi tetap)
 - f. Iterasi diulang sampai didapatkan kekonvergenan sehingga diperoleh $\hat{\beta}_{MM}$.
 - g. Menghitung koefisien determinasi terkoreksi (R_{adj}^2) berdasarkan persamaan (2.52)

3.2.6 Pendugaan Parameter Regresi Robust dengan Penduga *Least Trimmed Square* (LTS)


Prosedur penduga Least Trimmed Square (LTS) adalah sebagai berikut:

- 1. Menghitung estimasi parameter melalui MKT berdasarkan persamaan (2.14)
- 2. Menentukan h-subset berdasarkan persamaan (2.49) dan menghitung $\sum_{i=1}^{h} e_{(i)}^2$
- 3. Menerapkan langkah C-*steps* pada initial h-subset tersebut sampai konvergen untuk mendapatkan pendekatan LTS. Adapun langkah C-*steps* yaitu:
 - a. Melakukan estimasi parameter b_{new} dari h_0 pengamatan melalui MKT.

- b. Menentukan e_i^2 yang bersesuaian dengan MKT (b_{new}). Kemudian menghitung sejumlah h_{new} dengan nilai e_i^2 terkecil.
- c. Menghitung $\sum_{i=1}^{h_{new}} e_{(i)}^2$
- 4. Menerapkan Final Weighted Least Square (FWLS)
- 5. Menghitung koefisien determinasi terkoreksi (R_{adj}^2) berdasarkan persamaan (2.52)

Proses dalam membandingkan pendugaan parameter regresi robust penduga MM dan LTS dikerjakan dengan bantuan software. Untuk pendugaan parameter regresi robust penduga MM dan LTS dikerjakan dengan SAS 9.1. Sedangkan untuk deteksi outlier, amatan berpengaruh, pengujian asumsi analisis regresi, dan uji signifikansi parameter regresi menggunakan bantuan MINITAB 14. Berikut adalah diagram alir prosedur analisis:

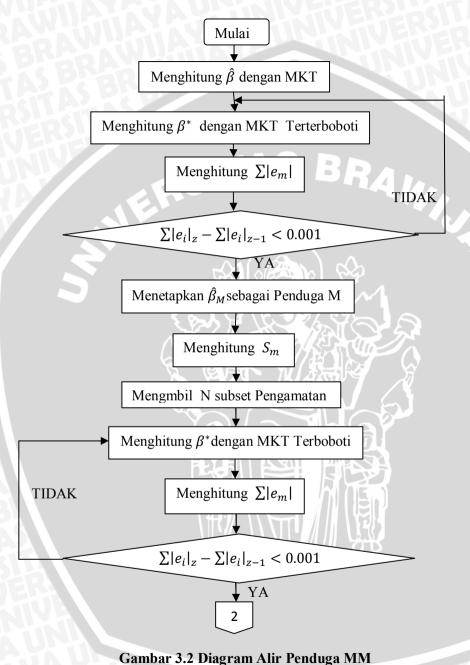
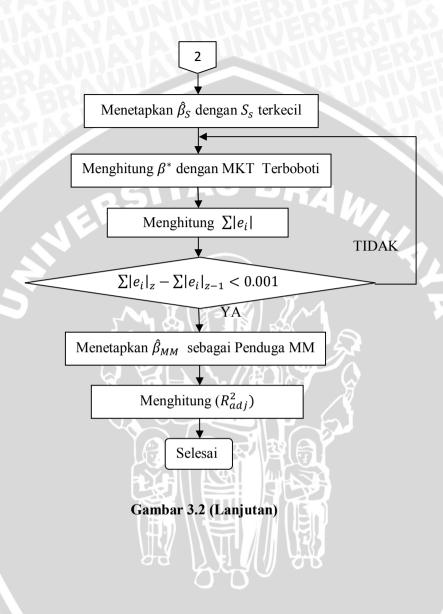
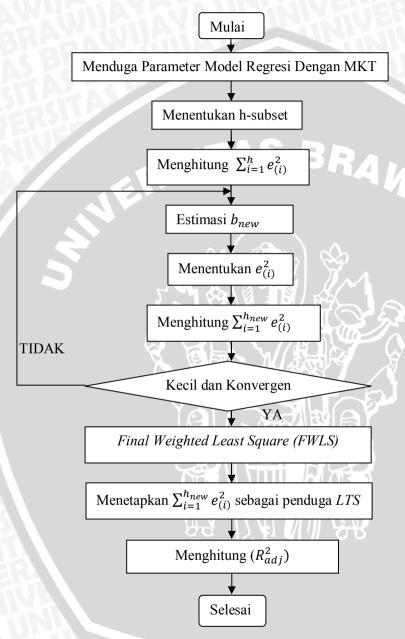




Diagram Am Tenunga MM

Gambar 3.3 Diagram alir Penduga LTS